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Problem definition: The management of national parks (NPs) involves striking a delicate balance between
conserving nature and its inhabitants by limiting human access versus promoting awareness of the park’s
wonders by allowing access to designated trails and public areas. Many park authorities (PA) restrict access
by establishing visiting hours and limiting the number of visitors allowed to enter per day. Such limitations
are managed through a reservation system, requiring visitors to reserve a visiting permit before arrival. We
analyze reservation system data provided by the PA of Israel, showing cancellation and no-show behaviors
that change dynamically over time and depend on the number of days a reservation is made before the
visiting day.

Methodology /results: We develop a dynamic policy for the number of reservations the system should be
allowed to make every day for a specific focal date. The solution depends on the ratio between the cost of
not allowing visitors to make a reservation to the park (“blocking cost”) and the park’s overloading cost
normalized by the probability of a reservation being realized (due to cancellations or no-shows). The policy
takes the form of a two-threshold policy, where the first is a time threshold determining periods where
reservations are unrestricted, and the second is a capacity threshold limiting the total number of reservations
made over the entire reservation horizon. We simulate the performance of our fluid policy and compare it to
several benchmarks, showing that our proposed policy is the only one inducing minimal costs in all scenarios.
Managerial implications:

We show how our policies can inform NP authorities regarding the number of days in which the reservation
system should be opened for reservations before the focal day. Our model can help NP to better conserve

natural resources and provide access to public spaces in a balanced way.

1. Introduction

Managing national parks (NPs) involves a delicate balance between protecting nature and its
inhabitants and promoting awareness through public access (Cole 2012, 2019, Yung et al. 2010).
Traditionally, this balance has been achieved by restricting human access both to designated trails
and to specific visiting hours. However, increasing population growth and rising tourism have led
to a significant surge in visitors to NPs. As a result, it is now common to encounter traffic jams
at park entrances and overcrowding on popular trails during the summer and holiday periods.

These challenges pose risks to the parks’ ecosystems (Hammitt et al. 2015, Monz et al. 2013,



Pickering 2010, Cole 1990). Therefore, the issue of limiting daily visitor numbers is raised annually
in many popular parks worldwide. However, denying entry to visitors at park gates is often viewed
as overly restrictive of individual rights. Consequently, such measures are implemented only in
extreme situations where public health is at risk, such as during wildfires. Instead, many NPs
around the world balance nature conservation with visitor management using reservation systems
through which visitors can ensure their accessibility to the park on a certain day while the park
authority (PA) manages the visitor load.

For example, in the US, the federal government manages a travel planning and reservation
platform called recreation.gov through which visitors can reserve park permits or participate in
a lottery for popular trails. In New Zealand, a permit is required to hike the Great Walks. In
Israel, the trigger to implement such a reservation system was the COVID-19 pandemic, which
transformed the issue of overcrowding to a public health concern. In 2020, the World Health
Organization recommended limiting gatherings in both enclosed and open spaces. In response,
the Israel Nature and Parks Authority (INPA) launched a preregistration system in May 2020 to
regulate park access. Under this system, visitors were required to reserve a specific date and, in
some cases, a specific entry time to visit a NP'. No fee was charged for obtaining an entry permit.
As in the US, this system limits the maximum number of visitors based on the estimated capacity
of each park. The INPA continued to use these preregistration procedures even after the pandemic
stopped, primarily in smaller parks (e.g., Ein Yehuda) where overcrowding remains an issue. To
this day, the system remains active but is not mandatory anymore in most NPs. We claim that
a lot can be learned from the period when the park registration system was mandatory, ranging
from how to manage NP capacity, to the public’s reaction to reservation restrictions.

Managing reservation systems for NPs presents several operational challenges. Some of these
challenges are similar to those faced by other reservation-based service systems. For instance, data
from the INPA for 2019-2020 (see Section 3) shows that approximately 19.5% of individuals who
schedule a visit cancel their reservation, and another 29.3% neither arrive at the park nor cancel
their reservation (no-shows). The latter statistic is akin to the no-show rates observed in healthcare
appointments (Liu et al. 2010). There are, however, differences between the healthcare and park
settings. For one, while patient cancellations and no-shows affect a physician’s work schedule and
one another, they have no such effect in a park setting, where there is no specific “server” attending
to visitors.

Determining NP capacity is a complex problem in and of itself (Whittaker et al. 2011). It is

influenced by a variety of social and ecological factors including current environmental conditions;

! For brevity, we include Israel’s nature reserves and national parks in the umbrella term “national park (NP)”.
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ecosystem type; the levels, timing, and type of visitor use; and visitor behavior (Hammitt et al. 2015,
Monz et al. 2013, Pickering 2010). The PA can influence some of these factors through development
or actions. For example, the PA can create elevated paths to protect the natural environment
against impact, direct visitors to specific areas of a park, limit park use, or encourage minimum-
impact visitor behavior (Cole 1990). Furthermore, visitor load itself affects the way visitors utilize
recreation areas (D’Antonio and Monz 2016, Cole and Hall 2010).

In this paper, we will address the following research questions:

1. Discover similarities and differences between NP visitor behavior and known customer behavior
in other reservation systems. Previous literature has analyzed customer behavior in reservation
systems for various sectors, including hotels (Dole 2023), healthcare (Feldman et al. 2014),
and flights (Lawrence et al. 2003). These studies identify phenomena such as reservation
cancellations and no-shows. In this paper, we utilize data from the INPA and observe similar
patterns of time-varying dynamics of cancellation and no-show behaviors across parks (Section
3). Moreover, in NPs that applied a daily quota of reservations with no hourly limitations,
we observe a time-varying arrival-rate pattern of visitors to the park that is similar to other
service systems (e.g., healthcare (Yom-Tov and Mandelbaum 2014) and call center (Gans et al.
2003)) without reservations.

2. How do we determine optimal park capacity?

We propose to analyze visitor load at NPs as an M,;/G /oo queue with time-varying arrivals
and general LOS (Section 4.1). Based on fluid approximation, we determine the optimal
number of visitors that balances overcrowding and accessibility. By “accessibility” we mean to
allow as many as possible visitors to enter the park, which holds both economic and educational
significance. By “overcrowding,” we refer to situations when the number of visitors exceeds
the maximal capacity that was predefined to a specific park.

3. How do we optimize a park reservation system?

The main contribution of this paper is in optimizing the NP reservation system while
considering behavioral factors, such as no-shows and cancellations. Here, we strive to balance
not only accessibility and overcrowding at the park but also the problems resulting from
requiring people to reserve a permit before their visit. This affect is captured via dynamic
blocking costs, where the system is penalized for preventing potential visitors from making
a reservation, and that penalty depends on the time left till the requested visiting day. In
Section 5, we analyze the reservation system optimization problem at the fluid level, proving
that the system’s reservation capacity is determined by the ratio between the blocking and
overcrowding costs and is influenced by the probability of a reservation being realized (due to

cancellations or no-shows). The fluid policy takes the form of a two-threshold policy, where



the first is a time threshold determining periods where reservations are unrestricted, and the
second is a capacity threshold limiting the total number of reservations made over the entire
reservation horizon. This analysis has implications for determining the time when the PA
should begin accepting reservations for a specific focal visiting day (Section 5.3).

To the best of our knowledge, this is the first paper to analyze the effectiveness of a national
park reservation system as a service system, applying operations research methods.

The rest of the paper is organized as follows. In Section 2, we review relevant literature on man-
aging visitor load in NPs and optimizing reservation systems. In Section 3, we present descriptive
data analytics of Israeli NPs based on data provided by the INPA. In Section 4, we discuss how to
determine park capacity and connect this to determining the reservation system’s acceptance pol-
icy. In Section 5, we develop a mathematical model for a reservation management system, propose
a policy that is optimal for the fluid approximation version of this model, and discuss managerial
implications. In Section 6, we simulate the performance of this fluid policy and compare it to sev-
eral benchmarks, showing that our proposed policy is the only one achieving minimal costs in all

scenarios. In Section 7, we discuss avenues of future research and conclude.

2. Literature Review
Here we review relevant literature. Most of it was developed for other types of service systems,
such as healthcare and flight companies, or for tourism and leisure systems, such as hotels and

theme parks. We explain the differences when relevant.

2.1. Managing Visitor Load in Parks and Tourism Areas

National parks are characterized by a time-varying arrival rate to the park (see Section 3). Time-
varying arrival rates are typical for many service systems, creating a time-varying customer load
that increases and then decreases during a working day, unless server capacity compensates for the
variation. NPs are somewhat different from typical service systems because NP capacity is constant
and cannot be changed throughout the day; a park’s capacity is determined by its individual
characteristics (e.g., the park’s sitting areas and trails (Hammitt et al. 2015, Monz et al. 2013,
Pickering 2010)) that do not change during the day. These facts not only reinforce the time-varying
dynamics of visitor load in NPs, but also limit the PA’s ability to manage this load. As explained,
what the PA can manage is the total number of visitors entering the park, by limiting the number
of permits available in the reservation system. Hence, while we take the arrival-rate time-varying
pattern as given, the total number of arrivals we wish to allow during a day is viewed as a decision
variable. A given park capacity and the time-varying patterns of arrivals and LOS are important
factors in determining a target total number of visitors we wish for the reservation system to allow

to visit the park during the day. This could be viewed as the inverse of the mathematical problem



studied by Zychlinski et al. (2020), who determined the optimal fixed capacity that minimizes
under-utilization and overload costs in healthcare systems for given time-varying arrival rate and
service times. Yet, our problem does not have a close form solutions.

A prerequisite to solve such problems is to be able to forecast demand—how many people would
wish to visit the NP, as done for campground or tourism areas using historical data (Rice et al.
2019) or web search (Peng et al. 2017, Law et al. 2019). Dependencies between parks can be
an important aspect (see Section 7 and Appendix EC.1). As mentioned, the park’s individual
characteristics of trails and leisure areas (Hammitt et al. 2015, Monz et al. 2013, Pickering 2010)
determine its capacity. Load within the NP depends on how people use these areas—are they sitting
for a picnic or moving through a trail? Hence, load depends on the park layout and design. Meijles
et al. (2014) analyzed visitor spatial flow and overcrowding patterns in a NP using GPS data.
They suggested that visitor tracking can be used to steer visitors to less overcrowded areas. Similar
suggestions were made by Ahmadi (1997) who analyzed visitor movements in a different leisure
industry, theme parks. They suggested that such analysis can shed light on the efficient spatial
design of the theme park’s rides and attractions as well as its impact on load, wait times, and
visitor experience (Ahmadi 1997). By contrast, NPs have less control over the spatial design itself,
and rather try to leave the park environment with minimal disruption. PAs focus on developing
safe walking trails and providing rest areas. Their location is very much determined by the park

terrain.

