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Problem definition: The management of national parks (NPs) involves striking a delicate balance between

conserving nature and its inhabitants by limiting human access versus promoting awareness of the park’s

wonders by allowing access to designated trails and public areas. Many park authorities (PA) restrict access

by establishing visiting hours and limiting the number of visitors allowed to enter per day. Such limitations

are managed through a reservation system, requiring visitors to reserve a visiting permit before arrival. We

analyze reservation system data provided by the PA of Israel, showing cancellation and no-show behaviors

that change dynamically over time and depend on the number of days a reservation is made before the

visiting day.

Methodology/results: We develop a dynamic policy for the number of reservations the system should be

allowed to make every day for a specific focal date. The solution depends on the ratio between the cost of

not allowing visitors to make a reservation to the park (“blocking cost”) and the park’s overloading cost

normalized by the probability of a reservation being realized (due to cancellations or no-shows). The policy

takes the form of a two-threshold policy, where the first is a time threshold determining periods where

reservations are unrestricted, and the second is a capacity threshold limiting the total number of reservations

made over the entire reservation horizon. We simulate the performance of our fluid policy and compare it to

several benchmarks, showing that our proposed policy is the only one inducing minimal costs in all scenarios.

Managerial implications:

We show how our policies can inform NP authorities regarding the number of days in which the reservation

system should be opened for reservations before the focal day. Our model can help NP to better conserve

natural resources and provide access to public spaces in a balanced way.

1. Introduction

Managing national parks (NPs) involves a delicate balance between protecting nature and its

inhabitants and promoting awareness through public access (Cole 2012, 2019, Yung et al. 2010).

Traditionally, this balance has been achieved by restricting human access both to designated trails

and to specific visiting hours. However, increasing population growth and rising tourism have led

to a significant surge in visitors to NPs. As a result, it is now common to encounter traffic jams

at park entrances and overcrowding on popular trails during the summer and holiday periods.

These challenges pose risks to the parks’ ecosystems (Hammitt et al. 2015, Monz et al. 2013,
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Pickering 2010, Cole 1990). Therefore, the issue of limiting daily visitor numbers is raised annually

in many popular parks worldwide. However, denying entry to visitors at park gates is often viewed

as overly restrictive of individual rights. Consequently, such measures are implemented only in

extreme situations where public health is at risk, such as during wildfires. Instead, many NPs

around the world balance nature conservation with visitor management using reservation systems

through which visitors can ensure their accessibility to the park on a certain day while the park

authority (PA) manages the visitor load.

For example, in the US, the federal government manages a travel planning and reservation

platform called recreation.gov through which visitors can reserve park permits or participate in

a lottery for popular trails. In New Zealand, a permit is required to hike the Great Walks. In

Israel, the trigger to implement such a reservation system was the COVID-19 pandemic, which

transformed the issue of overcrowding to a public health concern. In 2020, the World Health

Organization recommended limiting gatherings in both enclosed and open spaces. In response,

the Israel Nature and Parks Authority (INPA) launched a preregistration system in May 2020 to

regulate park access. Under this system, visitors were required to reserve a specific date and, in

some cases, a specific entry time to visit a NP1. No fee was charged for obtaining an entry permit.

As in the US, this system limits the maximum number of visitors based on the estimated capacity

of each park. The INPA continued to use these preregistration procedures even after the pandemic

stopped, primarily in smaller parks (e.g., Ein Yehuda) where overcrowding remains an issue. To

this day, the system remains active but is not mandatory anymore in most NPs. We claim that

a lot can be learned from the period when the park registration system was mandatory, ranging

from how to manage NP capacity, to the public’s reaction to reservation restrictions.

Managing reservation systems for NPs presents several operational challenges. Some of these

challenges are similar to those faced by other reservation-based service systems. For instance, data

from the INPA for 2019–2020 (see Section 3) shows that approximately 19.5% of individuals who

schedule a visit cancel their reservation, and another 29.3% neither arrive at the park nor cancel

their reservation (no-shows). The latter statistic is akin to the no-show rates observed in healthcare

appointments (Liu et al. 2010). There are, however, differences between the healthcare and park

settings. For one, while patient cancellations and no-shows affect a physician’s work schedule and

one another, they have no such effect in a park setting, where there is no specific “server” attending

to visitors.

Determining NP capacity is a complex problem in and of itself (Whittaker et al. 2011). It is

influenced by a variety of social and ecological factors including current environmental conditions;

1 For brevity, we include Israel’s nature reserves and national parks in the umbrella term “national park (NP)”.

https://www.recreation.gov/pass
https://www.doc.govt.nz/parks-and-recreation/things-to-do/walking-and-tramping/great-walks/


3

ecosystem type; the levels, timing, and type of visitor use; and visitor behavior (Hammitt et al. 2015,

Monz et al. 2013, Pickering 2010). The PA can influence some of these factors through development

or actions. For example, the PA can create elevated paths to protect the natural environment

against impact, direct visitors to specific areas of a park, limit park use, or encourage minimum-

impact visitor behavior (Cole 1990). Furthermore, visitor load itself affects the way visitors utilize

recreation areas (D’Antonio and Monz 2016, Cole and Hall 2010).

In this paper, we will address the following research questions:

1. Discover similarities and differences between NP visitor behavior and known customer behavior

in other reservation systems. Previous literature has analyzed customer behavior in reservation

systems for various sectors, including hotels (Dole 2023), healthcare (Feldman et al. 2014),

and flights (Lawrence et al. 2003). These studies identify phenomena such as reservation

cancellations and no-shows. In this paper, we utilize data from the INPA and observe similar

patterns of time-varying dynamics of cancellation and no-show behaviors across parks (Section

3). Moreover, in NPs that applied a daily quota of reservations with no hourly limitations,

we observe a time-varying arrival-rate pattern of visitors to the park that is similar to other

service systems (e.g., healthcare (Yom-Tov and Mandelbaum 2014) and call center (Gans et al.

2003)) without reservations.

2. How do we determine optimal park capacity?

We propose to analyze visitor load at NPs as an Mt/G/∞ queue with time-varying arrivals

and general LOS (Section 4.1). Based on fluid approximation, we determine the optimal

number of visitors that balances overcrowding and accessibility. By “accessibility” we mean to

allow as many as possible visitors to enter the park, which holds both economic and educational

significance. By “overcrowding,” we refer to situations when the number of visitors exceeds

the maximal capacity that was predefined to a specific park.

3. How do we optimize a park reservation system?

The main contribution of this paper is in optimizing the NP reservation system while

considering behavioral factors, such as no-shows and cancellations. Here, we strive to balance

not only accessibility and overcrowding at the park but also the problems resulting from

requiring people to reserve a permit before their visit. This affect is captured via dynamic

blocking costs, where the system is penalized for preventing potential visitors from making

a reservation, and that penalty depends on the time left till the requested visiting day. In

Section 5, we analyze the reservation system optimization problem at the fluid level, proving

that the system’s reservation capacity is determined by the ratio between the blocking and

overcrowding costs and is influenced by the probability of a reservation being realized (due to

cancellations or no-shows). The fluid policy takes the form of a two-threshold policy, where
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the first is a time threshold determining periods where reservations are unrestricted, and the

second is a capacity threshold limiting the total number of reservations made over the entire

reservation horizon. This analysis has implications for determining the time when the PA

should begin accepting reservations for a specific focal visiting day (Section 5.3).

To the best of our knowledge, this is the first paper to analyze the effectiveness of a national

park reservation system as a service system, applying operations research methods.

The rest of the paper is organized as follows. In Section 2, we review relevant literature on man-

aging visitor load in NPs and optimizing reservation systems. In Section 3, we present descriptive

data analytics of Israeli NPs based on data provided by the INPA. In Section 4, we discuss how to

determine park capacity and connect this to determining the reservation system’s acceptance pol-

icy. In Section 5, we develop a mathematical model for a reservation management system, propose

a policy that is optimal for the fluid approximation version of this model, and discuss managerial

implications. In Section 6, we simulate the performance of this fluid policy and compare it to sev-

eral benchmarks, showing that our proposed policy is the only one achieving minimal costs in all

scenarios. In Section 7, we discuss avenues of future research and conclude.

2. Literature Review

Here we review relevant literature. Most of it was developed for other types of service systems,

such as healthcare and flight companies, or for tourism and leisure systems, such as hotels and

theme parks. We explain the differences when relevant.

2.1. Managing Visitor Load in Parks and Tourism Areas

National parks are characterized by a time-varying arrival rate to the park (see Section 3). Time-

varying arrival rates are typical for many service systems, creating a time-varying customer load

that increases and then decreases during a working day, unless server capacity compensates for the

variation. NPs are somewhat different from typical service systems because NP capacity is constant

and cannot be changed throughout the day; a park’s capacity is determined by its individual

characteristics (e.g., the park’s sitting areas and trails (Hammitt et al. 2015, Monz et al. 2013,

Pickering 2010)) that do not change during the day. These facts not only reinforce the time-varying

dynamics of visitor load in NPs, but also limit the PA’s ability to manage this load. As explained,

what the PA can manage is the total number of visitors entering the park, by limiting the number

of permits available in the reservation system. Hence, while we take the arrival-rate time-varying

pattern as given, the total number of arrivals we wish to allow during a day is viewed as a decision

variable. A given park capacity and the time-varying patterns of arrivals and LOS are important

factors in determining a target total number of visitors we wish for the reservation system to allow

to visit the park during the day. This could be viewed as the inverse of the mathematical problem
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studied by Zychlinski et al. (2020), who determined the optimal fixed capacity that minimizes

under-utilization and overload costs in healthcare systems for given time-varying arrival rate and

service times. Yet, our problem does not have a close form solutions.

A prerequisite to solve such problems is to be able to forecast demand—how many people would

wish to visit the NP, as done for campground or tourism areas using historical data (Rice et al.

2019) or web search (Peng et al. 2017, Law et al. 2019). Dependencies between parks can be

an important aspect (see Section 7 and Appendix EC.1). As mentioned, the park’s individual

characteristics of trails and leisure areas (Hammitt et al. 2015, Monz et al. 2013, Pickering 2010)

determine its capacity. Load within the NP depends on how people use these areas—are they sitting

for a picnic or moving through a trail? Hence, load depends on the park layout and design. Meijles

et al. (2014) analyzed visitor spatial flow and overcrowding patterns in a NP using GPS data.

They suggested that visitor tracking can be used to steer visitors to less overcrowded areas. Similar

suggestions were made by Ahmadi (1997) who analyzed visitor movements in a different leisure

industry, theme parks. They suggested that such analysis can shed light on the efficient spatial

design of the theme park’s rides and attractions as well as its impact on load, wait times, and

visitor experience (Ahmadi 1997). By contrast, NPs have less control over the spatial design itself,

and rather try to leave the park environment with minimal disruption. PAs focus on developing

safe walking trails and providing rest areas. Their location is very much determined by the park

terrain.

2.2. Reservation Systems

The above challenges have led many PAs to install reservation systems to control load. Reservation

systems are widely used not just in NPs and other tourism sites but also in healthcare facilities

(where they are usually referred to as appointment systems). A review of the literature on appoint-

ment systems is given in Mondschein and Weintraub (2003) and Pinedo et al. (2015); Cayirli and

Veral (2003) and Gupta and Denton (2008) provide excellent surveys on appointment systems in

healthcare specifically. As Pinedo et al. (2015) showed in their review paper, a common theme

across varying industries is to either minimize the costs or maximize the gains of the appoint-

ment system. However, the authors highlight that the efficiency of appointment systems is highly

dependent on each service industry’s context-specific constraints and objectives.

The literature on appointment systems in healthcare usually considers intra-day scheduling aim-

ing to minimize patients’ waiting time and staff costs and idle time. The literature also takes into

account customer no-shows and cancellations, as these reduce system efficiency and revenue (Has-

sin and Mendel 2008, Zacharias and Pinedo 2013, Hassin and Mendel 2008). One way to deal with

no-shows and cancellations is to book more customers than the system can handle. For example,
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Zacharias and Pinedo (2013) model an appointment reservation system that overbooks appoint-

ments using an index policy that is based on patients’ no-show characteristics. A different approach

is to optimize the intra-day sequence of appointments in order to minimize the impact of no-shows

on staff utilization. For example, Hassin and Mendel (2008) suggest sequencing appointments in

varying intervals throughout the day (e.g., have lower number of appointments at the beginning and

the end of a day compared to the middle of the day). Mandelbaum et al. (2019) consider the joint

problem of determining the appointment date, appointment capacity, and appointment sequencing

throughout the day, taking into account patient punctuality and service duration variability. Wang

and Fung (2015) suggest a dynamic programming model to optimize appointment scheduling that

takes into account patients’ preferences for a particular physician and time slot. This approach is

reinforced by research showing a correspondence between honoring patients’ preferences and their

no-show and cancellation behaviors (Liu et al. 2018). Our problem is different from the above

research because a NP is not a service system with strict staffing capacity, where one customer

waits for a previous customer to finish service before starting service themselves. Instead, all visi-

tors enjoy the park at the same time. Hence, there are no delays caused by the exact arrival time

of visitors. This lack of a strict capacity limit led us to model the NP as an infinite-server system

(Section 4.1), an approach suggested for large healthcare appointment systems by Mandelbaum

et al. (2019) and Huang et al. (2022).

A key factor in estimating no-show and cancellation probabilities in a medical context is that such

behavior increases as a function of the time difference (in days) between the day the appointment

is made and the appointment day (Green and Savin 2007, Liu et al. 2010, Norris et al. 2014,

Feldman et al. 2014, Leeftink et al. 2022). We observe the same dynamics, where no-show and

cancellation probabilities increase with that time difference (Section 3). Relatedly, in the context

of restaurant reservations, Alexandrov and Lariviere (2020) show that not having a reservation

system is generally the worst policy, since reservations may increase demand on slow nights when

demand is naturally low. We also consider the reservation horizon length problem, as Leeftink

et al. (2022) did for healthcare clinics, first analytically in Section 5.3, where we determine the

conditions under which one should allow the reservation horizon to be as long as possible vs. as

short as possible, and then numerically, in Section 6, where we use simulation to compare our

reservation policy to a no-reservation policy.

In our model, the system may block customers from making a reservation, and this blocking cost

plays an important role in our model and policy. Most of the above-mentioned healthcare papers do

not consider blocking costs as part of their model, since healthcare systems usually do not prevent

patients from making an appointment. An exception is Schütz and Kolisch (2013) who maximize

revenue. They take into account blocking costs, overtime costs due to overbooking, and refunds for
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customers who cancelled their reservation or did not show up for their appointment. Refunds can

be relevant in NPs in which fees are collected during the reservation process (e.g., in US), and are

closely connected to lost revenues due to blocking demand. Overtime is not relevant in our model,

because NPs do not have strict capacity that can cause queues and delays during the visiting day.

Our reservation system has also some parallels with reservation systems in the hospitality and

tourism industry. For example, hotels and airlines also overbook to offset customer cancellations

and no-shows (Lawrence et al. 2003). Like the NP case, hotels and airlines optimize the total

number of arrivals during the focal day and care less about their specific arrival time. Unlike NPs,

hotels and airlines have a strict capacity, and when the number of reservations that are realized on

the focal day exceeds that strict capacity, high overbooking penalties are paid due to lost potential

revenue.

An interesting question is how to balance long-term and short-term demand. For example, Bitran

and Gilbert (1994) ask whether last-minute walk-in hotel reservations should be accepted by cre-

ating overbooking, that is, taking into account the probability of denying entry of a customer

arriving to a full hotel with a reservation. They employ intra-day information to predict cancella-

tions and no-shows and the resulting probability of reaching a full hotel. Grant et al. (2022) study

appointment systems in healthcare, where the trade-off is between same-day appointments with

extra office hour costs for the clinic vs. late appointments that might result in a deterioration of

the patient’s health condition. The question of balancing long- and short-term demand also arises

in our context in two ways: (a) should we keep capacity for customers planning their visit just

1–2 days before the visiting day (Section 5.3), and (b) how should we use real-time predictions of

no-show and cancellation probabilities (Section 6.1).

3. The Reservation System in National Parks

In this section, we first describe the general processes of managing visits to a NP and then the way

these processes are reflected in data.

This research was done in collaboration with the INPA. INPA manages 400 nature reserves (NRs)

and 81 national parks (NPs) in Israel, covering over 20 percent of Israel’s land mass, including

sites with historical significance or unique natural attributes. INPA provided us with data that

includes park visits in 2019–2020 and park reservations in 2020. In 2020, the COVID-19 pandemic

triggered a change in how the INPA managed visits to its parks. A reservation system was installed.

Reserving an entry permit became the first step in planning a visit to one of the INPA sites. These

reservations could be changed up to the day of the visit to the park.
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Making a Reservation

Reservation are done through the PA website, where people can observe the park availability within

the reservation horizon (the horizon length depends on the park). Each PA sets its own horizon

for reservations. For example, one can reserve a permit to visit popular NPs in the US six months

in advance (see www.recreation.gov/pass). For some NPs, entry permits are distributed through a

lottery (see www.recreation.gov/lottery/available). INPA allowed entry permits to be obtained up

to 15 days in advance during 2020; currently (as of October 2024) permits can be obtained up to

9 months in advance.

When INPA established the reservation system during the COVID-19 pandemic, the aim was to

control visitor load at the NPs. Different policies where implemented in different parks. In most

parks, visitors were allowed to enter the park at the hour of their choosing without any limit on

visiting duration while the park was open for that day, but in some parks, visitors were required

to specify an entry time (from 2–4 time-slot options), and in others, LOS was also limited to that

time slot, particularly during weekends (see examples in Table 1). The time-slot partition resulted

in queues at the park entrance gate around the beginning time of each time slot and, therefore,

the time-slot limitations were eventually cancelled. Table 1 provides examples of visiting time slots

and maximum capacity per slot at several parks in the north of Israel. The visiting time limitations

could change between weekdays and weekends.

Table 1 Sample of visiting time slots of nature parks in the north of Israel [May–August 2020].

Site Weekday Friday Saturday

Visiting
time slot

Max.
capacity

Visiting
time slot

Max.
capacity

Visiting
time slot

Max.
capacity

Hermon Stream 8AM– 4PM 1200 8AM–10AM 400 8AM–10AM 300
(Banias) NR — 10AM–12PM 400 10AM–12PM 300
Springs Area 12PM– 3PM 400 12PM– 2PM 300

2PM– 4PM 300
Snir Stream 8AM–11AM 400 8AM–10AM 400 8AM–11AM 400
NR 11AM– 2PM 400 10AM–12PM 400 11AM– 2PM 400

2PM– 4PM 400 12PM– 3PM 400 2PM– 4PM 400
Iyon Stream 8AM– 4PM 1200 8AM–12PM 600 8AM–11AM 400
(Tanur) NR 12PM– 3PM 600 11AM– 2PM 400

2PM– 4PM 400
Yahudiya NR 8AM– 4PM 800 7AM– 3PM 800 7AM– 4PM 800

Analyzing the reservation data reveals interesting insights into visitor behavior. For example,

Figure 1 shows the proportion of reservations made at day t before the focal day out of the total

number of reservations made for that day. We observe that about 55% of visitors make reservations

several days ahead of the focal day of the visit, while about 45% make reservations on the focal

day of the visit or the day before. Naturally, the NP’s specific features and accessibility affect

the number of reservations; for example, 25% of all reservations during May–December 2020 were

https://www.recreation.gov/pass
https://www.recreation.gov/lottery/available
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made to the five most popular NPs. Interestingly, 11.6% of the people reserved more than one NP

for the same focal day, though it is unclear whether this phenomenon indicates tentative plans

or an intention to visit more than one NP on the same day. See Appendix EC.1 for popular site

combinations.
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Figure 1 Proportion of reservations made as a function of the distance from the focal day [All NPs, May–

December 2020, All days]. Day 0 represents the focal day for which the reservations were made.

Cancellations

Potential visitors may cancel or change their reservation (i.e., change the number of people in

the group or the focal date of visit). Indeed, 19.5% (SD 15.8%) of the reservations in our sample

were cancelled, and this percentage varied both by day of the week and by month (see Figure 2).

Figure 2(a) shows that cancellations for weekends are higher than for weekdays: 23.8% (SD 13.7)

and 17.6% (SD 16.1), respectively. Some of the variation in cancellations by month (see Figure

2(b)) may be attributed to variation in the reservation reminder system. Starting in June 2020,

e-mail reminders were sent to the reservation holder 1–2 days before the focal day, and starting in

November 2020, an SMS reminder was added. Reminders help to increase certainty over the focal

day arrival rate, free reservation capacity for alternative visitors in case of cancellation, and reduce

the no-show rate (since some people who would no-show without a reminder cancel instead).

Figure 3 shows the proportion of cancelled reservation at day t before the focal day from all

cancelled reservations to that focal day. Most of the cancellations (> 65%) were done on the focal

day and the day before. Similar late cancellation behavior has been observed in healthcare systems.

For example, Leeftink et al. (2022) find that about two-thirds of all appointment cancellations are

cancelled less than five working days before the actual appointment date.

Figure 4 shows an estimation for the probability of a reservation being cancelled on each day

before the focal day. This probability is estimated by the cancellation percentage: the number

of cancellations from the number of reservations made at that day (the cancellations could have

happened at any time from the reservation day until the focal day). We observe that the probability
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Figure 2 Percentage of cancellations, by day of the week and month [All NPs, May–December 2020, All Days].
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Figure 3 Proportion of cancellations as a function of the time before the focal day [All NPs, May–December

2020, All days]. Day 0 represents the focal day for which the cancellations were made.

of a cancellation increases with the number of days between the reservation day and the focal day.

In particular, reservations that were made only 0–2 days before the visit day are significantly less

likely to be cancelled. Similar behavior has been observed in healthcare, where the probability of

canceling a physician appointment decreases with time leading up the appointment day (Gallucci

et al. 2005, Liu et al. 2010).

Arrivals to the Park and No-shows

Analyzing the actual arrival rate to a park, we identify a clear time-varying pattern (that may

differ between NPs). For example, Figure 5 shows the arrival rate (i.e., the proportion of arrivals

at a specific hour out of the total arrivals during a day) in En Gedi Nature Reserve. The arrival

rates peaks at the beginning of the day and at noon, then decrease toward the end of the day.

By comparing the number of active reservations (that were not cancelled before the focal day)

to actual visits, we can estimate no-show probabilities. As in many other reservation systems, such

as for doctor appointments, the no-show percentage is significant and has a direct impact on park

accessibility. The no-shows are unrealized demand that may have prevented other potential visitors
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Figure 4 Number of reservations (blue) and cancellations (red) as a function of the time before the focal day,

and the percentage of cancellation from the reservations of that day (green) [All NPs, May–December

2020, All days]. Day 0 represents the focal day for which the reservations were made.
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Figure 5 Arrival rate to En Gedi NR by day of the week: Weekdays vs. weekends.

from visiting the park by creating unused time slots. Figure 6, based on data from Gan HaShlosha

(Sahne) NP, shows that no-shows are indeed a concern. The figure depicts the number of active

reservations (solid orange line) and the number of visitors (solid blue line). The difference between

them are no-shows. The number of active reservations for weekends reaches the maximum capacity

of 2500 tickets (dashed black line), but the actual number of visitors is much lower. (Note that

in August 2020, the park started to increase the maximum number of reservations that could be

booked; accordingly, the number of actual visitors increased but was still below the maximum

capacity of 2500 visitors on most days.)

Overall, the percentage of no-shows is 29.3% (see Figure 7(b)). The no-show probabilities seem

to be higher for reservations for weekend focal days (see Figure 7(a)). Due to data limitations, we

cannot observe the relation between the number of days before the focal date that the reservation

was made and the no-show percentage. However, data from healthcare appointment systems shows

a strong correlation between the time a reservation was made and the no-show percentage, where

reservations that are made earlier are more likely to become no-shows (Feldman et al. 2014).
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Figure 7 Percentage of no-shows [May–December 2020, All NPs].

4. Optimizing NP Visitor Load

Our goal is to control the visitor load at NPs during visiting hours by optimizing the reservation

system. We propose to separate the optimization problem into two parts and solve them sequen-

tially. The first problem (Problem I) is to determine the optimal total number of visitors to the park

on a focal day, given the park’s individual features (arrival rate patterns, capacity, visit duration,

etc.). This problem aims to balance overcrowding with accessibility. Based on fluid approximation

we propose a numerical solution to this problem in Section 4.1.