2.2. Reservation Systems

The above challenges have led many PAs to install reservation systems to control load. Reservation
systems are widely used not just in NPs and other tourism sites but also in healthcare facilities
(where they are usually referred to as appointment systems). A review of the literature on appoint-
ment systems is given in Mondschein and Weintraub (2003) and Pinedo et al. (2015); Cayirli and
Veral (2003) and Gupta and Denton (2008) provide excellent surveys on appointment systems in
healthcare specifically. As Pinedo et al. (2015) showed in their review paper, a common theme
across varying industries is to either minimize the costs or maximize the gains of the appoint-
ment system. However, the authors highlight that the efficiency of appointment systems is highly
dependent on each service industry’s context-specific constraints and objectives.

The literature on appointment systems in healthcare usually considers intra-day scheduling aim-
ing to minimize patients’ waiting time and staff costs and idle time. The literature also takes into
account customer no-shows and cancellations, as these reduce system efficiency and revenue (Has-
sin and Mendel 2008, Zacharias and Pinedo 2013, Hassin and Mendel 2008). One way to deal with

no-shows and cancellations is to book more customers than the system can handle. For example,



Zacharias and Pinedo (2013) model an appointment reservation system that overbooks appoint-
ments using an index policy that is based on patients’ no-show characteristics. A different approach
is to optimize the intra-day sequence of appointments in order to minimize the impact of no-shows
on staff utilization. For example, Hassin and Mendel (2008) suggest sequencing appointments in
varying intervals throughout the day (e.g., have lower number of appointments at the beginning and
the end of a day compared to the middle of the day). Mandelbaum et al. (2019) consider the joint
problem of determining the appointment date, appointment capacity, and appointment sequencing
throughout the day, taking into account patient punctuality and service duration variability. Wang
and Fung (2015) suggest a dynamic programming model to optimize appointment scheduling that
takes into account patients’ preferences for a particular physician and time slot. This approach is
reinforced by research showing a correspondence between honoring patients’ preferences and their
no-show and cancellation behaviors (Liu et al. 2018). Our problem is different from the above
research because a NP is not a service system with strict staffing capacity, where one customer
waits for a previous customer to finish service before starting service themselves. Instead, all visi-
tors enjoy the park at the same time. Hence, there are no delays caused by the exact arrival time
of visitors. This lack of a strict capacity limit led us to model the NP as an infinite-server system
(Section 4.1), an approach suggested for large healthcare appointment systems by Mandelbaum
et al. (2019) and Huang et al. (2022).

A key factor in estimating no-show and cancellation probabilities in a medical context is that such
behavior increases as a function of the time difference (in days) between the day the appointment
is made and the appointment day (Green and Savin 2007, Liu et al. 2010, Norris et al. 2014,
Feldman et al. 2014, Leeftink et al. 2022). We observe the same dynamics, where no-show and
cancellation probabilities increase with that time difference (Section 3). Relatedly, in the context
of restaurant reservations, Alexandrov and Lariviere (2020) show that not having a reservation
system is generally the worst policy, since reservations may increase demand on slow nights when
demand is naturally low. We also consider the reservation horizon length problem, as Leeftink
et al. (2022) did for healthcare clinics, first analytically in Section 5.3, where we determine the
conditions under which one should allow the reservation horizon to be as long as possible vs. as
short as possible, and then numerically, in Section 6, where we use simulation to compare our
reservation policy to a no-reservation policy.

In our model, the system may block customers from making a reservation, and this blocking cost
plays an important role in our model and policy. Most of the above-mentioned healthcare papers do
not consider blocking costs as part of their model, since healthcare systems usually do not prevent
patients from making an appointment. An exception is Schiitz and Kolisch (2013) who maximize

revenue. They take into account blocking costs, overtime costs due to overbooking, and refunds for



customers who cancelled their reservation or did not show up for their appointment. Refunds can
be relevant in NPs in which fees are collected during the reservation process (e.g., in US), and are
closely connected to lost revenues due to blocking demand. Overtime is not relevant in our model,
because NPs do not have strict capacity that can cause queues and delays during the visiting day.

Our reservation system has also some parallels with reservation systems in the hospitality and
tourism industry. For example, hotels and airlines also overbook to offset customer cancellations
and no-shows (Lawrence et al. 2003). Like the NP case, hotels and airlines optimize the total
number of arrivals during the focal day and care less about their specific arrival time. Unlike NPs,
hotels and airlines have a strict capacity, and when the number of reservations that are realized on
the focal day exceeds that strict capacity, high overbooking penalties are paid due to lost potential
revenue.

An interesting question is how to balance long-term and short-term demand. For example, Bitran
and Gilbert (1994) ask whether last-minute walk-in hotel reservations should be accepted by cre-
ating overbooking, that is, taking into account the probability of denying entry of a customer
arriving to a full hotel with a reservation. They employ intra-day information to predict cancella-
tions and no-shows and the resulting probability of reaching a full hotel. Grant et al. (2022) study
appointment systems in healthcare, where the trade-off is between same-day appointments with
extra office hour costs for the clinic vs. late appointments that might result in a deterioration of
the patient’s health condition. The question of balancing long- and short-term demand also arises
in our context in two ways: (a) should we keep capacity for customers planning their visit just
1-2 days before the visiting day (Section 5.3), and (b) how should we use real-time predictions of

no-show and cancellation probabilities (Section 6.1).

3. The Reservation System in National Parks
In this section, we first describe the general processes of managing visits to a NP and then the way
these processes are reflected in data.

This research was done in collaboration with the INPA. INPA manages 400 nature reserves (NRs)
and 81 national parks (NPs) in Israel, covering over 20 percent of Israel’s land mass, including
sites with historical significance or unique natural attributes. INPA provided us with data that
includes park visits in 2019-2020 and park reservations in 2020. In 2020, the COVID-19 pandemic
triggered a change in how the INPA managed visits to its parks. A reservation system was installed.
Reserving an entry permit became the first step in planning a visit to one of the INPA sites. These

reservations could be changed up to the day of the visit to the park.



Making a Reservation

Reservation are done through the PA website, where people can observe the park availability within
the reservation horizon (the horizon length depends on the park). Each PA sets its own horizon
for reservations. For example, one can reserve a permit to visit popular NPs in the US six months
in advance (see www.recreation.gov/pass). For some NPs, entry permits are distributed through a
lottery (see www.recreation.gov/lottery/available). INPA allowed entry permits to be obtained up
to 15 days in advance during 2020; currently (as of October 2024) permits can be obtained up to
9 months in advance.

When INPA established the reservation system during the COVID-19 pandemic, the aim was to
control visitor load at the NPs. Different policies where implemented in different parks. In most
parks, visitors were allowed to enter the park at the hour of their choosing without any limit on
visiting duration while the park was open for that day, but in some parks, visitors were required
to specify an entry time (from 2—4 time-slot options), and in others, LOS was also limited to that
time slot, particularly during weekends (see examples in Table 1). The time-slot partition resulted
in queues at the park entrance gate around the beginning time of each time slot and, therefore,
the time-slot limitations were eventually cancelled. Table 1 provides examples of visiting time slots
and maximum capacity per slot at several parks in the north of Israel. The visiting time limitations

could change between weekdays and weekends.

Table 1 Sample of visiting time slots of nature parks in the north of Israel [May—August 2020].

Site Weekday Friday Saturday
Visiting Max. Visiting Max. Visiting Max.
time slot capacity time slot capacity time slot capacity

Hermon Stream  8AM- 4PM 1200 8AM-10AM 400 8AM-10AM 300

(Banias) NR — 10AM-12PM 400 10AM-12PM 300

Springs Area 12PM- 3PM 400 12PM- 2PM 300

2PM- 4PM 300

Snir Stream SAM-11AM 400 8AM-10AM 400 SAM-11AM 400

NR 11AM- 2PM 400 10AM-12PM 400 11AM- 2PM 400

2PM- 4PM 400 12PM- 3PM 400 2PM- 4PM 400

Iyon Stream 8AM- 4PM 1200 SAM-12PM 600 S8AM-11AM 400
(Tanur) NR 12PM- 3PM 600 11AM- 2PM 400
2PM- 4PM 400

Yahudiya NR 8AM- 4PM 800 7TAM- 3PM 800 7TAM- 4PM 800

Analyzing the reservation data reveals interesting insights into visitor behavior. For example,
Figure 1 shows the proportion of reservations made at day ¢ before the focal day out of the total
number of reservations made for that day. We observe that about 55% of visitors make reservations
several days ahead of the focal day of the visit, while about 45% make reservations on the focal
day of the visit or the day before. Naturally, the NP’s specific features and accessibility affect

the number of reservations; for example, 25% of all reservations during May—December 2020 were
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made to the five most popular NPs. Interestingly, 11.6% of the people reserved more than one NP
for the same focal day, though it is unclear whether this phenomenon indicates tentative plans
or an intention to visit more than one NP on the same day. See Appendix EC.1 for popular site

combinations.
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Figure 1 Proportion of reservations made as a function of the distance from the focal day [All NPs, May—

December 2020, All days]. Day 0 represents the focal day for which the reservations were made.

Cancellations
Potential visitors may cancel or change their reservation (i.e., change the number of people in
the group or the focal date of visit). Indeed, 19.5% (SD 15.8%) of the reservations in our sample
were cancelled, and this percentage varied both by day of the week and by month (see Figure 2).
Figure 2(a) shows that cancellations for weekends are higher than for weekdays: 23.8% (SD 13.7)
and 17.6% (SD 16.1), respectively. Some of the variation in cancellations by month (see Figure
2(b)) may be attributed to variation in the reservation reminder system. Starting in June 2020,
e-mail reminders were sent to the reservation holder 1-2 days before the focal day, and starting in
November 2020, an SMS reminder was added. Reminders help to increase certainty over the focal
day arrival rate, free reservation capacity for alternative visitors in case of cancellation, and reduce
the no-show rate (since some people who would no-show without a reminder cancel instead).

Figure 3 shows the proportion of cancelled reservation at day ¢ before the focal day from all
cancelled reservations to that focal day. Most of the cancellations (> 65%) were done on the focal
day and the day before. Similar late cancellation behavior has been observed in healthcare systems.
For example, Leeftink et al. (2022) find that about two-thirds of all appointment cancellations are
cancelled less than five working days before the actual appointment date.

Figure 4 shows an estimation for the probability of a reservation being cancelled on each day
before the focal day. This probability is estimated by the cancellation percentage: the number
of cancellations from the number of reservations made at that day (the cancellations could have

happened at any time from the reservation day until the focal day). We observe that the probability
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Figure 2 Percentage of cancellations, by day of the week and month [All NPs, May—December 2020, All Days].
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Figure 3 Proportion of cancellations as a function of the time before the focal day [All NPs, May—December

2020, All days]. Day 0 represents the focal day for which the cancellations were made.

of a cancellation increases with the number of days between the reservation day and the focal day.
In particular, reservations that were made only 0-2 days before the visit day are significantly less
likely to be cancelled. Similar behavior has been observed in healthcare, where the probability of
canceling a physician appointment decreases with time leading up the appointment day (Gallucci

et al. 2005, Liu et al. 2010).