The second problem (Problem II) is to design the reservation system to achieve the optimal

number of visitors to the park on a focal day, as defined in Problem I. We analyze this problem in

Section 5, where we minimize blocking costs as well as costs that result from a mismatch between

the target number of visitors and the realized number of visitors. While the blocking costs accrue

over time, the mismatch costs are incurred only on the focal day. The optimization of the reservation

system is achieved by controlling the number of visitors who are allowed to make a reservation in the



13

system. Because a reservation might be cancelled, rescheduled, or just not utilized (see Section 3),

we need to allow overbooking of reservations (similar to airline and healthcare reservation systems),

but not so much so as to cause overcrowding and a mismatch between the target number of visitors

and the actual number of visitors. Because these dynamics change over time, we formulate a rolling-

horizon model. The analysis in Section 5 will be on the fluid level, assuming that demand, no-show,

and cancellation probabilities are known in expectation, and in Section 6 we confirm that the fluid

policy preforms well also in its underlying stochastic environment. Previous research shows that

fluid models have been successfully implemented in modeling service systems in various contexts,

such as healthcare (Zychlinski et al. 2020) and contact centers (Yom-Tov et al. 2021). As noted

by Zychlinski et al. (2020), “fluid frameworks are well adapted to large time-varying overloaded

systems (Mandelbaum et al. 1998, 1999) [which is the case here]. Moreover, fluid models yield

analytical insights, which typically cannot be obtained using their alternatives (e.g., simulation,

time-varying stochastic queueing networks).”

4.1. Problem I: Determining the Target Total Arrival Volume

In this section, we want to determine the total number of visitors the park should allow to enter

the park per day. The considerations the PAs need to take into account are wide and varied. These

include (a) the park’s features: how large is the physical space, how many interest points are there

where visitors may spend time and what is the distance between these points, and whether the space

is vulnerable, that is, does it include historical or natural areas that could be harmed by a large

number of visitors; (b) the visitors’ features: what is the popularity or demand for visiting the park,

the visit duration distribution (usually this is affected by the park’s features and its accessibility),

and the arrival rate dynamics during the day; and (c) the costs: visit costs, maintenance costs

of the park, and overcrowding cost, which represents visitors’ experience and their wish to avoid

crowds when venturing to nature. Both demand and visit duration are influenced also by external

random features such as the weather.

Due to the above features, we assume that there is somemaximal number of visitors (or “maximal

capacity” for short), denoted by L, that the PA does not want to exceed at any specific time of the

day and that exceeding this number will result in an over-cost of co per visitor per unit of time. On

the other hand, it is assumed that the PA does not want to allow less than the maximal number

of visitors and that falling below this number results in an under-cost of cu per visitor per unit of

time. The intra-day optimization problem should try to balance these two types of costs. Let R(t)

be the average number of visitors at the park at time t (also called “visitor load” for short). Then,

we wish to minimize the total cost:∫ T

0

co(R(t)−L)+ + cu(L−R(t))+dt, (1)
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where T is the daily opening hours of the park.

We propose to model the number of visitors in the park using an Mt/G/∞ queue, where arrival

rate is according to a Poisson process with time-varying arrival rate λt, and general distribution of

service times, denoted by S, with mean service rate µ. Because capacity in NP is a soft constraint,

and visitors do not directly affect one another, we assume that the number of servers in infinite.

Eick et al. (1993) finds that the visitor load, R(t), of an Mt/G/∞ system is R(t) =E[λ(t−Se)]E[S],

where S is the service time random variable and Se is the corresponding excess service time.

Denote by Λ the target number of visitors throughout the day (which we name “target arrivals”

for short) at the park. Define λ%
t as the percentage of the arrival rate at time t out of the daily

target arrivals Λ, therefore, by definition
∫ T

0
λ%
t = 1. Then, the arrivals at time t are λt =Λλ%

t . The

optimization problem I can be written as

min
Λ

C(Λ) =

∫ T

0

co(R(t)−L)+ + cu(L−R(t))+dt (2)

s.t. R(t) = ΛE[λ%(t−Se)]E[S].

The above representation of R(t) emphasizes that R(t) is linear in Λ and independent of L.

Denote R%(t) as R%(t) = E[λ%(t− Se)]E[S]. Define R%
i (t) to be the increasing sorted version of

R%(t) (i stands for increasing). Let Φ(x) =
∫ T

0
R%

i (t)1
{
R%

i (t)≤x

} dt. Then, the optimal lambda is

found by solving an integral equation as depicted by the following theorem:

Theorem 1. There exists a solution to problem (2), and the optimal target total arrivals, Λ∗,

that minimize it is given by the fixed point solution of the integral equation:

Φ

(
L

Λ∗

)
=

co

co + cu
E[S]. (3)

Providing Φ(x) is invertible on the relevant range, then, Λ∗ = L

Φ−1
(

co

co+cu
E[S]

) .
Remark 1. When R%

i (t) is not strictly increasing, Φ may be constant on some interval of lambda

values, so Φ−1 might not be single-valued. In that case, any x in the constant interval that satisfies

Φ(x) = co

co+cu
E[S] can lead to an optimal Λ∗. This does not affect the existence of solutions or

optimality but may yield a range of possible Λ∗ values.

5. Developing a Real-time Reservation Management Policy (Problem
II)

5.1. Model Definition

Next, we want to design an optimal reservation policy for which the actual number of visitors

arriving at the park is as close as possible to the target number of visitors, Λ, with minimal costs.

We assume that the demand for reservations is larger than Λ; therefore, the PA cannot satisfy all

of the demand and must reject the reservation requests of some visitors.
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The reservation process is a finite rolling-horizon process, meaning that the decision taken by the

PA on day t regarding whether to accept a reservation depends on the decisions that were made up

to day t as well as on the data on future demand, cancellations, no-shows, and costs. Let T be the

reservation horizon—the number of days in which the reservation system is open for reservations

to a focal day. Hence, this is also the maximal number of days between the day a reservation is

made and the focal day. Let t= 1 be the time when the reservation system opens for reservations,

thus T is also the focal day.

We consider three types of costs: under- and over-costs (terms will be explained momentarily)

and blocking costs. Under- and over-costs are paid according to the gap between the actual arrivals

on the focal day T , denoted by IeT , and the target number of visitors on the focal day T , denoted

by Λ. Let cu be the cost incurred by the PA when the arrivals are less than Λ and co be the cost

incurred by the PA when the arrivals are greater than Λ. Henceforth, we will refer to cu as the

under-cost and to co as the over-cost. The third type of cost is the blocking cost. Let cbt be the

blocking cost at day t, which is the cost incurred by the PA for every customer it blocks from

making a reservation during the reservation horizon T . Every demand for a ticket that is denied

at day t increases the total blocking cost by cbt units. We will prove that the optimal reservation

policy depends on the ratio between the blocking cost and the over-cost. Specifically, when we

cannot avoid some costs, we need to decide which of these two types of costs we prefer to incur.

Denote byDt the demand for customers entering at the reservation system on day t (t∈ {1, ..., T})
wishing to reserve an entry permit to the NP and D= (D1, ...,DT ) the vector of demands through-

out the time horizon. Let Qt be the number of customers whose request for reservation we accept

at day t and Q = (Q1, ...,QT ) the vector of accepted requests throughout the reservation time

horizon. Hence, Qt ≤Dt. Let pt be the probability of a ticket reserved on day t, for visiting of the

focal day T , being cancelled before the focal day, that is, during the period (t, T ]. Similarly, let φt

be the no-show probability during the focal day T of a customer that made a reservation on day t.

(Recall that a no-show customer is one who does not cancel their reservation but does not arrive

at the park.) Assuming that cancellation and no-show behaviors are independent of each other,

the mean number of customers that made a reservation on day t and arrive at the NP on the focal

day T is Qt(1− pt)(1−φt), and the total of that expression across all reservation days results in

the mean number of arrivals at the NP on day T , given by

IeT =
T∑

t=1

Qt(1− pt)(1−φt). (4)

The superscript e indicates that IeT is the number of effective reservations that are expected to

actually arrive on the focal day out of the IT reservations, given the cancellation and no-show

probabilities.
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Remark 2. NPs do not charge a fee for making a reservation; therefore, we assume that can-

celling a reservation is costless. However, one could extend the proposed reservation system to

account for reservation fees. In case there are reservation fees, they may apply differently for no-

shows and cancellations. For example, in the hospitality industry, it is customary to charge a partial

fee for cancellations that are made close to the focal day and charge a full fee for no-shows. These

charges may also depend on the day the reservation was made.

Let It be the total number of reservations made up to day t: It =
∑t

i=1Qi. From those reserva-

tions, Iet visitors are expected to arrive. Iet can be also written recursively as Iet = Iet−1 +Qt(1−

pt)(1− φt), which captures the rolling-horizon nature of the reservation process. Without loss of

generality, we assume that I0 = Ie0 = 0. These are the number of reserved permits when we open

the reservation systems to the public.

We aim to find a policy for accepting reservations that minimizes the total costs function:

T∑
t=1

cbt(Dt −Qt)
+ + cu (Λ− IeT )

+
+ co (IeT −Λ)

+
,

where Qt is the decision variable (the number of accepted reservations at time t), Dt is the demand

on each day t, and IeT is the number of arrivals at the focal day T , as given in Eq. (4). The function

(·)+ stands for max{0, ·}.

5.2. Solving the Fluid Optimization Problem

We solve the following fluid optimization problem:

min
Q

T∑
t=1

cbt(Dt −Qt)+ cu(Λ− IeT )
+ + co(IeT −Λ)+ (5)

s.t.

Iet = Iet−1 +Qt(1− pt)(1−φt), ∀t∈ 1, ..., T ;

Ie0 = 0;

Qt ∈ [0,Dt], ∀t∈ 1, ..., T .

Intuitivly, the solution to problem (5) depends on the cost ratio co(1−pt)(1−φt)

cbt
. When this ratio

is greater than 1, then the over-cost is higher than the blocking cost, and we should not allow

more visitors than Λ. By contrast, when the ratio is less than 1, then the over-cost is lower than

the blocking cost, and we should accept all the demand. Define an index function f such that

ft =
cbt

(1−pt)(1−φt)
for all t. Let f̂ be the sorted vector of f from the highest to the lowest value.

Denote by s the index of the sorted vector. Each index s maps to a real period t. We use ·̂ to

describe variables in the sorted system.
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Theorem 2. Let f̂ be the sorted vector of f from the highest to the lowest value. Let index S1

be maximal s such that f̂s > co for all s ≤ S1. Then, the optimal sorted solution to Eq. (EC.4)

is Q̂∗
s = D̂s for all s ≤ S1. If Î

e
S1

=
∑S1

s=1 D̂s(1− p̂s)(1− φ̂s) ≥ Λ, then Q̂∗
s = 0 for all S1 < s ≤ T .

Otherwise, Q̂∗
(S1+1,...,T ) = {D̂S1+1, ..., D̂S2−1,

Λ−ÎeS2−1

(1−p̂S2
)(1−φ̂S2

)
,0, ...,0}, where S2 is the index in which

ÎeS1
+
∑S2−1

s=S1+1 D̂s(1− p̂s)(1− φ̂s)<Λ and ÎeS1
+
∑S2

s=S1+1 D̂s(1− p̂s)(1− φ̂s)≥Λ.

The proof is in Appendix EC.2.

Theorem 2 identifies a two-threshold policy. The first threshold is a time threshold (at s= S1)—

before which all reservations are accepted regardless of the NP capacity—and the second is a

capacity threshold (that we reach at s = S2)—after which we stop accepting reservations in the

case where S2 >S1 and therefore exists. The capacity threshold ensures the balance between over-

and under-costs on the focal day. Theorem 2 can be implemented by the following algorithm:

Algorithm 1: The Two-Threshold Reservation Algorithm

1. Calculate all ft values for every t, such that ft =
cbt

(1−pt)(1−φt)
.

2. Sort ft from the highest to the lowest value. Let f̂ (with indexes s= 1, ..., T ) be the sorted
function of f , and the time-threshold index s= S1 be the maximal s in which f̂ > co, i.e.,
S1 =max{s|f̂s > co}.

3. For all days with index s∈ {0, ..., S1}, where f̂s > co, accept all demand for reservations.
4. For days with index s∈ {S1+1, ..., T}, where f̂s ≤ co, accept effective reservations sequen-

tially (i.e., one at a time with increasing index-s days) as long as Îes doesn’t exceed the
capacity threshold Λ.

Algorithm 1 is illustrated in Figure 8. Figure 8(a) shows an arbitrary function ft that may

increase and decrease over time. The sorted function, f̂s is illustrated in Figure 8(b) (marked solid

blue line). This sorted function crosses co = 2 (solid light blue line) at time S1. Therefore, all the

effective demand for reservations (dashed light green line) in indexes 1–3 are accepted (purple

columns). The total effective demand at index S1 is below Λ = 3000 (solid dark green line), so

all demand is accepted up to index S2, where the total number of effective accepted reservations

equals Λ. At this point, no further demand is accepted, that is, IeT =Λ.

The optimal solution according to this two-threshold policy is such that

IeT =max

 ∑
s:f̂s>co

Ds(1− ps)(1−φs),Λ

 . (6)

The first component in (6) occurs when (more than) Λ effective reservations are accepted before

the time-threshold index S1, that is, by accepting all the demand when f̂s > co. In this scenario,

the sorted acceptance vector will be

Q̂∗ = (D1, ...,DS1
,0, ...,0) . (7)
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Figure 8 Illustration of an optimal two-threshold policy.

The second component in (6) occurs when the total effective demand up to the time-threshold index

S1 (i.e., in all the periods in which f̂s > co) is less than Λ. In this scenario, the sorted acceptance

vector will be

Q̂∗ =

(
D1, ...,DS1

,DS1+1, ...,
Λ− ÎeS2−1

(1− p̂S2
)(1− φ̂S2

)
,0, ...,0

)
(8)

reservations. This policy for the sorted reservation function Q̂∗ needs to be translated back to the

actual day t to form Q∗.

5.3. Managerial Implications

Next, we explore how time-varying dynamics of the blocking cost and the cancellation and no-show

probabilities impact (a) the time horizon in which the PA should open the reservation system for

bookings and (b) whether the PA needs to actively limit the number of entry permits available for

reservation in the reservation system between periods. We will discuss three scenarios as depicted

in Figure 9: (a) decreasing ft, (b) increasing ft, and (c) decreasing-increasing ft.
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(c) Decreasing-increasing ft

Figure 9 Reservation system optimal solution for different f functions’ time-varying dynamics.
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5.3.1. Decreasing ft As defined, the f function’s time-varying dynamics may be attributed

to one of the following parameter dynamics: the blocking cost and the cancellation and no-show

probabilities, since ft = cbt/((1 − pt)(1 − φt). In Section 3, we showed that the probability of a

reservation being cancelled decreases as the time between the reservation day and the focal day

decreases (see Figure 4). In other words, reservations that are made closer to the focal day are

less likely to be cancelled. This means that, in practice, the cancellation probability, pt, decreases

over time. While we do not have information on the dynamics of the no-show probability, research

on healthcare appointment systems shows decreasing dynamics for no-shows too (Feldman et al.

2014). Understanding how the blocking cost, cbt , behaves as a function of time is less clear. A

reasonable assumption is that cbt is constant over time, taking the price of an entry permit lost due

to the reservation blocking.

Proposition 1. Assume that the no-show probability, φt, and the cancellation probability, pt,

decrease over time and that the blocking cost, cb, is constant over time. Then, the optimal time to

open the reservation system is as early as possible. The PA should accept reservations continuously

from that time onwards until Λ effective reservations have been accepted.

This scenario also has a very easy implementation to a real-time algorithm as described graph-

ically in Figure 9(a). As can be seen in the figure, when f is decreasing, the PA should open the

reservation system as early as possible and fill up all the time slots continuously up to day S2. If

we add the reasonable assumption that the blocking cost is not too high, meaning that f1 ≤ co, the

PA should accept all reservations until the capacity threshold is reached. Therefore, the number

of available entry permits for reservations on Day 1 should be set to Λ/((1− p1)(1− φ1)), and

this cap should be updated daily according to accepted demand, realized cancellations, and the

probability to cancel reservations (or not show up to the focal day) of active reservations. Hence,

on day t the number of available entry permits for reservations will be (Λ− Iet )/((1− pt)(1−φt)).

(A more elaborate version will be described in Section 6, where we use a hazard rate function of

the cancellation probability to get a prediction of the stochastic equivalent of Iet , denoted as Iet ,

using real-time information on cancellations. See Algorithm 2.)

Some PAs implement policies in this spirit as if their ft function is decreasing. In New Zealand,

for example, park registration starts six months before parks open for the season, and within 10–20

minutes all tickets for the popular trails are taken for that season. Later reservations can be made

only if someone cancels their reservation.

Proposition 1 also holds for blocking costs that decrease over time. Next, we explore the opposite

scenario.
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5.3.2. Increasing ft Here, we assume that ft increases over time. This can happen if cbt is

increasing at a large enough rate such that ft is increasing in spite of the decreasing no-show and

cancellation probabilities.

Proposition 2. Assume that ft increases over time. Then, the optimal time to open the reserva-

tion system is as late as possible at day min{T −S1+1, T −S2+1}. The PA will accept reservations

continuously from that day along the whole time horizon. In the case that index s= S2 exists, at

day T −S2 +1, partial demand may be accepted such that

QT−S2+1 =min

{
Λ−

∑T

t=T−S2+2Dt(1− pt)(1−φt)

(1− pT−S2+1)(1−φT−S2+1)
,DT−S2+1

}
.

This case is illustrated in Figure 9(b), where the reservation system is open from Day 5 onwards.

All demand before that day is blocked, and all demand after that day is accepted, while demand

on Day 5 is partially accepted.

This scenario also has a very easy implementation to a real-time algorithm. A more elaborate

version will be described in Appendix EC.3.

5.3.3. Decreasing-increasing ft As noted above, the application of an early start or late

start for the reservation period depends on what we assume regarding visitors’ behavior. Do we

assume that people plan their visit to the park well in advance, coming especially for this park and

traveling long distances to reach it, or do we assume that people are more spontaneous, last-minute

planners. Our data analysis in Section 3 suggests that both types of visitors exist. Hence, it may

also be realistic to assume that cbt is convex, first decreasing and then increasing (see Figure 9(c)).

In such a case, the PA should divide the number of entry permits it proposes on the reservation

system between the two visitor populations, offering some entry permits to be reserved on the first

few days of the horizon, then blocking all demand for the next period of days, and then offering

some entry permits for reservations on the last few days of the horizon. Specifically, the index

periods 1 to S1 are divided between the beginning of the horizon (days 1 to S1
1) and the end of

the horizons (days T −S2
1 +1 to T ). The index periods S1 +1 to S2 are also divided between the

beginning of the horizon (days S1
1 +1 to S1

2) and the end of the horizon (days T −S2
2 +1 to T −S2

1).

We accept reservations up to day max{S1
1 , S

1
2} and from day min{T −S2

1 +1, T −S2
2 +1}.

Figure 9(c) illustrates such a policy: reservations are accepted to and through Day 5 (S1
2), from

Days 6 to 9 (T − S2
2) customers are informed that no reservations are available, from Day 10

(T −S2
2 +1) reservations are accepted again. On one of the days S1

2 or T −S2
2 +1, reservations will

be partially accepted up to a capacity threshold (the threshold can be calculated using the same

logic as QT−S2+1 in proposition 2). On all other days, all reservations are accepted.
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Remark 3. The policy suggested above enables a potential visitor to the park to observe open-

ings in the reservation system for either short-term or long-term focal days. The PA saves some

reservations for last-minute planners but also takes into account openings due to expected cancel-

lations and no-shows (where same-day slots become available randomly). Saving reservations for

last-minute customers is a common policy both in reservation systems, such as in hotels (Bitran

and Gilbert 1994) or healthcare (Schacht 2018), and in non-reservation systems, as in hospitals

(Kim et al. 2020).

Remark 4. Note that if the no-show and cancellation probabilities and the blocking costs are

constant over time when f < co, then our two-threshold policy behaves like an overbooking policy

with a capacity threshold of Λ(1− p)(1− φ). We will use that as one of the benchmark policies

tested in the next section.

6. Implementing the Fluid Policy in Practice

In Section 6.1, we propose an algorithm for the implementation of the fluid policy in real time,

which we call the adaptive two-threshold (ATT) policy. In Section 6.2, we suggest to compare this

policy to four benchmark policies. In Section 6.3, we conduct a simulation study to show that

the ATT policy provides better performance than does the benchmark policies under stochastic

behavior and real-time decision-making. We calibrate the simulation study using real data that

was collected from the INPA for the period May–December 2020 (see Section 3). We present our

simulation study results in Section 6.4, comparing performance under various load scenarios.

6.1. The Adaptive Two-Threshold (ATT) Policy

In this section, we propose ways to translate Algorithm 1 into a real-time decision-making pol-

icy using real-time information. In a real-time scenario, information on cancellations is obtained

over time. By contrast, information on no-shows is obtained only on the focal day. Hence, our

consideration of these two behaviors differs.

The real-time reservation process: In this section, we regard time as a continuous variable

t∈ [0, T ], instead of in days, where T is the time horizon in which the reservation system is open for

reservations. It is assumed that at time t either a reservation or a cancellation arrives to the system.

If, at time t, demand for a permit arrives to the system, a decision is made regarding acceptance.

The number of customers who make a reservation at time t is 1 if the reservation is accepted

(Qt = 1), and 0 otherwise (in which case a blocking cost cbt is incurred). Alternatively, at time t a

cancellation may arrive to the system. Let Ct denote a reserved ticket cancelled at time t. The total

number of active reservations (i.e., reservations that were not cancelled so far) at time t, Īt, is given

by Īt = I0+
∫ t

0
(Qi−Ci)di for t∈ [0, T−]. Since we know the number of cancellations, we also know

the number of reservations made at time i that were not cancelled before time t, namely, Q̄t
i (by
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definition, Q̄t
t =Qt). Therefore, an alternative expression for the active number of reservations at

time t, Īt, is I0+
∫ t

i=0
Q̄t

idi, for all t∈ [0, T−]. Denote by NT the number of customers who reserved

permits but do not show up at the NP on time T . Then, ĪT = ĪT− −NT =
∫ T−

i=0
Q̄T

i di−NT . [I0 = 0.]

As before, we compare ĪT to Λ and pay an over- or under-cost if they do not match.

Predicting cancellations: At time t, the ATT algorithm relies on real-time information regard-

ing cancellations done until that time, and therefore needs to predict the probability of an active

reservation to be cancelled from time t to T . We estimate this probability using the hazard rate

function (see example from our data in Figure 10, in daily resolution). Let ri(t) be the hazard

rate function for the cancellation probability on time t of a reservation made on time i, that is,

t ∈ [i, T ]. Thus, ri(t) is the risk that a customer will cancel her reservation on time t given that

her reservation was not cancelled before that time (for a reservation made on time i). Therefore,

the probability that a customer will cancel her reservation on time t (for a reservation made on

time i) is pi(t) = ri(t)Si(t) = ri(t)e
−

∫ t
u=i ri(u)du. The sum of all pi(t) for all t gives us the probability

of a reservation being cancelled at any time between the reservation day i and time T , that is,

pi =
∫ T

t=i
pi(t)dt (which is the parameter we used in the fluid analysis of Section 5). Finally, let Ht

i

denote the probability of a reservation made on time i, and still active on time t, being cancelled

before the end of the horizon T . That is,

Ht
i =

∫ T

j=t
pi(j)dj

Si(t)
=

∫ T

j=t

ri(j)
Si(j)

Si(t)
dj =

∫ T

j=t

ri(j)e
−

∫ j
u=t ri(u)dudj. (9)

Eq. (9) is used to derive the number of active reservations at time t that are predicted to arrive to

the NP on time T , namely, Īet by Īet =
∫ t

j=0
Q̄t

j

(
1−Ht

j

)
(1−φj)dj.