Arrivals to the Park and No-shows
Analyzing the actual arrival rate to a park, we identify a clear time-varying pattern (that may
differ between NPs). For example, Figure 5 shows the arrival rate (i.e., the proportion of arrivals
at a specific hour out of the total arrivals during a day) in En Gedi Nature Reserve. The arrival
rates peaks at the beginning of the day and at noon, then decrease toward the end of the day.
By comparing the number of active reservations (that were not cancelled before the focal day)
to actual visits, we can estimate no-show probabilities. As in many other reservation systems, such
as for doctor appointments, the no-show percentage is significant and has a direct impact on park

accessibility. The no-shows are unrealized demand that may have prevented other potential visitors
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Figure 5 Arrival rate to En Gedi NR by day of the week: Weekdays vs. weekends.

from visiting the park by creating unused time slots. Figure 6, based on data from Gan HaShlosha
(Sahne) NP, shows that no-shows are indeed a concern. The figure depicts the number of active
reservations (solid orange line) and the number of visitors (solid blue line). The difference between
them are no-shows. The number of active reservations for weekends reaches the maximum capacity
of 2500 tickets (dashed black line), but the actual number of visitors is much lower. (Note that
in August 2020, the park started to increase the maximum number of reservations that could be
booked; accordingly, the number of actual visitors increased but was still below the maximum
capacity of 2500 visitors on most days.)

Overall, the percentage of no-shows is 29.3% (see Figure 7(b)). The no-show probabilities seem
to be higher for reservations for weekend focal days (see Figure 7(a)). Due to data limitations, we
cannot observe the relation between the number of days before the focal date that the reservation
was made and the no-show percentage. However, data from healthcare appointment systems shows
a strong correlation between the time a reservation was made and the no-show percentage, where

reservations that are made earlier are more likely to become no-shows (Feldman et al. 2014).
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4. Optimizing NP Visitor Load

Our goal is to control the visitor load at NPs during visiting hours by optimizing the reservation
system. We propose to separate the optimization problem into two parts and solve them sequen-
tially. The first problem (Problem I) is to determine the optimal total number of visitors to the park
on a focal day, given the park’s individual features (arrival rate patterns, capacity, visit duration,
etc.). This problem aims to balance overcrowding with accessibility. Based on fluid approximation
we propose a numerical solution to this problem in Section 4.1.

The second problem (Problem II) is to design the reservation system to achieve the optimal
number of visitors to the park on a focal day, as defined in Problem I. We analyze this problem in
Section 5, where we minimize blocking costs as well as costs that result from a mismatch between
the target number of visitors and the realized number of visitors. While the blocking costs accrue
over time, the mismatch costs are incurred only on the focal day. The optimization of the reservation

system is achieved by controlling the number of visitors who are allowed to make a reservation in the
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system. Because a reservation might be cancelled, rescheduled, or just not utilized (see Section 3),
we need to allow overbooking of reservations (similar to airline and healthcare reservation systems),
but not so much so as to cause overcrowding and a mismatch between the target number of visitors
and the actual number of visitors. Because these dynamics change over time, we formulate a rolling-
horizon model. The analysis in Section 5 will be on the fluid level, assuming that demand, no-show,
and cancellation probabilities are known in expectation, and in Section 6 we confirm that the fluid
policy preforms well also in its underlying stochastic environment. Previous research shows that
fluid models have been successfully implemented in modeling service systems in various contexts,
such as healthcare (Zychlinski et al. 2020) and contact centers (Yom-Tov et al. 2021). As noted
by Zychlinski et al. (2020), “fluid frameworks are well adapted to large time-varying overloaded
systems (Mandelbaum et al. 1998, 1999) [which is the case here]. Moreover, fluid models yield
analytical insights, which typically cannot be obtained using their alternatives (e.g., simulation,

time-varying stochastic queueing networks).”

4.1. Problem I: Determining the Target Total Arrival Volume

In this section, we want to determine the total number of visitors the park should allow to enter
the park per day. The considerations the PAs need to take into account are wide and varied. These
include (a) the park’s features: how large is the physical space, how many interest points are there
where visitors may spend time and what is the distance between these points, and whether the space
is vulnerable, that is, does it include historical or natural areas that could be harmed by a large
number of visitors; (b) the visitors’ features: what is the popularity or demand for visiting the park,
the visit duration distribution (usually this is affected by the park’s features and its accessibility),
and the arrival rate dynamics during the day; and (c) the costs: visit costs, maintenance costs
of the park, and overcrowding cost, which represents visitors’ experience and their wish to avoid
crowds when venturing to nature. Both demand and visit duration are influenced also by external
random features such as the weather.

Due to the above features, we assume that there is some mazimal number of visitors (or “maximal
capacity” for short), denoted by L, that the PA does not want to exceed at any specific time of the
day and that exceeding this number will result in an over-cost of ¢® per visitor per unit of time. On
the other hand, it is assumed that the PA does not want to allow less than the maximal number
of visitors and that falling below this number results in an under-cost of ¢* per visitor per unit of
time. The intra-day optimization problem should try to balance these two types of costs. Let R(t)
be the average number of visitors at the park at time ¢ (also called “visitor load” for short). Then,

we wish to minimize the total cost:

/OT C(R(t)— L)t +c*(L— R(t))*dt, (1)
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where T is the daily opening hours of the park.

We propose to model the number of visitors in the park using an M,/G /oo queue, where arrival
rate is according to a Poisson process with time-varying arrival rate A;, and general distribution of
service times, denoted by S, with mean service rate p. Because capacity in NP is a soft constraint,
and visitors do not directly affect one another, we assume that the number of servers in infinite.
Eick et al. (1993) finds that the visitor load, R(t), of an M,;/G /oo system is R(t) = E[\(t—S.)]E[S],
where S is the service time random variable and S, is the corresponding excess service time.

Denote by A the target number of visitors throughout the day (which we name “target arrivals”
for short) at the park. Define A\ as the percentage of the arrival rate at time ¢ out of the daily
target arrivals A, therefore, by definition fOT A7 =1. Then, the arrivals at time ¢ are A, = A\?*. The

optimization problem I can be written as

min C(A) = /0 (R() — L)* + (L — R(8))*dt @)
s.t. R(t) = AE[N*(t — S.)]E[S].

The above representation of R(t) emphasizes that R(¢) is linear in A and independent of L.
Denote R%(t) as R*(t) = E[\*(t — S.)|E[S]. Define R}(t) to be the increasing sorted version of
R*(t) (i stands for increasing). Let ®(z) = fOT RZ(t) ]l{R%(t)Q} dt. Then, the optimal lambda is

found by solving an integral equation as depicted by the following theorem:

THEOREM 1. There exists a solution to problem (2), and the optimal target total arrivals, A*,

that minimize it is given by the fized point solution of the integral equation:

L c®
) = E[S]. 3
(%) = 55 rs ®
Providing ®(x) is invertible on the relevant range, then, A* = c+
<I>71( cO4-cl E[S])

REMARK 1. When R} (t) is not strictly increasing, ® may be constant on some interval of lambda
values, so ®~! might not be single-valued. In that case, any x in the constant interval that satisfies

o

O(x) = 5= F[S] can lead to an optimal A*. This does not affect the existence of solutions or

cO4-cl

optimality but may yield a range of possible A* values.

5. Developing a Real-time Reservation Management Policy (Problem
IT)
5.1. Model Definition

Next, we want to design an optimal reservation policy for which the actual number of visitors
arriving at the park is as close as possible to the target number of visitors, A, with minimal costs.
We assume that the demand for reservations is larger than A; therefore, the PA cannot satisfy all

of the demand and must reject the reservation requests of some visitors.
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The reservation process is a finite rolling-horizon process, meaning that the decision taken by the
PA on day t regarding whether to accept a reservation depends on the decisions that were made up
to day t as well as on the data on future demand, cancellations, no-shows, and costs. Let T be the
reservation horizon—the number of days in which the reservation system is open for reservations
to a focal day. Hence, this is also the maximal number of days between the day a reservation is
made and the focal day. Let ¢ =1 be the time when the reservation system opens for reservations,
thus T is also the focal day.

We consider three types of costs: under- and over-costs (terms will be explained momentarily)
and blocking costs. Under- and over-costs are paid according to the gap between the actual arrivals
on the focal day T', denoted by I%, and the target number of visitors on the focal day 7', denoted
by A. Let ¢* be the cost incurred by the PA when the arrivals are less than A and ¢° be the cost
incurred by the PA when the arrivals are greater than A. Henceforth, we will refer to ¢* as the
under-cost and to ¢® as the over-cost. The third type of cost is the blocking cost. Let ¢’ be the
blocking cost at day t, which is the cost incurred by the PA for every customer it blocks from
making a reservation during the reservation horizon 7. Every demand for a ticket that is denied
at day ¢ increases the total blocking cost by ¢’ units. We will prove that the optimal reservation
policy depends on the ratio between the blocking cost and the over-cost. Specifically, when we
cannot avoid some costs, we need to decide which of these two types of costs we prefer to incur.

Denote by D; the demand for customers entering at the reservation system on day ¢ (t € {1,...,T'})
wishing to reserve an entry permit to the NP and D = (Dy, ..., Dr) the vector of demands through-
out the time horizon. Let ); be the number of customers whose request for reservation we accept
at day t and Q = (Q1,...,Q7) the vector of accepted requests throughout the reservation time
horizon. Hence, Q); < D;. Let p; be the probability of a ticket reserved on day t, for visiting of the
focal day T, being cancelled before the focal day, that is, during the period (¢,7T]. Similarly, let ¢,
be the no-show probability during the focal day T of a customer that made a reservation on day t.
(Recall that a no-show customer is one who does not cancel their reservation but does not arrive
at the park.) Assuming that cancellation and no-show behaviors are independent of each other,
the mean number of customers that made a reservation on day t and arrive at the NP on the focal
day T is Q+(1 —p;)(1 — ), and the total of that expression across all reservation days results in

the mean number of arrivals at the NP on day 7', given by

f§:ZQt(1—pt)(1—g0t). (4)

The superscript e indicates that I$ is the number of effective reservations that are expected to
actually arrive on the focal day out of the I reservations, given the cancellation and no-show

probabilities.
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REMARK 2. NPs do not charge a fee for making a reservation; therefore, we assume that can-
celling a reservation is costless. However, one could extend the proposed reservation system to
account for reservation fees. In case there are reservation fees, they may apply differently for no-
shows and cancellations. For example, in the hospitality industry, it is customary to charge a partial
fee for cancellations that are made close to the focal day and charge a full fee for no-shows. These
charges may also depend on the day the reservation was made.

Let I, be the total number of reservations made up to day ¢: I, = Ele Q;. From those reserva-
tions, If visitors are expected to arrive. If can be also written recursively as If = I7 | + Q:(1 —
p:)(1 — ), which captures the rolling-horizon nature of the reservation process. Without loss of
generality, we assume that I, = I§ = 0. These are the number of reserved permits when we open
the reservation systems to the public.