The ATT algorithm: Assuming that f is a decreasing function, Algorithm 2 for optimizing

the reservation system is defined as follows:2

Algorithm 2: The Adaptive Two-Threshold (ATT) Algorithm for Decreasing f Function

1. Calculate all ft values for every time t, such that ft =
cbt

(1−pt)(1−φt)
.

2. Identify S1 =max{t|ft > co}.
3. Set t= 0.
4. If t≤ S1, accept all the demand for reservations during that time, i.e., Qt =Dt.
5. If t > S1, calculate the number of reservations that are active just before time t and are

predicted to arrive the NP by Īe
t− =

∫
i<t

Q̄t
i(1−Ht

i)(1−φi)di. Then, if Ī
e
t− ≥Λ, accept no

reservations (i.e., Qt = 0). Otherwise, accept Qt =min{Dt, (Λ− Īe
t−)/((1− pt)(1− φt))}

reservations.
6. Set t= t+ dt. If t≤ T , go to Step 4; otherwise, stop.

2 In Appendix EC.3 we provide Algorithm 3 for the less realistic scenario where f is an increasing function.
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Here we assumed that no-show and cancellation probabilities decrease over time (see Section 6.3

for more details) while the blocking probability remains constant. Hence, by Proposition 1 the PA

should open the reservation system as early as possible and accept all reservations up to the time

threshold, S1, and then continue to accept additional reservations up to Λ effective reservations.

The decision at time t ∈ (S1, T ], depends on the estimation that an active reservation at time t

will be realized. (Note that the algorithm allows acceptance of more than one entry permit in each

reservation, relaxing the assumption we made at the beginning of this section regarding Qt, for

predicting cancellations, since all reservations made at the same time are statistically identical.)

6.2. Benchmark Policies

We will compare the above-defined adaptive two-threshold (ATT) policy to four commonly used

policies:

1. The lambda-level (LL) policy: Accept effective reservations until the capacity threshold is

reached, where each reservation’s effectiveness is predicted based on its no-show and cancel-

lation probabilities. Hence, this policy ignores the time threshold S1; that is, ft is assumed to

be smaller than co for all t. This policy should work well in under-loaded or medium-loaded

systems. It is similar to the overbooking strategy suggested by Lawrence et al. (2003).

2. The no-show overbooking (NOB) policy: Let φ̄ be the average no-show probability. Open

Λ/(1− φ̄) permits to be reserved in the system, and accept reservations until those permits

are booked. This policy ignores the time-varying dynamics of cancellation and no-show prob-

abilities. It sets an average no-show probability for all reservations and ignores cancellation

probabilities, due to the fact that cancellations are realized before the focal day and can be

replaced by demand arriving after the cancellation time. This policy should work in our NP

setting since most of the demand arrives in the last few days. One problem of this policy is

lost sales due to cancellations on the last day.

3. The cancellation and no-show average overbooking (OB) policy: Let p̄ be the average cancel-

lation probability and φ̄ be the average no-show probability. Open Λ/((1− p̄)(1− φ̄)) permits

to be reserved in the system, and accept reservations until those permits are booked. This

policy ignores the time-varying dynamics of cancellation and no-show probabilities and sets

average no-show and cancellation probabilities instead. One problem of this policy may be

accepting too many reservations.

4. No-reservation (NR) policy: In reality, in a no-reservation system, there would be no blocking

and also no cancellations or no-shows of reservations. For a fair comparison, we regard the

“demand for reservations” as people’s intention to visit the NP, and the no-shows and cancel-

lations as an event where people changed their plans to visit the NP, therefore not realizing

those intentions. Hence, this policy is similar to having a reservation system with no limit on

the number of permits opened in the system and accepting all the demand for reservations.
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6.3. The Experiment Design of our Simulation Study

In this section, we describe a discrete-time simulation study designed to compare the performance

of the above policies in a realistic setting. The simulation will examine costs of a single focal day

in a typical NP. We rely on data analyzed in Section 3 to estimate model parameters. Specifically,

the simulation inputs on the cancellation, no-show, and demand dynamics during the reservation

time horizon are based on average customer behavior across all NPs and the total demand values

are based on the average number of reservations made for a single NP.

Note that the demand in the simulation is stochastic. To distinguish between expected demand,

Dt, and realized demand, we will denote the latter demand Dt, and the resulted number of active

tickets at day T after random no-show and cancelations as ĪT . Denote Vπ as the total cost under

policy π, where π ∈ {ATT ,LL,NOB ,OB ,NR} for the above-defined policies. Vπ =
∑T

t=1 c
b
t(Dt −

Qt) + cu(Λ− ĪT )+ + co(ĪT − Λ)+, where Qt is determined by policy π. We simulate the decision

made by each policy π and compare the cost Vπ.

6.3.1. Cancellation and No-show Probabilities We use the cancellation probabilities pre-

sented in Section 3. Specifically, Figure 4 showed the probability of a reservation made on day t

being cancelled before the focal day (see also the gray line in Figure 11(a)). For the simulation, we

need an estimation of the respective hazard rate function, ri(t), presented in Figure 10. We observe

an interesting behavior, where on the reservation day there is a 5% risk of same-day cancellation,

which drops to 1%–2% until the last two days before the focal day. The cancellation risk then

increases again to 5%–10% on Day -2, to 10%–15% on Day -1, and to 9%–10% on the focal day.

This pattern is consistent regardless of when the reservation was made, except for reservations

made on Day -1, which show different (and higher) risk for same-day cancellations.

Using this data, we calculate Ht
i: the accumulated probability that a reservation made on day

i and not cancelled before day t will be cancelled before the focal day T . This calculation is used

for (a) randomizing cancellations made on day i and (b) making acceptance/blocking decisions
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Figure 11 No-show and cancellation probabilities as a function of the number of days until the focal day

for the ATT and LL policies presented in Sections 6.1 and 6.2. We apply the average cancellation

probabilities over time to the OB and NOB policies (see Section 6.2).

As discussed in Section 3, due to data limitations we cannot measure individual-level no-shows

(i.e., we cannot connect a specific no-show to a specific reservation nor to the day it was made).

Instead, we only know the total no-show percentage, by comparing the total active reservations

made for a focal day to the total number of arrivals on that focal day. Previous studies on healthcare

appointment no-shows have shown that the no-show probabilities decrease over time (e.g., Gallucci

et al. 2005, Liu et al. 2010). Therefore, in our simulation, we use the no-show time-varying dynamics

from Gallucci et al. (2005) (see the upper line in Figure 11(b)) and proportionally decrease the

values by a few percentage points so that the total no-show probability matches the NP data (see

the no-show line in Figure 11(a)). Similar to the cancellation probabilities, the no-show probabilities

are used for (a) randomizing no-shows on day T and (b) making acceptance/blocking decisions for

the ATT and LL policies. We apply the average no-show probabilities over time to the OB and

NOB policies (see Section 6.2).

Using these no-show and cancellation probabilities, with constant blocking costs, yields a decreas-

ing f function. Therefore, we use Algorithm 2 to simulate the performance of the ATT policy.

6.3.2. Cost and Demand Inputs We implement a 3× 11 experimental design, including

three combinations of over-costs and eleven combinations of total demand. The three combinations

of over-costs are designed such that S1 = 0, S1 ∈ {1, T − 1}, or S1 = T . S1 = 0 when the maximum

of ft is less than co, S1 = T when the minimum of ft is greater than co, and S1 ∈ {1, T − 1} when

co is between the maximum and minimum ft values. In practice, we change only the value of

co to accomplish these three combinations (see Table 2). The mean of the total demand values
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throughout the time horizon (T = 15 days) ranges between 2000 and 7000 in jumps of 500 entry

permits (eleven combinations). The demand of each simulation replication is drawn from a normal

distribution with the above means and an SD that is 1% of the mean. These mean values of the

total demand are designed so that the mean of the total number of reservations after cancellations

varies between 1529 and 5351 but the mean of the total number of arrivals after no-shows drops

to between 1173 and 4105. Compared to the target load Λ = 1095, these demand values create

moderate- to high-load scenarios. (Note that this number of reservations represents a realistic

demand for one NP, as seen in Figure 6.) We ran 100 replications for each over-cost and total

demand combination. The total demand is distributed over time according to the demand function

presented in Figure 1.

Combination No. T cb cu co Max ft Min ft S1

1 15 4 3 12 11.05 4.66 0
2 15 4 3 7 11.05 4.66 13
3 15 4 3 4 11.05 4.66 T = 15

Table 2 Parameter combinations for simulation study.

6.4. Simulation Study Results

Figures 12–13 present the results of our simulation study (additional results are presented in

Appendix EC.5). Figure 12 presents the cost gap, in percentage, between the cost of a specific

policy π, Vπ, and the average cost of our proposed policy, E[VATT ], as a function of demand, for

each of the parameter combinations presented in Table 2. Figure 13 shows the gap, in percentage,

between arrivals to the park on the focal day and the target number of visitors (Λ) as a function of

demand. Figures EC.7–EC.9 present the same information using boxplots of the 100 replications,

where we present three specific total demand values for 2000, 3000, and 7000 reservations, each

representing a different situation of the relationship between the policies’ performance.

Examining Figure 12, we first observe that ATT is the only policy that provides a minimum cost

in all the combination cases (because the cost gap of the other policies is always greater than 0%).

The second-best policy is the LL policy. Recall that the LL policy takes into account the time-

varying dynamics of both cancellation and no-show probabilities. In analyzing the performance

of the LL policy, we observe an interaction between demand and S1 (which is determined by the

relationship between ft and co). As S1 increases as it goes to T (i.e., moving from Combinations

1 to 3), the differences between the ATT and LL policies become more apparent. This is because

the ATT policy accepts all reservations before S1, while LL rejects some reservations; therefore,

when S1 > 0, the two policies diverge. Yet, when 0 < S1 < T (Combination 2), we start seeing
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Figure 12 Comparison of the average total cost of each policy, E[Vπ], to the average total cost of the ATT

policy, E[VATT ], as a function of total demand.

differences only when the total demand is high (see Figure 12(d)). This is because when the demand

is moderate, the probability that more than Λ effective reservations are accepted before S1 is low,

especially considering the pattern of lower demand and higher cancellation probabilities at the

beginning of the time horizon. Therefore, we see little to no difference between these policies when

demand is lower than 5500 reservations. As S1 increases, these differences manifest at lower demand.

Specifically, when S1 = T , the gap reaches 30% when the demand is 2000 (see Figure 12(b)). In

contrast to the LL policy, the NR policy performs better as S1 and total demand increase. The

NR policy accepts all reservations. Therefore, it shows the same performance as the ATT policy

in Combination 3 regardless of the demand. However, large differences appear in Combinations 1

and 2, where it is optimal to apply some sort of limitation on the amount of accepted reservations

by taking into account the time-varying dynamics of both cancellation and no-show probabilities.

Hence, this policy makes sense only when blocking costs are greater than or equal to the over-costs

(leading to Combination 3 scenarios).
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Figure 13 Comparison of average arrivals at the focal day between each policy to Λ as a function of total

demand.

The OB policy performance is somewhere in between that of the LL and NR policies. The OB

policy only performs well in Combination 3 when the load is very low (2000 reservations). In the

simulation study, the OB policy allowed for more reservations than LL does in most scenarios (see

Figure 13). This is because the OB policy uses average no-show and cancellation probabilities that

are decreasing in practice and demand that is increasing over time. Therefore, it overbooks reser-

vations later on in the time horizon by overestimating their cancellation and no-show probabilities,

and exceeds the target number of visitors.

The NOB policy has lower performance across all simulated scenarios. One can interpret this

policy as assuming that the total demand is high enough so that any cancelled reservation for a

permit will be replaced by a new reservation before the end of the time horizon. Therefore, this

policy takes in account only no-shows. The problem is that most cancellations are done in the last

three days before the focal day, and by that time it is hard to fill in the gap between the number

of active reservations and the target number of visitors. Therefore, this policy always results in a

shortage of visitors (see Figure 13), which in turn results in under-costs.
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Remark 5. Note that our experiment design assumed a decreasing ft function. The acceptance

order of periods in the ATT and the LL policy is identical; therefore, if the load is not too high

the LL policy performs well. But if ft were in any other shape, differences might also be observed

in light load.