We aim to find a policy for accepting reservations that minimizes the total costs function:
T
> (D= Q) T e (A=) + e (I5 - AT,
t=1

where @), is the decision variable (the number of accepted reservations at time ¢), D; is the demand
on each day ¢, and I% is the number of arrivals at the focal day T', as given in Eq. (4). The function

(-)" stands for max{0,-}.

5.2. Solving the Fluid Optimization Problem

We solve the following fluid optimization problem:

T
min Z;C?(Dt—Qt)+0“(A—I§~)++C"(I§~—A)+ (5)
s.t. -

=1+ Q1 —p)(1— ), Viel,.., T,

15 =0;

Q: €0, D], vtel,..,T.

Intuitivly, the solution to problem (5) depends on the cost ratio w. When this ratio
is greater than 1, then the over-cost is higher than the blocking cost, artld we should not allow
more visitors than A. By contrast, when the ratio is less than 1, then the over-cost is lower than
the blocking cost, and we should accept all the demand. Define an index function f such that
fi = m for all ¢t. Let f be the sorted vector of f from the highest to the lowest value.
Denote by s the index of the sorted vector. Each index s maps to a real period t. We use * to

describe variables in the sorted system.
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THEOREM 2. Let f be the sorted vector of f from the highest to the lowest value. Let index Sy
be mazximal s such that fs > ¢ for all s < Sy. Then, the optimal sorted solution to Eq. (EC.4)
is Q: =D, for all s < S,. If fel = Zssllf?s(l —1?3)(1 — @s) > A, then Q: =0 for all S, <s<T.

77777 .. %,0,...,0}, where Sy is the index in which
T + %50 Dy(1—p)(1— @) <A and Ig, + 3% o D(1—p)(1— @) = A.
The proof is in Appendix EC.2.

Theorem 2 identifies a two-threshold policy. The first threshold is a time threshold (at s =S;)—
before which all reservations are accepted regardless of the NP capacity—and the second is a
capacity threshold (that we reach at s = Sy)—after which we stop accepting reservations in the
case where S; > S; and therefore exists. The capacity threshold ensures the balance between over-

and under-costs on the focal day. Theorem 2 can be implemented by the following algorithm:

Algorithm 1: The Two-Threshold Reservation Algorithm

1-pe)(1—ep1)°

2. Sort f; from the highest to the lowest value. Let f (with indexes s =1,...,T) be the sorted
function of f, and the time-threshold index s =5, be the maximal s in which f> &, ie.,
S1 = max{s|fs > c’}. R

3. For all days with index s € {0, ..., S}, where Js > ¢?, accept all demand for reservations.

4. For days with index s € {S1+1,...,T}, where f, < ¢°, accept effective reservations sequen-
tially (i.e., one at a time with increasing index-s days) as long as I ¢ doesn’t exceed the
capacity threshold A.

b
1. Calculate all f; values for every ¢, such that f, = i <

Algorithm 1 is illustrated in Figure 8. Figure 8(a) shows an arbitrary function f; that may
increase and decrease over time. The sorted function, fs is illustrated in Figure 8(b) (marked solid
blue line). This sorted function crosses ¢® =2 (solid light blue line) at time S;. Therefore, all the
effective demand for reservations (dashed light green line) in indexes 1-3 are accepted (purple
columns). The total effective demand at index S; is below A = 3000 (solid dark green line), so
all demand is accepted up to index S, where the total number of effective accepted reservations

equals A. At this point, no further demand is accepted, that is, 1% = A.
The optimal solution according to this two-threshold policy is such that

I =max{ 3 Dy(1-p)(1-w.) A ¢ (6)

s:fs>co
The first component in (6) occurs when (more than) A effective reservations are accepted before
the time-threshold index Si, that is, by accepting all the demand when fs > ¢°. In this scenario,

the sorted acceptance vector will be

Q*=(Ds,...,Dg,,0,...,0). (7)
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Figure 8 lllustration of an optimal two-threshold policy.

The second component in (6) occurs when the total effective demand up to the time-threshold index

S (i.e., in all the periods in which fs > ) is less than A. In this scenario, the sorted acceptance
vector will be

Q*=|D,,...Ds,,D AT,
- 1yeeey 7519 /S +15 0y ~ N
' i (1—]?52)(1_9052)

reservations. This policy for the sorted reservation function Q* needs to be translated back to the

,0,...,0 (8)

actual day t to form Q*.

5.3. Managerial Implications

Next, we explore how time-varying dynamics of the blocking cost and the cancellation and no-show
probabilities impact (a) the time horizon in which the PA should open the reservation system for
bookings and (b) whether the PA needs to actively limit the number of entry permits available for
reservation in the reservation system between periods. We will discuss three scenarios as depicted

in Figure 9: (a) decreasing f;, (b) increasing f;, and (c) decreasing-increasing f;.
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Figure 9 Reservation system optimal solution for different f functions’ time-varying dynamics.
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5.3.1. Decreasing f, As defined, the f function’s time-varying dynamics may be attributed
to one of the following parameter dynamics: the blocking cost and the cancellation and no-show
probabilities, since f; = c?/((1 — p;)(1 — ¢;). In Section 3, we showed that the probability of a
reservation being cancelled decreases as the time between the reservation day and the focal day
decreases (see Figure 4). In other words, reservations that are made closer to the focal day are
less likely to be cancelled. This means that, in practice, the cancellation probability, p;, decreases
over time. While we do not have information on the dynamics of the no-show probability, research
on healthcare appointment systems shows decreasing dynamics for no-shows too (Feldman et al.
2014). Understanding how the blocking cost, c?, behaves as a function of time is less clear. A
reasonable assumption is that c? is constant over time, taking the price of an entry permit lost due

to the reservation blocking.

PROPOSITION 1. Assume that the no-show probability, ¢;, and the cancellation probability, p;,
decrease over time and that the blocking cost, ¢y, is constant over time. Then, the optimal time to
open the reservation system is as early as possible. The PA should accept reservations continuously

from that time onwards until A effective reservations have been accepted.

This scenario also has a very easy implementation to a real-time algorithm as described graph-
ically in Figure 9(a). As can be seen in the figure, when f is decreasing, the PA should open the
reservation system as early as possible and fill up all the time slots continuously up to day S,. If
we add the reasonable assumption that the blocking cost is not too high, meaning that f; < ¢°, the
PA should accept all reservations until the capacity threshold is reached. Therefore, the number
of available entry permits for reservations on Day 1 should be set to A/((1 —p1)(1 — 1)), and
this cap should be updated daily according to accepted demand, realized cancellations, and the
probability to cancel reservations (or not show up to the focal day) of active reservations. Hence,
on day t the number of available entry permits for reservations will be (A —I7)/((1 —p.)(1 —¢:))-
(A more elaborate version will be described in Section 6, where we use a hazard rate function of
the cancellation probability to get a prediction of the stochastic equivalent of I, denoted as I,
using real-time information on cancellations. See Algorithm 2.)

Some PAs implement policies in this spirit as if their f; function is decreasing. In New Zealand,
for example, park registration starts six months before parks open for the season, and within 10-20
minutes all tickets for the popular trails are taken for that season. Later reservations can be made
only if someone cancels their reservation.

Proposition 1 also holds for blocking costs that decrease over time. Next, we explore the opposite

scenario.
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5.3.2. Increasing f; Here, we assume that f; increases over time. This can happen if ¢} is
increasing at a large enough rate such that f; is increasing in spite of the decreasing no-show and

cancellation probabilities.

PROPOSITION 2. Assume that f; increases over time. Then, the optimal time to open the reserva-
tion system is as late as possible at day min{T — S, +1,T — Sy +1}. The PA will accept reservations
continuously from that day along the whole time horizon. In the case that index s =Sy exists, at

day T — S5+ 1, partial demand may be accepted such that

A— Z?:T752+2 Dy(1 _pt)(l — 1) D
(1 =pr—so41)(I =01 gy41) TSt

QT—52+1 = min {

This case is illustrated in Figure 9(b), where the reservation system is open from Day 5 onwards.
All demand before that day is blocked, and all demand after that day is accepted, while demand
on Day 5 is partially accepted.

This scenario also has a very easy implementation to a real-time algorithm. A more elaborate

version will be described in Appendix EC.3.

5.3.3. Decreasing-increasing f; As noted above, the application of an early start or late
start for the reservation period depends on what we assume regarding visitors’ behavior. Do we
assume that people plan their visit to the park well in advance, coming especially for this park and
traveling long distances to reach it, or do we assume that people are more spontaneous, last-minute
planners. Our data analysis in Section 3 suggests that both types of visitors exist. Hence, it may
also be realistic to assume that ¢} is convex, first decreasing and then increasing (see Figure 9(c)).
In such a case, the PA should divide the number of entry permits it proposes on the reservation
system between the two visitor populations, offering some entry permits to be reserved on the first
few days of the horizon, then blocking all demand for the next period of days, and then offering
some entry permits for reservations on the last few days of the horizon. Specifically, the index
periods 1 to S; are divided between the beginning of the horizon (days 1 to S}) and the end of
the horizons (days T'— S? +1 to T'). The index periods S; + 1 to S, are also divided between the
beginning of the horizon (days S +1 to S;) and the end of the horizon (days T'— S5 +1 to T — S?).
We accept reservations up to day max{Sj, S5} and from day min{7 — S} +1,7 — S5+ 1}.

Figure 9(c) illustrates such a policy: reservations are accepted to and through Day 5 (5;), from
Days 6 to 9 (T — S2) customers are informed that no reservations are available, from Day 10
(T — S2+1) reservations are accepted again. On one of the days S or T'— S2 + 1, reservations will
be partially accepted up to a capacity threshold (the threshold can be calculated using the same

logic as Qr_s,+1 in proposition 2). On all other days, all reservations are accepted.
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REMARK 3. The policy suggested above enables a potential visitor to the park to observe open-
ings in the reservation system for either short-term or long-term focal days. The PA saves some
reservations for last-minute planners but also takes into account openings due to expected cancel-
lations and no-shows (where same-day slots become available randomly). Saving reservations for
last-minute customers is a common policy both in reservation systems, such as in hotels (Bitran
and Gilbert 1994) or healthcare (Schacht 2018), and in non-reservation systems, as in hospitals
(Kim et al. 2020).

REMARK 4. Note that if the no-show and cancellation probabilities and the blocking costs are
constant over time when f < ¢°, then our two-threshold policy behaves like an overbooking policy
with a capacity threshold of A(1 — p)(1 — ). We will use that as one of the benchmark policies

tested in the next section.

6. Implementing the Fluid Policy in Practice

In Section 6.1, we propose an algorithm for the implementation of the fluid policy in real time,
which we call the adaptive two-threshold (ATT) policy. In Section 6.2, we suggest to compare this
policy to four benchmark policies. In Section 6.3, we conduct a simulation study to show that
the ATT policy provides better performance than does the benchmark policies under stochastic
behavior and real-time decision-making. We calibrate the simulation study using real data that
was collected from the INPA for the period May—December 2020 (see Section 3). We present our

simulation study results in Section 6.4, comparing performance under various load scenarios.

6.1. The Adaptive Two-Threshold (ATT) Policy
In this section, we propose ways to translate Algorithm 1 into a real-time decision-making pol-
icy using real-time information. In a real-time scenario, information on cancellations is obtained
over time. By contrast, information on no-shows is obtained only on the focal day. Hence, our
consideration of these two behaviors differs.

The real-time reservation process: In this section, we regard time as a continuous variable
t €10, 7], instead of in days, where T is the time horizon in which the reservation system is open for
reservations. It is assumed that at time t either a reservation or a cancellation arrives to the system.
If, at time ¢, demand for a permit arrives to the system, a decision is made regarding acceptance.
The number of customers who make a reservation at time ¢ is 1 if the reservation is accepted
(Q:=1), and 0 otherwise (in which case a blocking cost ¢? is incurred). Alternatively, at time ¢ a
cancellation may arrive to the system. Let C; denote a reserved ticket cancelled at time t. The total
number of active reservations (i.e., reservations that were not cancelled so far) at time ¢, I, is given
by I, = I+ fOt(Qi — C;)di for t € [0,T~]. Since we know the number of cancellations, we also know

the number of reservations made at time i that were not cancelled before time ¢, namely, Q! (by
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definition, Q! = Q,). Therefore, an alternative expression for the active number of reservations at
time t, I,, is Iy + fit:o Q!di, for all t € [0,7~]. Denote by Ny the number of customers who reserved
permits but do not show up at the NP on time 7. Then, Iy = I;— — Ny = fi; QTdi— Nyp. [I,=0.]
As before, we compare Iy to A and pay an over- or under-cost if they do not match.

Predicting cancellations: At time ¢, the ATT algorithm relies on real-time information regard-
ing cancellations done until that time, and therefore needs to predict the probability of an active
reservation to be cancelled from time t to T. We estimate this probability using the hazard rate
function (see example from our data in Figure 10, in daily resolution). Let r;(¢) be the hazard
rate function for the cancellation probability on time ¢ of a reservation made on time i, that is,
t € [i,T]. Thus, r;(t) is the risk that a customer will cancel her reservation on time t given that
her reservation was not cancelled before that time (for a reservation made on time 7). Therefore,
the probability that a customer will cancel her reservation on time ¢ (for a reservation made on
time ) is p;(t) = 7:(£)S;(t) = r;(t)e~ Ja=imi(Wdu The sum of all p;(t) for all ¢ gives us the probability
of a reservation being cancelled at any time between the reservation day ¢ and time T, that is,

ft ; pi(t)dt (which is the parameter we used in the fluid analysis of Section 5). Finally, let H:
denote the probability of a reservation made on time ¢, and still active on time t, being cancelled
before the end of the horizon T'. That is,

t—fjitpi(j)dj_ ! SZ(]) . T N [T ri(u)du g
O T Al i RG] ©)

Eq. (9) is used to derive the number of active reservations at time ¢ that are predicted to arrive to
the NP on time T, namely, I¢ by If = fjtzo QY (1—H) (1—;)dj.
The ATT algorithm: Assuming that f is a decreasing function, Algorithm 2 for optimizing

the reservation system is defined as follows:?

Algorithm 2: The Adaptive Two-Threshold (ATT) Algorithm for Decreasing f Function

1. Calculate all f; values for every time ¢, such that f, = O—m?ﬁ'

2. Identify Sy = max{t|f, > c°}.

3. Set t=

4. If t < Sl, accept all the demand for reservations during that time, i.e., Q; = D;.

5. If t > 51, calculate the number of reservations that are active just before time ¢ and are
predicted to arrive the NP by I¢ = [i_, Qi(1—H!)(1— ;)di. Then, if I¢ > A, accept no
reservations (i.e., @, =0). Otherw1se accept Q; = min{D,, (A — I )/(( —p)(1 =)}
reservations.

6. Set t=t+dt. If t <T', go to Step 4; otherwise, stop.

2In Appendix EC.3 we provide Algorithm 3 for the less realistic scenario where f is an increasing function.
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Here we assumed that no-show and cancellation probabilities decrease over time (see Section 6.3
for more details) while the blocking probability remains constant. Hence, by Proposition 1 the PA
should open the reservation system as early as possible and accept all reservations up to the time
threshold, S;, and then continue to accept additional reservations up to A effective reservations.
The decision at time t € (51,7, depends on the estimation that an active reservation at time ¢
will be realized. (Note that the algorithm allows acceptance of more than one entry permit in each
reservation, relaxing the assumption we made at the beginning of this section regarding @);, for

predicting cancellations, since all reservations made at the same time are statistically identical.)

6.2. Benchmark Policies
We will compare the above-defined adaptive two-threshold (ATT) policy to four commonly used
policies:

1. The lambda-level (LL) policy: Accept effective reservations until the capacity threshold is
reached, where each reservation’s effectiveness is predicted based on its no-show and cancel-
lation probabilities. Hence, this policy ignores the time threshold S;; that is, f; is assumed to
be smaller than ¢° for all ¢. This policy should work well in under-loaded or medium-loaded
systems. It is similar to the overbooking strategy suggested by Lawrence et al. (2003).

2. The no-show overbooking (NOB) policy: Let ¢ be the average no-show probability. Open
A/(1— @) permits to be reserved in the system, and accept reservations until those permits
are booked. This policy ignores the time-varying dynamics of cancellation and no-show prob-
abilities. It sets an average no-show probability for all reservations and ignores cancellation
probabilities, due to the fact that cancellations are realized before the focal day and can be
replaced by demand arriving after the cancellation time. This policy should work in our NP
setting since most of the demand arrives in the last few days. One problem of this policy is
lost sales due to cancellations on the last day.

3. The cancellation and no-show average overbooking (OB) policy: Let p be the average cancel-
lation probability and ¢ be the average no-show probability. Open A/((1 —p)(1 — ¢)) permits
to be reserved in the system, and accept reservations until those permits are booked. This
policy ignores the time-varying dynamics of cancellation and no-show probabilities and sets
average no-show and cancellation probabilities instead. One problem of this policy may be
accepting too many reservations.

4. No-reservation (NR) policy: In reality, in a no-reservation system, there would be no blocking
and also no cancellations or no-shows of reservations. For a fair comparison, we regard the
“demand for reservations” as people’s intention to visit the NP, and the no-shows and cancel-
lations as an event where people changed their plans to visit the NP, therefore not realizing
those intentions. Hence, this policy is similar to having a reservation system with no limit on

the number of permits opened in the system and accepting all the demand for reservations.
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6.3. The Experiment Design of our Simulation Study

In this section, we describe a discrete-time simulation study designed to compare the performance
of the above policies in a realistic setting. The simulation will examine costs of a single focal day
in a typical NP. We rely on data analyzed in Section 3 to estimate model parameters. Specifically,
the simulation inputs on the cancellation, no-show, and demand dynamics during the reservation
time horizon are based on average customer behavior across all NPs and the total demand values
are based on the average number of reservations made for a single NP.

Note that the demand in the simulation is stochastic. To distinguish between expected demand,
D,, and realized demand, we will denote the latter demand I;, and the resulted number of active
tickets at day 7 after random no-show and cancelations as I;. Denote V, as the total cost under
policy 7, where m € {ATT,LL, NOB, OB, NR} for the above-defined policies. V, = Zthl (D, —
Q) + (A —Tp)" +c°(Ip — A)F, where Q, is determined by policy 7. We simulate the decision

made by each policy m and compare the cost V.

6.3.1. Cancellation and No-show Probabilities We use the cancellation probabilities pre-
sented in Section 3. Specifically, Figure 4 showed the probability of a reservation made on day ¢
being cancelled before the focal day (see also the gray line in Figure 11(a)). For the simulation, we
need an estimation of the respective hazard rate function, r;(¢), presented in Figure 10. We observe
an interesting behavior, where on the reservation day there is a 5% risk of same-day cancellation,
which drops to 1%-2% until the last two days before the focal day. The cancellation risk then
increases again to 5%-10% on Day -2, to 10%-15% on Day -1, and to 9%-10% on the focal day.
This pattern is consistent regardless of when the reservation was made, except for reservations
made on Day -1, which show different (and higher) risk for same-day cancellations.

Using this data, we calculate H!: the accumulated probability that a reservation made on day
1 and not cancelled before day ¢ will be cancelled before the focal day T'. This calculation is used

for (a) randomizing cancellations made on day 7 and (b) making acceptance/blocking decisions

@020 Number of days

E reservation was made
f he focal :

T0.15 | before the focal day

E 0 day 1 day

< ——2 days —-3days

<0.10

= -4 days -5 days

E 0.05 -6 days -7 days

3 -8 days —=9 days

c

© --10 days <11 days

Q0.00

12 days =13 days
-—14 days

-14-13-12-11-10 9 8 -7 -6 -5 -4 -3 2 -1 0
Days to focal day

Figure 10 Hazard rate function for cancellation probabilities, by reservation day [May—December 2020, All NPs].
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Figure 11 No-show and cancellation probabilities as a function of the number of days until the focal day

for the ATT and LL policies presented in Sections 6.1 and 6.2. We apply the average cancellation
probabilities over time to the OB and NOB policies (see Section 6.2).

As discussed in Section 3, due to data limitations we cannot measure individual-level no-shows
(i.e., we cannot connect a specific no-show to a specific reservation nor to the day it was made).
Instead, we only know the total no-show percentage, by comparing the total active reservations
made for a focal day to the total number of arrivals on that focal day. Previous studies on healthcare
appointment no-shows have shown that the no-show probabilities decrease over time (e.g., Gallucci
et al. 2005, Liu et al. 2010). Therefore, in our simulation, we use the no-show time-varying dynamics
from Gallucci et al. (2005) (see the upper line in Figure 11(b)) and proportionally decrease the
values by a few percentage points so that the total no-show probability matches the NP data (see
the no-show line in Figure 11(a)). Similar to the cancellation probabilities, the no-show probabilities
are used for (a) randomizing no-shows on day T and (b) making acceptance/blocking decisions for
the ATT and LL policies. We apply the average no-show probabilities over time to the OB and
NOB policies (see Section 6.2).

Using these no-show and cancellation probabilities, with constant blocking costs, yields a decreas-

ing f function. Therefore, we use Algorithm 2 to simulate the performance of the ATT policy.