7. Conclusion and Future Research

This paper addressed the optimization of NP workload. Taking a hierarchical approach, we first

determine the optimal number of visitors in the park, and then developed an optimization model

that reach that target by managing daily reservation quotas. The first step analysis is build on

fluid analysis of the time-varying load in the park. We based our second stage model on analyzing

reservation data from INPA. Key findings reveal high rates of cancellations and no-shows, with

probabilities varying over time. Additionally, demand fluctuates, with some visitors reserving well

in advance and others making last-minute bookings. Incorporating these dynamics, we developed

an optimization model that minimizes total costs by managing daily reservation quotas. The model

assumes real-time blocking penalties, while over- and under-cost penalties are incurred on the focal

day in which visitor enter the park. The framework operates on a rolling finite-time horizon and

accounts for behavioral patterns in cancellations and demand variability.

Our approach is adaptable to other high-capacity reservation systems, such as amusement parks,

museums, and healthcare systems. Future research could explore stochastic modeling for real-time

adaptability, as well as extending the model to account for dependencies between reservation size

and no-show probabilities. Adjusting probabilities for group reservations or individual characteris-

tics, such as historical behavior, could further personalize and enhance system efficiency.

Dynamic factors like weather should also be integrated into NP capacity estimations, alongside

static features like trails and staffing. Furthermore, strategies to influence demand, such as pro-

viding load information, could optimize visitor distribution. Extending the model to a network of

parks would allow analysis of how blocking at one site impacts demand for others, with parallels

to healthcare systems where resource management across interconnected facilities is critical.

Finally, our model can incorporate dependencies between days and sites by refining the blocking

cost to reflect visitor flexibility. For example, multi-park visits may entail higher blocking costs if

denied access to one park disrupts entire itineraries. Data indicates 6.8% of reservations include

multiple sites, underscoring the need for further analysis of such bundling behaviors.
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EC.1. Demand for NPs

INPA data shows that 25% of all reservations were for five popular NPs, out of more than 70 parks.

Figure EC.1 shows the percentage of reservations made to the 15 most visited parks out of the

total number of reservations during May–Dec. 2020. (A reservation may include multiple visitors.)

According to the INPA data, 6.8% of the reservations include more than one site. Figure EC.2

0% 1% 2% 3% 4% 5% 6% 7%

Apollonia NP (Tel Arsuf)

Ayun Stream NR

Hermon Stream (Banias Springs) NR

Caesarea NP

En Hemed NP

En Gedi NR

Hermon Stream (Banias) NR

Enot Tsukim NR
The Majrase – Betiha NR

Tel Dan NR

Yarkon NP – Tel Afek area (Antipatris)

Snir Stream NR

En Gedi NR - Wadi David Trail

Gan HaShlosha (Sahne) NP

Dor HaBonim Beach NR

Percentage of reservations

Figure EC.1 Top 15 popular NPs in Israel [May–December 2020].

shows 15 most popular site bundles (of 2 or 3 NPs) in Israel’s NPs system during May–Dec. 2020.
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Figure EC.2 Popular NP bundles in Israeli NPs [May–December 2020].
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EC.2. Proofs
EC.2.1. Proof of Theorem 1

We can rewrite C(Λ) in the following way:

C(Λ) =

∫ T

0

(
co(R(t)−L)+ + cu(L−R(t))+

)
dt

= (co + cu)

∫ T

0

(
co

co + cu
(R(t)−L)+ − cu

co + cu
(R(t)−L)−

)
dt

= (co + cu)

∫ T

0

(
co

co + cu
(R(t)−L)+ −

(
1− co

co + cu

)
(R(t)−L)−

)
dt

= (co + cu)

∫ T

0

(
co

co + cu
(R(t)−L)+ +

co

co + cu
(R(t)−L)− − (R(t)−L)−

)
dt

= (co + cu)

∫ T

0

(
co

co + cu
(R(t)−L)− (R(t)−L)−

)
dt

The first transition is because (L−R(t))+ =max{0,L−R(t)} = −min{0,R(t)− L} = (R(t)−

L)−. We can rewrite this function in the following way:

(L−R(t))+ =

∫ ∞

x=R(t)

1{x≤L}dx=−(R(t)−L)−.

Therefore,

C(Λ) = (co + cu)

∫ T

0

(
co

co + cu
(R(t)−L)− (R(t)−L)−

)
dt

= (co + cu)

∫ T

0

(
co

co + cu
(R(t)−L)+

∫ ∞

x=R(t)

1{x≤L}dx

)
dt

=−coLT +(co + cu)

∫ T

0

(
co

co + cu
R(t)+

∫ ∞

x=R(t)

1{x≤L}dx

)
dt

=−coLT + co
∫ T

0

R(t)dt+(co + cu)

∫ T

0

(∫ ∞

x=0

1{x≤L}dx−
∫ R(t)

x=0

1{x≤L}dx

)
dt

=−coLT + co
∫ T

0

R(t)dt+(co + cu)

∫ T

0

(
L−

∫ R(t)

x=0

1{x≤L}dx

)
dt

= cuLT + co
∫ T

0

R(t)dt− (co + cu)

∫ T

0

∫ R(t)

x=0

1{x≤L}dxdt

= cuLT +(co + cu)

∫ T

0

(
co

co + cu
R(t)−

∫ R(t)

x=0

1{x≤L}dx

)
dt

= cuLT +(co + cu)

∫ T

0

∫ R(t)

x=0

(
co

co + cu
−1{x≤L}

)
dxdt

= cuLT +(co + cu)

∫ T

0

∫ ΛR%(t)

x=0

(
co

co + cu
−1{x≤L}

)
dxdt

= cuLT +(co + cu)

∫ T

0

∫ Λ

x=0

R%(t)

(
co

co + cu
−1{xR%(t)≤L}

)
dxdt
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= cuLT +(co + cu)

∫ Λ

x=0

∫ T

t=0

R%(t)

(
co

co + cu
−1{xR%(t)≤L}

)
dtdx

= cuLT +(co + cu)

∫ Λ

x=0

(
co

co + cu

∫ T

t=0

R%(t)dt−
∫ T

t=0

R%(t)1{xR%(t)≤L}dt

)
dx

= constant+(co + cu)

∫ Λ

x=0

(Z − g(x))dx,

where

Z =
co

co + cu

∫ T

t=0

R%(t)dt and g(x) =

∫ T

t=0

R%(t)1{xR%(t)≤L}dt. (EC.1)

We need to prove that the function G(Λ) =
∫ Λ

x=0
(Z − g(x))dx is minimized by Λ∗.

Assuming T is one cycle (i.e., one day) and that the system works with infinite identical cycles

{(0, T ), (T,2T ), ...}, by the definition of λ% as the proportion of arrivals throughout the hours of the

day, for any random variable X (with f(x) as its PDF function) the sample path
∫ T

t=0
λ%(t−X)dt=∫ T−X

t=−X
λ%(t)dt= 1. Therefore,∫ T

t=0

E
[
λ%(t−X)

]
dt=

∫ T

t=0

∫ ∞

x=0

λ%(t−x)f(x)dxdt=

∫ ∞

x=0

f(x)

∫ T

t=0

λ%(t−x)dtdx

=

∫ ∞

x=0

f(x)dx= 1.

Therefore, the function

Z =
co

co + cu

∫ T

t=0

R%(t)dt=
co

co + cu
E[S]

∫ T

t=0

E
[
λ%(t−Se)

]
dt=

co

co + cu
E[S]. (EC.2)

Z does not depend on x (i.e., Λ) and gets values in the range [0,E[S]].

We note that

g(x) =

∫ T

t=0

R%(t)1{xR%(t)≤L}dt=

∫ T

t=0

R%
i (t)1{xR%

i
(t)≤L}dt (EC.3)

When x= 0, the function g(x) equals
∫ T

t=0
E [λ%(t−X)]E[S]dt=E[S] and when x→∞, g(x) goes

to 0, i.e., g(x) is non-increasing non-negative function going from E[S] to 0.

The function G(Λ), for Λ starting from 0, is first an integral of a non-positive integrand, and

thus is decreasing in Λ. Then, after the first Λ for which g(Λ) =Z, it is increasing. This proves that

G(Λ) is minimized (globally) at point Λ∗, where g(Λ∗) = Z, and that a solution for this equation

exists. One can find Λ∗ numerically by solving:∫ T

t=0

R%
i (t)1{Λ∗R%

i
(t)≤L}dt=

co

co + cu
E[S].

Since R%
i (t) is the increasing rearrangement of R%(t), it is nondecreasing in t. As x increases,

the set of t-values for which R%
i (t)≤ x can only grow (or stay the same), which implies Φ(x) is a

nondecreasing function of x. It is strictly increasing if and only if R%
i (t) is strictly increasing in t

almost everywhere.
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Then, (3) is equivalent to

Φ

(
L

Λ∗

)
=

co

co + cu
E[S].

Provided Φ is invertible on the relevant range, we obtain

L

Λ∗ = Φ−1
(

co

co+cu
E[S]

)
=⇒ Λ∗ =

L

Φ−1
(

co

co+cu
E[S]

) .
□

Note that this solution is similar but not identical to the solution of Zychlinski et al. (2020).

They found L∗ that minimize similar cost function, and proved that L∗ =Rd(c
uT/(cu+ co)), where

Rd(t) is a decreasing sorted version of R(t).

EC.2.2. Proof of Theorem 2

To prove Theorem 2, we define Lemma EC.1 and Theorem EC.1, each of which treats a different

condition on the value of f at day t.

Equivalently, we can express Eq. (5) using the percentage of accepted reservations Qt out of

total demand Dt, denoted as zt; that is, zt =
Qt
Dt

, and z= (z1, ..., zT ) the vector of z’s. Then, we can

rewrite Eq. (5) as

min
z

T∑
t=1

cbt(Dt − zt ·Dt)+ cu(Λ− IeT )
+ + co(IeT −Λ)+ (EC.4)

s.t.

Iet = Iet−1 + zt ·Dt(1− pt)(1−φt), ∀t∈ 1, ..., T ;

Ie0 = 0;

zt ∈ [0,1], ∀t∈ 1, ..., T .

Note that IeT =
∑T

t=0 ztDt(1− pt)(1−φt), therefore, (EC.4) could be simplified to:

min
z

T∑
t=1

cbt(Dt − zt ·Dt)+ cu

(
Λ−

T∑
t=0

ztDt(1− pt)(1−φt)

)+

+ co

(
T∑

t=0

ztDt(1− pt)(1−φt)−Λ

)+

s.t.

zt ∈ [0,1], ∀t∈ 1, ..., T . (EC.5)

Lemma EC.1. Assume that for a specific day t, ft > co and that Iet−1 has some arbitrary value.

Then, the optimal policy at day t is zt = 1, that is, Q∗
t =Dt.

Proof of Lemma EC.1: We first incorporate the constraints of the optimization problem (EC.4)

into the objective function using the Lagrange multipliers method using the simplified version

EC.5. The Lagrangian function is

L(zt, βt, γt) =
T∑

t=1

cbt(Dt − zt ·Dt)+ cu

(
Λ−

T∑
t=0

ztDt(1− pt)(1−φt)

)+

(EC.6)
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+ co

(
T∑

t=0

ztDt(1− pt)(1−φt)−Λ

)+

−
T∑

t=1

βtzt +
T∑

t=1

γt(zt − 1),

where βt, and γt are the Lagrange multipliers.

The first-order necessary conditions (which are the Karush–Kuhn–Tucker (KKT) conditions

(Karush 1939, Kuhn and Tucker 1951)) of Eq. (EC.6) are:

∂L
∂zt

=−cbtDt − cuDt(1− pt)(1−φt)1{∑T
τ=0 zτDτ (1−pτ )(1−φτ )≤Λ}

+ coDt(1− pt)(1−φt)1{∑T
τ=0 zτDτ (1−pτ )(1−φτ )>Λ} −βt + γt = 0, ∀t∈ 1, ..., T ; (EC.7)

zt ≥ 0, ∀t∈ 1, ..., T ; (EC.8)

zt ≤ 1, ∀t∈ 1, ..., T ; (EC.9)

βt ≥ 0, ∀t∈ 1, ..., T ; (EC.10)

γt ≥ 0, ∀t∈ 1, ..., T ; (EC.11)

βtzt = 0, ∀t∈ 1, ..., T ; (EC.12)

γt(zt − 1) = 0, ∀t∈ 1, ..., T . (EC.13)

Next, we will review all possible cases for βt and γt when αt ∈ R. Reconciling the necessary

condition (EC.12) with condition (EC.13), we get that if β > 0 then γ = 0 and if β = 0 then γ ≥ 0.