6.3.2. Cost and Demand Inputs We implement a 3 x 11 experimental design, including
three combinations of over-costs and eleven combinations of total demand. The three combinations
of over-costs are designed such that S; =0, S; € {1,7 — 1}, or S; =T. S; =0 when the maximum
of f; is less than ¢°, S; =T when the minimum of f; is greater than ¢°, and S; € {1,7 — 1} when
¢’ is between the maximum and minimum f; values. In practice, we change only the value of

¢® to accomplish these three combinations (see Table 2). The mean of the total demand values
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throughout the time horizon (7' =15 days) ranges between 2000 and 7000 in jumps of 500 entry
permits (eleven combinations). The demand of each simulation replication is drawn from a normal
distribution with the above means and an SD that is 1% of the mean. These mean values of the
total demand are designed so that the mean of the total number of reservations after cancellations
varies between 1529 and 5351 but the mean of the total number of arrivals after no-shows drops
to between 1173 and 4105. Compared to the target load A = 1095, these demand values create
moderate- to high-load scenarios. (Note that this number of reservations represents a realistic
demand for one NP, as seen in Figure 6.) We ran 100 replications for each over-cost and total
demand combination. The total demand is distributed over time according to the demand function

presented in Figure 1.

Combination No. T ¢® ¢* ¢ Max f, Min f, S;

c
1 15 4 3 12 11.05 4.66 0
2 15 4 3 7 11.05 4.66 13
3 15 4 3 4 11.05 4.66 T=15

Table 2 Parameter combinations for simulation study.

6.4. Simulation Study Results
Figures 12-13 present the results of our simulation study (additional results are presented in
Appendix EC.5). Figure 12 presents the cost gap, in percentage, between the cost of a specific
policy 7, V., and the average cost of our proposed policy, E[V4rr], as a function of demand, for
each of the parameter combinations presented in Table 2. Figure 13 shows the gap, in percentage,
between arrivals to the park on the focal day and the target number of visitors (A) as a function of
demand. Figures EC.7-EC.9 present the same information using boxplots of the 100 replications,
where we present three specific total demand values for 2000, 3000, and 7000 reservations, each
representing a different situation of the relationship between the policies’ performance.
Examining Figure 12, we first observe that ATT is the only policy that provides a minimum cost
in all the combination cases (because the cost gap of the other policies is always greater than 0%).
The second-best policy is the LL policy. Recall that the LL policy takes into account the time-
varying dynamics of both cancellation and no-show probabilities. In analyzing the performance
of the LL policy, we observe an interaction between demand and S; (which is determined by the
relationship between f; and ¢°). As S; increases as it goes to T' (i.e., moving from Combinations
1 to 3), the differences between the ATT and LL policies become more apparent. This is because
the ATT policy accepts all reservations before S;, while LL rejects some reservations; therefore,

when S; > 0, the two policies diverge. Yet, when 0 < S; < T (Combination 2), we start seeing
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Figure 12 Comparison of the average total cost of each policy, E[V ], to the average total cost of the ATT

policy, E[Varr], as a function of total demand.

differences only when the total demand is high (see Figure 12(d)). This is because when the demand
is moderate, the probability that more than A effective reservations are accepted before S, is low,
especially considering the pattern of lower demand and higher cancellation probabilities at the
beginning of the time horizon. Therefore, we see little to no difference between these policies when
demand is lower than 5500 reservations. As S; increases, these differences manifest at lower demand.
Specifically, when S; =T, the gap reaches 30% when the demand is 2000 (see Figure 12(b)). In
contrast to the LL policy, the NR policy performs better as S; and total demand increase. The
NR policy accepts all reservations. Therefore, it shows the same performance as the ATT policy
in Combination 3 regardless of the demand. However, large differences appear in Combinations 1
and 2, where it is optimal to apply some sort of limitation on the amount of accepted reservations
by taking into account the time-varying dynamics of both cancellation and no-show probabilities.
Hence, this policy makes sense only when blocking costs are greater than or equal to the over-costs

(leading to Combination 3 scenarios).
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Figure 13  Comparison of average arrivals at the focal day between each policy to A as a function of total

demand.

The OB policy performance is somewhere in between that of the LL and NR policies. The OB
policy only performs well in Combination 3 when the load is very low (2000 reservations). In the
simulation study, the OB policy allowed for more reservations than LL does in most scenarios (see
Figure 13). This is because the OB policy uses average no-show and cancellation probabilities that
are decreasing in practice and demand that is increasing over time. Therefore, it overbooks reser-
vations later on in the time horizon by overestimating their cancellation and no-show probabilities,
and exceeds the target number of visitors.

The NOB policy has lower performance across all simulated scenarios. One can interpret this
policy as assuming that the total demand is high enough so that any cancelled reservation for a
permit will be replaced by a new reservation before the end of the time horizon. Therefore, this
policy takes in account only no-shows. The problem is that most cancellations are done in the last
three days before the focal day, and by that time it is hard to fill in the gap between the number
of active reservations and the target number of visitors. Therefore, this policy always results in a

shortage of visitors (see Figure 13), which in turn results in under-costs.
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REMARK 5. Note that our experiment design assumed a decreasing f; function. The acceptance
order of periods in the ATT and the LL policy is identical; therefore, if the load is not too high
the LL policy performs well. But if f; were in any other shape, differences might also be observed

in light load.

7. Conclusion and Future Research

This paper addressed the optimization of NP workload. Taking a hierarchical approach, we first
determine the optimal number of visitors in the park, and then developed an optimization model
that reach that target by managing daily reservation quotas. The first step analysis is build on
fluid analysis of the time-varying load in the park. We based our second stage model on analyzing
reservation data from INPA. Key findings reveal high rates of cancellations and no-shows, with
probabilities varying over time. Additionally, demand fluctuates, with some visitors reserving well
in advance and others making last-minute bookings. Incorporating these dynamics, we developed
an optimization model that minimizes total costs by managing daily reservation quotas. The model
assumes real-time blocking penalties, while over- and under-cost penalties are incurred on the focal
day in which visitor enter the park. The framework operates on a rolling finite-time horizon and
accounts for behavioral patterns in cancellations and demand variability.

Our approach is adaptable to other high-capacity reservation systems, such as amusement parks,
museums, and healthcare systems. Future research could explore stochastic modeling for real-time
adaptability, as well as extending the model to account for dependencies between reservation size
and no-show probabilities. Adjusting probabilities for group reservations or individual characteris-
tics, such as historical behavior, could further personalize and enhance system efficiency.

Dynamic factors like weather should also be integrated into NP capacity estimations, alongside
static features like trails and staffing. Furthermore, strategies to influence demand, such as pro-
viding load information, could optimize visitor distribution. Extending the model to a network of
parks would allow analysis of how blocking at one site impacts demand for others, with parallels
to healthcare systems where resource management across interconnected facilities is critical.

Finally, our model can incorporate dependencies between days and sites by refining the blocking
cost to reflect visitor flexibility. For example, multi-park visits may entail higher blocking costs if
denied access to one park disrupts entire itineraries. Data indicates 6.8% of reservations include

multiple sites, underscoring the need for further analysis of such bundling behaviors.
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EC.1. Demand for NPs

INPA data shows that 25% of all reservations were for five popular NPs, out of more than 70 parks.
Figure EC.1 shows the percentage of reservations made to the 15 most visited parks out of the
total number of reservations during May—-Dec. 2020. (A reservation may include multiple visitors.)

According to the INPA data, 6.8% of the reservations include more than one site. Figure EC.2
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Figure EC.1 Top 15 popular NPs in Israel [May—December 2020].

shows 15 most popular site bundles (of 2 or 3 NPs) in Israel’s NPs system during May—Dec. 2020.
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Figure EC.2  Popular NP bundles in Israeli NPs [May—December 2020].
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EC.2. Proofs
EC.2.1. Proof of Theorem 1

We can rewrite C(A) in the following way:

The first transition is because (L — R(t))* = max{0,L — R(t)} = —min{0, R(¢t) — L} = (R(t) —
L)~. We can rewrite this function in the following way:

o0

L-RE) = [ Lpendo=—(R()-1)"

z=R(t)

Therefore,
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t
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We need to prove that the function G(A) = fmA:o (Z — g(z)) dz is minimized by A*.

Assuming T is one cycle (i.e., one day) and that the system works with infinite identical cycles
{(0,T),(T,2T),...}, by the definition of A”* as the proportion of arrivals throughout the hours of the
day, for any random variable X (with f(z) as its PDF function) the sample path j; ZAN(t=X)dt =
j;i:))(( A”(t)dt = 1. Therefore,

/ BN (t - dt—/to/w RN )da:dt—/;oof(x)/:o)\%(t—m)dtdx
/ i

Therefore, the function

o T o T o)
c c ¢
Z= R*(t)dt = ES/ E[N(t—S.)| dt= E[S]. EC.2
oo [ Roa= s [ NS dt= S Els) (BC2)
Z does not depend on z (i.e., A) and gets values in the range [0, E[S]].
We note that
T T
g9(z) :/ R/B(t)]l{xR%(t)<L}dt:/ Rf’(t)]l{sz%(t)gL}dt (EC.3)
t=0 t=0

When z =0, the function g(z) equals ft o E[N(t = X)] E[S]dt = E[S] and when = — oo, g(x) goes
to 0, i.e., g(x) is non-increasing non-negative function going from E[S] to 0.

The function G(A), for A starting from 0, is first an integral of a non-positive integrand, and
thus is decreasing in A. Then, after the first A for which g(A) = Z, it is increasing. This proves that
G(A) is minimized (globally) at point A*, where g(A*) = Z, and that a solution for this equation

exists. One can find A* numerically by solving:

T o
9 c
/ RY(t )H{A*R%(t <L}d E[S].
t

:0 o+ cu

Since R (t) is the increasing rearrangement of R”(t), it is nondecreasing in t. As x increases,
the set of ¢-values for which R?(t) <z can only grow (or stay the same), which implies ®(z) is a
nondecreasing function of z. It is strictly increasing if and only if R(¢) is strictly increasing in ¢

almost everywhere.
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Then, (3) is equivalent to

L c°
@<N> - CO+Cu E[S]

Provided @ is invertible on the relevant range, we obtain

L o L
—:@71 706 uES A" = 0 .
o) = N e

O
Note that this solution is similar but not identical to the solution of Zychlinski et al. (2020).
They found L* that minimize similar cost function, and proved that L* = R;(c*T/(c* +¢°)), where

R,(t) is a decreasing sorted version of R(t).

EC.2.2. Proof of Theorem 2
To prove Theorem 2, we define Lemma EC.1 and Theorem EC.1, each of which treats a different
condition on the value of f at day t.

Equivalently, we can express Eq. (5) using the percentage of accepted reservations @; out of

total demand D;, denoted as z;; that is, z; = Qt , and z = (21, ..., zr) the vector of z’s. Then, we can
rewrite Eq. (5) as
T
min Y c}(Dy =z - D) + (A =I5 + ¢ (I5 - A)* (EC.4)
s.t.
Ite:Ite_l_‘_zt'Dt(l_pt)(l_@t)’ VtGl,,T,
I;=0;
z €10,1], viel,..,T.

Note that I = Zt 0 2eDe(1 = py)(1 — ), therefore, (EC.4) could be simplified to:

T T + T +
mzin Zcf( —z-Dy) + (A ZztDt 1—p)(1— cpt)> +c° (Z 2:Di(1—py) (1 — ) — A)
t=1 t=0 t=0
s.t.
cl0,1], Vtel,..,T. (EC.5)

LEMMA EC.1. Assume that for a specific day t, f; > c® and that I{ | has some arbitrary value.

Then, the optimal policy at day t is z, =1, that is, Q; = D,

Proof of Lemma EC.1: We first incorporate the constraints of the optimization problem (EC.4)
into the objective function using the Lagrange multipliers method using the simplified version

EC.5. The Lagrangian function is

T +
L(zt, Bt, 1) th t =2t Dy) +c* (A_ZztDt(l—pt)(l—%)) (EC.6)

t=0
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T + 7 T
+c° (Z 2:Di(1—py) (1 — ) — A) — Z/Btzt +Z%(Zt —-1),

=0
where (;, and ; are the Lagrange multipliers.

The first-order necessary conditions (which are the Karush-Kuhn-Tucker (KKT) conditions
(Karush 1939, Kuhn and Tucker 1951)) of Eq. (EC.6) are:

oL

97 =—c}D; — c"Dy(1—p)(1 - ‘Pt)]l{zfzo 2r Dr(1=pr)(1—pr)<A}
+Di(1=p)(A = @)Ut o (1oprya—gn>a) ~ B+ 7 =0, vtel,..,T;  (EC.T)
2 >0, vtel,..,T; (EC.8)
%<1, vtel,..,T; (EC.)
B >0, vtel,..,T; (EC.10)
e 2 0, vtel,..,T; (EC.11)
Bizi =0, vtel,..T; (EC.12)
Yi(z — 1) =0, vtel,..,T. (EC.13)

Next, we will review all possible cases for 8; and 7, when «; € R. Reconciling the necessary
condition (EC.12) with condition (EC.13), we get that if 5> 0 then v =0 and if 8 =0 then v > 0.
The combination of 3; >0 and v; > 0 yields z; =0 by (EC.12) and z; =1 by (EC.13), which is a
contradiction.

We divide the case of § >0 and 7 =0 into two subcases: (a) a “Below A case”, where
> 2eDr(L=pr)(1 =)+ D;(1—p:) (1 —¢p;) < Aand (b) an “Above A case”, where >, 2, D (1~
p-)(1 — ;) + Di(1 —pi)(1 — ;) > A. In the Below A case, condition (EC.7) is not applicable,
because Eq. (EC.7) reduces to —c?D; —c“D;(1—p;)(1— ;) = B; which contradicts the case assump-
tion that 8> 0. In the Above A case, condition (EC.7) is also not applicable, because Eq. (EC.7)
reduces to —c?D; + ¢°D;(1 — p;)(1 — ;) = B; > 0, which implies that —c? + ¢°(1 — p;)(1 — ¢;) >0
and contradicts the assumption that f; > ¢°. Hence, 5 >0 and =0 cannot be a feasible solution
to (EC.4) by Lemma EC.1’s conditions.

Similarly, the case of =0 and v =0 has no feasible solution to Eq. (EC.4) when f; > ¢°. To
prove this, we again divide case into two subcases. In the Below A case, condition (EC.7) is not
applicable because Eq. (EC.7) reduces to —c?D; — c¢*D;(1 —p;)(1 — ¢;) = B;, which contradicts the
assumption that 5= 0. In the Above A case, Eq. (EC.7) reduces to —c?!D; +c°D,(1—p;)(1— ;) =0,
which implies that f; = ¢°, which contradicts Lemma EC.1.

Therefore, the only combination of the Lagrangian multipliers with feasible solutions to Lemma
EC.1 is when 3; = 0,7; > 0. In this case, by (EC.12) and (EC.13), z; = 1. This combination case
can be divided into two subcases to confirm that Eq. (EC.7) holds true under it:
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(a) [Below A case] >, 2-D,(1—p,)(1— ;) + Di(1—p)(1—pr) <A

Applying the Below A case to Eq. (EC.7) results in —c?D; — ¢“D;(1 —p;)(1 — ;) +7: = 0. Since
v¢ > 0, it follows that ¢t D; +¢*D;(1—p;)(1—;) > 0, which can be satisfied by any set of parameters
(as all of the parameters are nonnegative).

(b) [Above A case] >, 2, D-(1—p,)(1 —¢,) + Di(1—pi)(1 =) > A

Applying the Above A case to Eq. (EC.7) results in —c?D; + ¢°D,(1 —p,)(1 — ;) +7: = 0. Since
v > 0, it follows that ¢?D; — c°D;(1 —p,)(1 —¢;) > 0. The latter implies that ¢ < f;, which always
holds under Lemma EC.1.
We summarize the case of § =0 and v > 0: since z; = 1, by Eq. (EC.8) it follows that I =
It 1+ Dy(1—p;)(1— ). In other words, for all ¢ when f; > ¢°, all demand will be accepted: the
number of reservations will be Q) = D,. This concludes the proof of Lemma EC.1. n

We now move to a complementary assumption that f; <c°.

THEOREM EC.1. Assume that f; < ¢ for all t, and that Iy + ZtT:lDt(l —p)(1 — ) > A
Let, fs be the sorted vector of f, from the highest to the lowest value. Then, the optimal sorted
solution to (EC.4) is Q= {ﬁl,ﬁg,...,ﬁs_l,%,0,...,0}, where S is the index in which
I+ D1 —ps)(1—@s) <A and I+ 35, Dy(1—p)(1— @) > A.

In order to prove this theorem, we use the following lemma. In Lemma EC.2, we show that the
sorting of f; needs to be done in order to prioritize the days from which we accept reservations.
Then, we go back to Theorem EC.1 and prove that one would accept exactly A effective reservations

(i.e., the number of reservations that will ensure that the number of arrivals after cancellations

and no-shows will be exactly A).

LEMMmA EC.2. For every two periods © and j, where ¢ > f; > f;, the marginal cost of accepting

one effective unit in period i is lower than that of accepting one effective unit in period j.

Proof of Lemma EC.2: Assume that we have an optimal policy m with total costs V., where in
period i we block one effective reservation and in period j we accept one effective reservation. We
compute the total cost of conversely one effective reservation. By blocking one effective reservation
of period j, we incur a cost of ¢}/((1—p;)(1—¢;)), and by not blocking one effective reservation
of period i, the blocking cost ¢?/((1—p;)(1 — ¢;)) is avoided. There is no change in the number of
visitors arriving to the park, since the total number of effective reservations remains unchanged.
Therefore, there is no change in the under- and over-costs. Hence, the total cost after the reversal

b
is VW—I-(

(&N cb . . . .
1 ¢ =V, + f; — fi. This cost is less than V, (since f; > f;), which

1-p))(1—¢;)  (1-p;)(1—¢;)

contradicts the assumption that this policy, w, was optimal. ]

According to Lemma EC.2, the PA prefers to accept reservations with higher f;. Recall that for

every period with f; > ¢ we accept all reservations by Lemma EC.1. Therefore, without loss of
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generality, we assume that for all the periods in Theorem EC.1 f; < ¢° and that they are sorted
from highest to lowest values.

We now go back to proving Theorem EC.1.

Proof of Theorem EC.1: We can rewrite Eq. (5) using the sorted indexes s € 1,...,T as

min iag(ﬁs—stS)+c“(A—f;)++c0(f;—A)+ (EC.14)
s.t. -

Ie=1°  +2,-D,(1—p,)(1— ), Vsel,..,T;

Ic=0;

2, €10,1], Vsel,..,T.

We again use Lagrangian multipliers with similar KKT conditions to a simplified version:

O =D D= =PI (1. e brromm-mn}
+C°Ds(1—ﬁs)(l—Sbs)ﬂ{zzzozTDTu—;sT)u—qu»A} —Bs4+7.=0, Vsel,..,T; (EC.15)
z2, 20, Vsel,..,T; (EC.16)
Z, <1, Vsel,..,T; (EC.17)
Bs >0, Vsel,..,T; (EC.18)
Vs 2 0, Vsel,...,T; (EC.19)
Bszs =0, Vsel,..,T; (EC.20)
V(2 —1) =0, Vsel,...,T. (EC.21)

Since fs is sorted, according to Lemma FEC.2 we accept quantities sequentially. As a result, if we
accept demand in an s-index period, then under the optimal policy we also accept all reservations
in indexes {1,...,s — 1}. In the same way, if we rejected demand in index s, then under the optimal
policy we reject all the demand in indexes {s+1,..,T} as well. Therefore, under the optimal policy,

the indicator of ]1{Z Dr(1-pr)(1-pr)>A} is equivalent to the indicator ]l{f§,1+2sﬁs(1—ﬁs)(1—¢s)>A}‘

T=o T

Hence, we can rewrite Eq. (EC.15) by

oL b w . )
2. =—CD;—c"D,(1—p,)(1— (PS)l{f§71+2sﬁs(1—ﬁs)(1—¢as)§A}
D1 =p) (L =P fze 1iba-poa-po=a} ~Ps =0, vsel,...T. (EC.22)

Define the Below A case such that 1¢ | + 2,D,(1 —p,)(1 — ¢,) < A and the Above A case such
that I¢_, + 2,D,(1 — p,)(1 — ) > A. We will analyze the Below A and Above A cases separately

for each index s, se€1,...,T.
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1. [Below A case] Assume that I¢_, +2,D,(1—p,)(1— @) < A for all 2, € [0,1]. In this case, Eq.

(EC.22) reduces to —c? Dy —c*D,(1—p,)(1—@s) — s +77s = 0. We now check four combinations

of B, and ~,:

(a) Bs =0, v, =0: Since B, =0 and v, = 0, it follows that —2D, — ¢*D,(1 — p,)(1 — @) =
0, which cannot be satisfied by any set of parameters (because all the parameters are
nonnegative).

(b) B, >0, v, = 0: This combination implies that —&2D, — ¢*D (1 — p,)(1 — ¢,) > 0, which
cannot be satisfied by any set of parameters (because all the parameters are nonnegative).

(¢) Bs=0, s> 0: This combination implies that él;Ds + c“f)s(l —ps)(1 = ps) =7, >0, which
is applicable when & 4 ¢*(1 — p,)(1 — @,) > 0, that is, when f, +¢* >0 which can be
satisfied by any set of parameters. In this case, 2,=1 by Eq. (EC.21); that is, the policy
is to accept all demand for reservations.

(d) Bs >0, > 0: This combination of multiplier values cannot hold for any Z, due to (EC.20)
and (EC.21). Therefore, this combination is not applicable.

We conclude that when fs < ¢° in the Below A case, z, = 1.