The combination of βt > 0 and γt > 0 yields zt = 0 by (EC.12) and zt = 1 by (EC.13), which is a

contradiction.

We divide the case of β > 0 and γ = 0 into two subcases: (a) a “Below Λ case”, where∑
τ ̸=t zτDτ (1−pτ )(1−φτ )+Dt(1−pt)(1−φt)≤Λ and (b) an “Above Λ case”, where

∑
τ ̸=t zτDτ (1−

pτ )(1 − φτ ) + Dt(1 − pt)(1 − φt) > Λ. In the Below Λ case, condition (EC.7) is not applicable,

because Eq. (EC.7) reduces to −cbtDt−cuDt(1−pt)(1−φt) = βt which contradicts the case assump-

tion that β > 0. In the Above Λ case, condition (EC.7) is also not applicable, because Eq. (EC.7)

reduces to −cbtDt + coDt(1− pt)(1− φt) = βt > 0, which implies that −cbt + co(1− pt)(1− φt)> 0

and contradicts the assumption that ft > co. Hence, β > 0 and γ = 0 cannot be a feasible solution

to (EC.4) by Lemma EC.1’s conditions.

Similarly, the case of β = 0 and γ = 0 has no feasible solution to Eq. (EC.4) when ft > co. To

prove this, we again divide case into two subcases. In the Below Λ case, condition (EC.7) is not

applicable because Eq. (EC.7) reduces to −cbtDt− cuDt(1− pt)(1−φt) = βt, which contradicts the

assumption that β = 0. In the Above Λ case, Eq. (EC.7) reduces to −cbtDt+coDt(1−pt)(1−φt) = 0,

which implies that ft = co, which contradicts Lemma EC.1.

Therefore, the only combination of the Lagrangian multipliers with feasible solutions to Lemma

EC.1 is when βt = 0, γt > 0. In this case, by (EC.12) and (EC.13), zt = 1. This combination case

can be divided into two subcases to confirm that Eq. (EC.7) holds true under it:



ec6

(a) [Below Λ case]
∑

τ ̸=t zτDτ (1− pτ )(1−φτ )+Dt(1− pt)(1−φt)≤Λ:

Applying the Below Λ case to Eq. (EC.7) results in −cbtDt − cuDt(1− pt)(1−φt)+ γt = 0. Since

γt > 0, it follows that cbtDt+cuDt(1−pt)(1−φt)> 0, which can be satisfied by any set of parameters

(as all of the parameters are nonnegative).

(b) [Above Λ case]
∑

τ ̸=t zτDτ (1− pτ )(1−φτ )+Dt(1− pt)(1−φt)>Λ:

Applying the Above Λ case to Eq. (EC.7) results in −cbtDt + coDt(1− pt)(1−φt)+ γt = 0. Since

γt > 0, it follows that cbtDt− coDt(1− pt)(1−φt)> 0. The latter implies that co < ft, which always

holds under Lemma EC.1.

We summarize the case of β = 0 and γ > 0: since zt = 1, by Eq. (EC.8) it follows that Iet =

Iet−1 +Dt(1− pt)(1−φt). In other words, for all t when ft > co, all demand will be accepted: the

number of reservations will be Q∗
t =Dt. This concludes the proof of Lemma EC.1. □

We now move to a complementary assumption that ft ≤ co.

Theorem EC.1. Assume that ft ≤ co for all t, and that I0 +
∑T

t=1Dt(1 − pt)(1 − φt) > Λ.

Let, f̂s be the sorted vector of ft from the highest to the lowest value. Then, the optimal sorted

solution to (EC.4) is Q̂∗ = {D̂1, D̂2, ..., D̂S−1,
Λ−ÎeS−1

(1−p̂S)(1−φ̂S)
,0, ...,0}, where S is the index in which

I0 +
∑S−1

s=1 D̂s(1− p̂s)(1− φ̂s)<Λ and I0 +
∑S

s=1 D̂s(1− p̂s)(1− φ̂s)≥Λ.

In order to prove this theorem, we use the following lemma. In Lemma EC.2, we show that the

sorting of ft needs to be done in order to prioritize the days from which we accept reservations.

Then, we go back to Theorem EC.1 and prove that one would accept exactly Λ effective reservations

(i.e., the number of reservations that will ensure that the number of arrivals after cancellations

and no-shows will be exactly Λ).

Lemma EC.2. For every two periods i and j, where co ≥ fi > fj, the marginal cost of accepting

one effective unit in period i is lower than that of accepting one effective unit in period j.

Proof of Lemma EC.2: Assume that we have an optimal policy π with total costs Vπ, where in

period i we block one effective reservation and in period j we accept one effective reservation. We

compute the total cost of conversely one effective reservation. By blocking one effective reservation

of period j, we incur a cost of cbj/((1− pj)(1−φj)), and by not blocking one effective reservation

of period i, the blocking cost cbi/((1− pi)(1−φi)) is avoided. There is no change in the number of

visitors arriving to the park, since the total number of effective reservations remains unchanged.

Therefore, there is no change in the under- and over-costs. Hence, the total cost after the reversal

is Vπ +
cbj

(1−pj)(1−φj)
− cbi

(1−pi)(1−φi)
= Vπ + fj − fi. This cost is less than Vπ (since fi > fj), which

contradicts the assumption that this policy, π, was optimal. □

According to Lemma EC.2, the PA prefers to accept reservations with higher ft. Recall that for

every period with ft > co we accept all reservations by Lemma EC.1. Therefore, without loss of
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generality, we assume that for all the periods in Theorem EC.1 ft ≤ co and that they are sorted

from highest to lowest values.

We now go back to proving Theorem EC.1.

Proof of Theorem EC.1: We can rewrite Eq. (5) using the sorted indexes s∈ 1, ..., T as

min
ẑs

T∑
s=1

ĉbs(D̂s − ẑsD̂s)+ cu(Λ− ÎeT )
+ + co(ÎeT −Λ)+ (EC.14)

s.t.

Îes = Îes−1 + ẑs · D̂s(1− p̂s)(1− φ̂s), ∀s∈ 1, ..., T ;

Îe0 = 0;

ẑs ∈ [0,1], ∀s∈ 1, ..., T .

We again use Lagrangian multipliers with similar KKT conditions to a simplified version:

∂L
∂ẑs

=−ĉbsD̂s − cuD̂s(1− p̂s)(1− φ̂s)1{∑T
τ=0 ẑτ D̂τ (1−p̂τ )(1−φ̂τ )≤Λ}

+ coD̂s(1− p̂s)(1− φ̂s)1{∑T
τ=0 ẑτ D̂τ (1−p̂τ )(1−φ̂τ )>Λ} −βs + γs = 0, ∀s∈ 1, ..., T ; (EC.15)

ẑs ≥ 0, ∀s∈ 1, ..., T ; (EC.16)

ẑs ≤ 1, ∀s∈ 1, ..., T ; (EC.17)

βs ≥ 0, ∀s∈ 1, ..., T ; (EC.18)

γs ≥ 0, ∀s∈ 1, ..., T ; (EC.19)

βsẑs = 0, ∀s∈ 1, ..., T ; (EC.20)

γt(ẑs − 1) = 0, ∀s∈ 1, ..., T . (EC.21)

Since f̂s is sorted, according to Lemma EC.2 we accept quantities sequentially. As a result, if we

accept demand in an s-index period, then under the optimal policy we also accept all reservations

in indexes {1, ..., s−1}. In the same way, if we rejected demand in index s, then under the optimal

policy we reject all the demand in indexes {s+1, .., T} as well. Therefore, under the optimal policy,

the indicator of 1{∑T
τ=0 ẑτ D̂τ (1−p̂τ )(1−φ̂τ )>Λ} is equivalent to the indicator 1{Îes−1

+ẑsD̂s(1−p̂s)(1−φ̂s)>Λ}.

Hence, we can rewrite Eq. (EC.15) by

∂L
∂ẑs

=−ĉbsD̂s − cuD̂s(1− p̂s)(1− φ̂s)1{Îes−1
+ẑsD̂s(1−p̂s)(1−φ̂s)≤Λ}

+ coD̂s(1− p̂s)(1− φ̂s)1{Îes−1
+ẑsD̂s(1−p̂s)(1−φ̂s)>Λ} −βs + γs = 0, ∀s∈ 1, ..., T . (EC.22)

Define the Below Λ case such that Îes−1 + ẑsD̂s(1− p̂s)(1− φ̂s)≤ Λ and the Above Λ case such

that Îes−1 + ẑsD̂s(1− p̂s)(1− φ̂s)> Λ. We will analyze the Below Λ and Above Λ cases separately

for each index s, s∈ 1, ..., T .
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1. [Below Λ case] Assume that Îes−1+ ẑsD̂s(1− p̂s)(1− φ̂s)≤Λ for all ẑs ∈ [0,1]. In this case, Eq.

(EC.22) reduces to −cbsD̂s−cuD̂s(1− p̂s)(1−φ̂s)−βs+γs = 0. We now check four combinations

of βs and γs:

(a) βs = 0, γs = 0: Since βs = 0 and γs = 0, it follows that −ĉbsD̂s − cuD̂s(1− p̂s)(1− φ̂s) =

0, which cannot be satisfied by any set of parameters (because all the parameters are

nonnegative).

(b) βs > 0, γs = 0: This combination implies that −ĉbsD̂s − cuD̂s(1− p̂s)(1− φ̂s) > 0, which

cannot be satisfied by any set of parameters (because all the parameters are nonnegative).

(c) βs = 0, γs > 0: This combination implies that ĉbsD̂s + cuD̂s(1− p̂s)(1− φ̂s) = γs > 0, which

is applicable when ĉbs + cu(1 − p̂s)(1 − φ̂s) > 0, that is, when f̂s + cu > 0 which can be

satisfied by any set of parameters. In this case, ẑs=1 by Eq. (EC.21); that is, the policy

is to accept all demand for reservations.

(d) βs > 0, γs > 0: This combination of multiplier values cannot hold for any ẑs due to (EC.20)

and (EC.21). Therefore, this combination is not applicable.

We conclude that when f̂s ≤ co in the Below Λ case, ẑs = 1.

2. [Above Λ case] Assume that Îes−1 + ẑsD̂s(1− p̂s)(1− φ̂s)> Λ for all ẑs ∈ [0,1]. In this case,

Eq. (EC.22) reduces to −ĉbsD̂s+coD̂s(1− p̂s)(1− φ̂s)−βs+γs = 0. We check four combinations

of βs and γs:

(a) βs = 0, γs = 0: This combination results in −ĉbsD̂s+coD̂s(1− p̂s)(1− φ̂s) = 0, which implies

that f̂s = co (which meets the conditions of Theorem EC.1). f̂s = co implies that we are

indifferent between accepting and blocking reservations; therefore, all ẑs are optimal, that

is, ẑ∗s = ẑs ∈ [0,1]. Here, we are indifferent between solutions and, therefore, ẑ∗s = 0 (block

all demand for reservations) is an optimal solution.

(b) βs > 0, γs = 0: This combination results in −ĉbsD̂s + coD̂s(1− p̂s)(1− φ̂s)> 0, which can

be satisfied by any set of parameters (because all the parameters are nonnegative). This

implies that f̂s < co, fitting the lemma’s assumptions. In this case, ẑs = 0 by Eq. (EC.20).

Hence, all demand is blocked.

(c) βs = 0, γs > 0: This combination results in −ĉbsD̂s+coD̂s(1− p̂s)(1− φ̂s)< 0, which implies

that ĉbs > co(1− p̂s)(1− φ̂s), that is, f̂s > co. This contradicts Theorem EC.1. Hence, this

combination is not applicable.

(d) βs > 0, γs > 0: These combinations of multiplier values cannot hold for any ẑs due to

conditions (EC.20) and (EC.21). Therefore, this combination is not applicable.

We conclude that in the Above Λ case, there exist two solutions: (1) ẑ∗s = 0 if f̂s < co and

(2) ẑ∗s can be any value in its range [0,1] if f̂s = co. Combining the two solutions, we conclude

that for any Above Λ case that holds f̂s ≤ co, the optimal solution is to block all demand for

reservations, that is, Q̂∗
s = 0 (ẑ∗s = 0).
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3. [Transition case] We conclude this proof by considering an index day in which for some ẑs

we get the Below Λ case, Îes−1 + ẑsD̂s(1− p̂s)(1− φ̂s)≤Λ, and for higher values of ẑs, we get

the Above Λ case, Îes−1 + ẑsD̂s(1− p̂s)(1− φ̂s)> Λ. This is precisely index S. Theorem EC.1

suggests accepting reservations for part of the demand, such that we reach exactly Λ effective

reservations, and block the rest, that is, Q̂∗
S =

Λ−ÎeS−1

(1−p̂S)(1−φ̂S)
.

Without loss of generality, we divide the index-S period into subperiods s′ ∈ S, such that

in each subperiod the demand equals one effective reservation (where one effective reservation

is defined by the number of reservations that will result in one visitor arriving to the park).

This means that D̂s′(1− p̂s′)(1− φ̂s′) = 1 for all s′ ∈ S. According to the Below Λ case analysis

above, we will accept reservations until we reach exactly Λ effective reservations at some time

s′′, that is, Îes′′ =Λ. Thereafter, all reservations are blocked, that is, zs′ = 0,∀s′ > s′′, based on

the Above Λ case proof.

Combining the subperiods, we get that the number of s′ indexes when all reservations are

accepted is such that Q̂∗
S =

∑s′′

s′=1 D̂s′(1− p̂S)(1− φ̂S) = s′′ =
Λ−ÎeS−1

(1−p̂S)(1−φ̂S)
.

Summarizing Theorem EC.1 : Since we assume that f̂s ≤ co for all s, it follows that in the

Below Λ case (where Îes−1 + D̂s(1− p̂s)(1− φ̂s)<Λ) all reservations are accepted, that is, Q̂∗
s = D̂s

(ẑ∗s = 1), and that in the Above Λ case (where Îes−1 + D̂s(1− p̂s)(1− φ̂s)≥ Λ) all reservations are

blocked, that is, Q̂∗
s = 0 (ẑ∗s = 0). Thus, the optimal value for ÎeT is ÎeT =Λ. In other words, in the

case where f̂s ≤ co for all s, reservations are accepted sequentially up to Λ. □

Summarizing Theorem 2 : Theorem 2 first order the periods according to f in decreasing

order. For the first periods in the sorted vector, where fs is larger than co, Lemma EC.1 is applied.

Then for the rest of the periods, where fs is smaller or equal co, Theorem EC.1 is applied. □

EC.2.3. Proofs of Propositions 1 and 2

Proof of Proposition 1: If φt and pt decrease over time, then ft decreases over time too (i.e., f̂ = f).

Therefore, according to Theorem 2, the PA should accept reservations from the beginning of the

time horizon onwards. By Lemma EC.1, the PA should accept all demand when ft > co and, by

Lemma EC.2, should prefer periods with larger f , that is, from earlier in the horizon when f ≤ co

(until the capacity threshold is reached). That means that regardless of the ratio between f and

co, the PA should start accepting units as early as possible. □

Proof of Proposition 2: By Lemma EC.2, the PA prefers periods with larger f values. Specifically,

if ft is increasing in time, then the indexes of f̂s are in reverse order of days in ft. Therefore, the

larger values of ft are the latest in the horizon, and these should be prioritized. The question is

when to start accepting reservations.

According to Theorem 2, we accept all reservations of periods where ft > co. Since there are S1

such periods (by definition), the latest we start accepting reservations is at day T −S1+1. Then, by
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Theorem 2, if
∑T

t=T−S1+1Dt(1− pt)(1−φt)<Λ, we want to accept reservations in earlier periods

specifically at T −S2 +1. Recall the definition of S2 as the time we reach the capacity threshold.

Hence, T −S2 +1 is the maximal time such that
∑T

t=T−S2+1Dt(1− pt)(1−φt)≥Λ. Finally, again

according to Theorem 2, during period T −S2+1, we accept
Λ−

∑T
t=T−S2+2 Dt(1−pt)(1−φt)

(1−pT−S2+1)(1−φT−S2+1)
reservations.

□

EC.3. Algorithm for Increasing f

The ATT algorithm for an increasing f function is defined similarly to one for a decreasing f

function, except for two differences: (a) by Proposition 2, we only open and accept reservations

from S2 days from the end of the horizon (and in the first period partially), and (b) we have to

keep enough permits at the end of every day for reservations made at later days. Let De
t1→t2

denote

the effective expected demand from period t1 to t2, such that De
t1→t2

=
∫ t2

t=t1
Dt(1− pt)(1−φt)dt.

We will use this quantity as our guidance to the number of permits that need to be reserved for

later time.

Algorithm 3: The Adaptive Two-Threshold (ATT) Algorithm for Increasing f Function

1. Calculate all ft values for every t, such that ft =
cbt

(1−pt)(1−φt)
.

2. Identify time S1 =min{t|ft > co}.
3. If De

S1→T ≥Λ, set time S2 = S1. Otherwise, identify time S2 =max{t|De
t→T ≥Λ}.

4. Set t= 0.
5. If t≥ S1, accept all the demand for reservations on that time, i.e., Qt =Dt.
6. If t < S2, block all the demand for reservations on that time, i.e., Qt = 0.
7. If S2 ≤ t < S1, calculate (a) De

t+→T
=
∫ T

j=t+
Dj(1 − pj)(1 − φj)dj, the effective demand

expected to arrive in the future, and (b) Īe
t− =

∫
i<t

Q̄t
i(1−Ht

i)(1−φi)di, the number of
active reservations predicted to arrive at the NP.
If Īe

t− ≥ Λ, accept no reservations (i.e., Qt = 0). Otherwise, accept Qt = min{Dt, (Λ −
Īe
t− −De

t+→T
)/((1− pt)(1−φt))} reservations.

8. Set t= t+ dt. If t≤ T , go to Step 5; otherwise, stop.

EC.4. Case Study: The Optimal Target Arrivals to a NP

In this section, we analyze the impact of different parameters on the optimal target arrivals, Λ∗.

Here, we take a more realistic assumption that the service time is time-varying, ensuring that

visitors exit the NP before its closing time. We also assume that the service time is given by an

exponential distribution, which allow us to compute R(t) by the following differential equation:

∂R(t)

t
= λ(∂t)−µ(t)R(t).
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We then compute Λ∗ by finding a numerical solution to the following optimization problem:

min
Λ

C(Λ) =

∫ T

0

co(R(t)−L)+ + cu(L−R(t))+dt (EC.23)

s.t.
∂R(t)

∂t
=Λλ%(t)−µ(t)R(t).

EC.4.1. The Impact of the Cost Ratio on Optimal Target Arrivals

Figure EC.3 shows the impact of the cost ratio, co

co+cu
, on the recommended target arrivals (blue)

and compares it to the maximal capacity (yellow) and the maximal number of visitors, maxtR(t),

(red). As the cost ratio, co

co+cu
, increases, the target arrivals (Λ) reduces and so does the maximal

number of visitors at the park. Hence, with high values of co compared to cu, the visitor load

(R(t)), under optimal values of Λ, will not exceed the maximal capacity for long periods of time.

As the cost ratio approaches 1, the maximal visitor load will approach L but will not cross it. This

was the situation during the COVID-19 pandemic when healthcare guidance was strict.
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Figure EC.3 Effect of the cost ratio
(

co

cu+co

)
on optimal target arrivals and visitor load.

As an illustrative example, assume that cu = 20 and co = 30, and that the recommended target

arrivals to the park is Λ = 6217. The resulting visitor load over the day (assuming an empty park

at the start of the day) is presented using a blue line in Figure 4(b).

EC.4.2. The Impact of the Maximal Capacity on Optimal Target Arrivals

Next, we vary the maximal capacity (L) allowed in the park between 1000 and 3000, with a fixed

cost ratio of 0.6. Figure EC.5 shows the visitor load (solid lines) throughout the day (R(t)) for four

values of the maximal capacity (dashed).

The impact of L is opposite to the impact of the cost ratio—as the maximal capacity increases,

the optimal target arrivals increases. Therefore, as the maximal capacity increases, the number

of visitors at any given time observed in Figure EC.5 increases too. An increase of the maximal

capacity from 1000 to 2000 (200%) increased the optimal target arrivals from 3108 to 6217 (also

200%), and when the maximal capacity increases from 2000 to 3000 (another 150%), the optimal

target arrivals increases from 6217 to 9325 (also 150%) (see Figure 5(b)).



ec12

0%

3%

6%

9%

12%

15%

18%

8 9 10 11 12 13 14 15 16 17

Pr
op

or
tio

n 
of

 a
rri

va
ls

Hour

(a) λ% in a typical summer day (Aug 2020)

0

500

1000

1500

2000

2500

8 9 10 11 12 13 14 15 16

Vi
sit
or
s

Hour

 R(t)

 Maximal Load

(b) Average visitor load

Figure EC.4 En Gedi NP: Average dynamics during a typical day with optimal target arrivals of Λ = 6217 and
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Figure EC.5 Effect of the maximal capacity on visitor load and optimal target arrivals [Cost ratio 0.6].

EC.4.3. The Impact of LOS on Optimal Target Arrivals

The visitors’ average LOS is also a significant contributor to the NP visitor load. As visitors stay

longer at the park, the number of visitors at the park at any given time increases. In previous

analyses, we saw that for a cost ratio of 0.6 and a maximal capacity of 2000, the optimal target

arrivals is Λ = 6217, when the LOS was 3 hours in general (see Table ??). Here we change the

visitor’s LOS—either increasing it to 5 hours or decreasing it to 1 hour. See Table ?? for the exact

time-varying visiting duration we use for this test.

We find that when we increase LOS to 5 hours, for the same given cost ratio and maximal

acceptable load capacity, the optimal target arrivals decreases to Λ= 5165. That is, an increase of

67% in visit duration (from 3 to 5 hours) translated to a 17% decrease in the recommended target

number of visitors entering the park (from 6217 to 5165). This is quite intuitive and expected, since

in general queueing systems, an increase in service duration increases system load. Using a 1-hour

LOS, we find consistent results. A decrease of 67% in visit duration (from 3 to 1) translates to a
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139% increase in the recommended target number of visitors to the park (from 6217 to 14,832). To

summarize, the LOS has a significant impact on the optimal number of total visitors that should

be allowed to enter the NP during a day.
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Figure EC.6 Effect of the LOS on optimal target arrivals.

EC.5. Simulation Study: Comparison of Policy Performance
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(a) Gap percentage between arrivals and Λ
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(b) Gap percentage between Vπ and E(VATT )

Combination 2 (cb = 4, cu = 3, co = 7)
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(c) Gap percentage between arrivals and Λ
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(d) Gap percentage between Vπ and E(VATT )

Combination 3 (cb = 4, cu = 3, co = 4)
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(e) Gap percentage between arrivals and Λ
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(f) Gap percentage between Vπ and E(VATT )

Figure EC.7 Comparison of policy performance by combinations (total demand ∼N(2000,20)).
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(b) Gap percentage between Vπ and E(VATT )

Combination 2 (cb = 4, cu = 3, co = 7)
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(c) Gap percentage between arrivals and Λ
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(d) Gap percentage between Vπ and E(VATT )

Combination 3 (cb = 4, cu = 3, co = 4)
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(e) Gap percentage between arrivals and Λ
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(f) Gap percentage between Vπ and E(VATT )

Figure EC.8 Comparison of policy performance by combinations (total demand ∼N(3000,30)).
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Combination 1 (cb = 4, cu = 3, co = 12)
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(b) Gap percentage between Vπ and E(VATT )

Combination 2 (cb = 4, cu = 3, co = 7)
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(c) Gap percentage between arrivals and Λ
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(d) Gap percentage between Vπ and E(VATT )

Combination 3 (cb = 4, cu = 3, co = 4)
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(e) Gap percentage between arrivals and Λ
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(f) Gap percentage between Vπ and E(VATT )

Figure EC.9 Comparison of policy performance by combinations (total demand ∼N(7000,70)).
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