[Above A case] Assume that ¢, + 2,D,(1 — p,)(1 — $,) > A for all 2, € [0,1]. In this case,

Eq. (EC.22) reduces to —&? D, +¢°D,(1—p,) (1 — @, ) — Bs +7s = 0. We check four combinations

of B, and ~,:

(a) B, =0, 7, = 0: This combination results in —2D, 4+ ¢c°D,(1 —p,)(1—,) = 0, which implies
that f, = c° (which meets the conditions of Theorem EC.1). f, = ¢® implies that we are
indifferent between accepting and blocking reservations; therefore, all Z; are optimal, that
is, 2¥ =2, €]0,1]. Here, we are indifferent between solutions and, therefore, 2* =0 (block
all demand for reservations) is an optimal solution.

(b) Bs >0, 75 =0: This combination results in —él;f?g + c"f)s(l — ps)(1 — @) >0, which can
be satisfied by any set of parameters (because all the parameters are nonnegative). This
implies that fs < ¢°, fitting the lemma’s assumptions. In this case, 2, =0 by Eq. (EC.20).
Hence, all demand is blocked.

(¢) Bs=0, v, > 0: This combination results in —*D, +¢*D,(1—p,)(1—$,) <0, which implies
that ¢ > ¢°(1 — p,)(1 — @,), that is, f, > ¢°. This contradicts Theorem EC.1. Hence, this
combination is not applicable.

(d) Bs >0, v, > 0: These combinations of multiplier values cannot hold for any Z, due to
conditions (EC.20) and (EC.21). Therefore, this combination is not applicable.

We conclude that in the Above A case, there exist two solutions: (1) 22 =0 if f, < ¢® and

(2) £ can be any value in its range [0,1] if f, = ¢°. Combining the two solutions, we conclude

that for any Above A case that holds f, < ¢°, the optimal solution is to block all demand for

reservations, that is, Q* =0 (27 =0).
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3. [Transition case] We conclude this proof by considering an index day in which for some 2
we get the Below A case, I° , + 2,D,(1 —p,)(1 — 4,) <A, and for higher values of Z,, we get
the Above A case, I¢ | + 2,D,(1 — p,)(1 — ¢,) > A. This is precisely index S. Theorem EC.1
suggests accepting reservations for part of the demand, such that we reach exactly A effective
reservations, and block the rest, that is, Qfg = (17/;;{%'

Without loss of generality, we divide the index-S period into subperiods s’ € S, such that
in each subperiod the demand equals one effective reservation (where one effective reservation
is defined by the number of reservations that will result in one visitor arriving to the park).
This means that Dy (1—py)(1—@,) =1 for all s’ € S. According to the Below A case analysis
above, we will accept reservations until we reach exactly A effective reservations at some time
s”, that is, fj,, = A. Thereafter, all reservations are blocked, that is, z =0,Vs > s”, based on
the Above A case proof.

Combining the subperiods, we get that the number of s’ indexes when all reservations are
accepted is such that Q% = Z:;;l Dy(1—ps)(1—¢g)=5"= (17/;;{%.

Summarizing Theorem EC.1 : Since we assume that f, < ¢° for all s, it follows that in the
Below A case (where ¢, + D, (1 —p,)(1—@,) < A) all reservations are accepted, that is, Q* = D,
(22 =1), and that in the Above A case (where I¢ |, + D (1 —p,)(1 — @) > A) all reservations are
blocked, that is, Q;‘ =0 (2 =0). Thus, the optimal value for f% is f% = A. In other words, in the
case where fs < ¢° for all s, reservations are accepted sequentially up to A. O

Summarizing Theorem 2 : Theorem 2 first order the periods according to f in decreasing

order. For the first periods in the sorted vector, where f, is larger than ¢°, Lemma EC.1 is applied.

Then for the rest of the periods, where f, is smaller or equal ¢°, Theorem EC.1 is applied. O

EC.2.3. Proofs of Propositions 1 and 2
Proof of Proposition 1: If ¢, and p; decrease over time, then f; decreases over time too (i.e., f =f).
Therefore, according to Theorem 2, the PA should accept reservations from the beginning of the
time horizon onwards. By Lemma EC.1, the PA should accept all demand when f; > ¢® and, by
Lemma EC.2, should prefer periods with larger f, that is, from earlier in the horizon when f <¢°
(until the capacity threshold is reached). That means that regardless of the ratio between f and
¢°, the PA should start accepting units as early as possible. O
Proof of Proposition 2: By Lemma EC.2, the PA prefers periods with larger f values. Specifically,
if f; is increasing in time, then the indexes of fs are in reverse order of days in f;. Therefore, the
larger values of f; are the latest in the horizon, and these should be prioritized. The question is
when to start accepting reservations.
According to Theorem 2, we accept all reservations of periods where f; > ¢°. Since there are S;

such periods (by definition), the latest we start accepting reservations is at day 7'— S; + 1. Then, by
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Theorem 2, if 37, . g41 De(1—=pi)(1 =) <A, we want to accept reservations in earlier periods
specifically at T'— S5 4+ 1. Recall the definition of S, as the time we reach the capacity threshold.

Hence, T'— S; 4+ 1 is the maximal time such that ZtT:T_SQH Dy(1—p¢)(1 —¢;) > A. Finally, again
A=/ gy De(1=pt)(1—4)

reservations.
(A=pr—_sy+1)(1—PT_55+1)

according to Theorem 2, during period T'— S, + 1, we accept
O

EC.3. Algorithm for Increasing f

The ATT algorithm for an increasing f function is defined similarly to one for a decreasing f
function, except for two differences: (a) by Proposition 2, we only open and accept reservations
from Sy days from the end of the horizon (and in the first period partially), and (b) we have to
keep enough permits at the end of every day for reservations made at later days. Let Df, ,, denote
the effective expected demand from period ¢, to 5, such that Dy ,, = fttjh Di(1—py)(1 — py)dt.

We will use this quantity as our guidance to the number of permits that need to be reserved for

later time.

Algorithm 3: The Adaptive Two-Threshold (ATT) Algorithm for Increasing f Function

1. Calculate all f, values for every ¢, such that f, = %.

2. Identify time S; = min{t|f; > ¢°}.

3. If D, > A, set time S, = S;. Otherwise, identify time S, = max{t|Dy . > A}.

4. Set t=0.

5. If t > 51, accept all the demand for reservations on that time, i.e., Q, = D;.

6. If t <.5,, block all the demand for reservations on that time, i.e., Q; =0.

7. If Sy <t < Sy, calculate (a) D¢y . = ij:ﬁ D;(1—p;)(1 —p;)dj, the effective demand

expected to arrive in the future, and (b) I = [, _ Q!(1 —H!)(1 — ¢;)di, the number of
active reservations predicted to arrive at the NP.
If I7. > A, accept no reservations (i.e., Q; = 0). Otherwise, accept @Q; = min{D,, (A —

Ie. — D¢ )/((L—=p)(1—¢;))} reservations.
8. Set t=t+dt. If t <T, go to Step 5; otherwise, stop.

EC.4. Case Study: The Optimal Target Arrivals to a NP

In this section, we analyze the impact of different parameters on the optimal target arrivals, A*.
Here, we take a more realistic assumption that the service time is time-varying, ensuring that
visitors exit the NP before its closing time. We also assume that the service time is given by an

exponential distribution, which allow us to compute R(t) by the following differential equation:

81‘;“) = \0t) — u(H)R().
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We then compute A* by finding a numerical solution to the following optimization problem:

min C(A) = /0 ' (R(t) = L)" + (L — R(t))*dt (EC.23)
s.t a];gt) = AN (t) — p(t)R(t)

EC.4.1. The Impact of the Cost Ratio on Optimal Target Arrivals

Figure EC.3 shows the impact of the cost ratio, 001%7 on the recommended target arrivals (blue)
and compares it to the maximal capacity (yellow) and the maximal number of visitors, max; R(t),

(red). As the cost ratio, increases, the target arrivals (A) reduces and so does the maximal

number of visitors at the park. Hence, with high values of ¢®° compared to ¢*, the visitor load
(R(t)), under optimal values of A, will not exceed the maximal capacity for long periods of time.
As the cost ratio approaches 1, the maximal visitor load will approach L but will not cross it. This

was the situation during the COVID-19 pandemic when healthcare guidance was strict.
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< 4500
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1500
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Cost ratio

Maximal Capacity --MaximalR(t) -e-Optimal Lambda

Figure EC.3 Effect of the cost ratio (%) on optimal target arrivals and visitor load.

As an illustrative example, assume that ¢* =20 and ¢® = 30, and that the recommended target
arrivals to the park is A =6217. The resulting visitor load over the day (assuming an empty park

at the start of the day) is presented using a blue line in Figure 4(b).

EC.4.2. The Impact of the Maximal Capacity on Optimal Target Arrivals

Next, we vary the maximal capacity (L) allowed in the park between 1000 and 3000, with a fixed
cost ratio of 0.6. Figure EC.5 shows the visitor load (solid lines) throughout the day (R(t)) for four
values of the maximal capacity (dashed).

The impact of L is opposite to the impact of the cost ratio—as the maximal capacity increases,
the optimal target arrivals increases. Therefore, as the maximal capacity increases, the number
of visitors at any given time observed in Figure EC.5 increases too. An increase of the maximal
capacity from 1000 to 2000 (200%) increased the optimal target arrivals from 3108 to 6217 (also
200%), and when the maximal capacity increases from 2000 to 3000 (another 150%), the optimal
target arrivals increases from 6217 to 9325 (also 150%) (see Figure 5(b)).
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Figure EC.4 En Gedi NP: Average dynamics during a typical day with optimal target arrivals of A = 6217 and

maximum capacity of L =2000 (cost ratio 0.6).
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Figure EC.5 Effect of the maximal capacity on visitor load and optimal target arrivals [Cost ratio 0.6].

EC.4.3. The Impact of LOS on Optimal Target Arrivals

The visitors’ average LLOS is also a significant contributor to the NP visitor load. As visitors stay
longer at the park, the number of visitors at the park at any given time increases. In previous
analyses, we saw that for a cost ratio of 0.6 and a maximal capacity of 2000, the optimal target
arrivals is A = 6217, when the LOS was 3 hours in general (see Table ?7). Here we change the
visitor’s LOS—either increasing it to 5 hours or decreasing it to 1 hour. See Table ?? for the exact
time-varying visiting duration we use for this test.

We find that when we increase LOS to 5 hours, for the same given cost ratio and maximal
acceptable load capacity, the optimal target arrivals decreases to A =5165. That is, an increase of
67% in visit duration (from 3 to 5 hours) translated to a 17% decrease in the recommended target
number of visitors entering the park (from 6217 to 5165). This is quite intuitive and expected, since
in general queueing systems, an increase in service duration increases system load. Using a 1-hour

LOS, we find consistent results. A decrease of 67% in visit duration (from 3 to 1) translates to a
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139% increase in the recommended target number of visitors to the park (from 6217 to 14,832). To
summarize, the LOS has a significant impact on the optimal number of total visitors that should

be allowed to enter the NP during a day.
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Figure EC.6 Effect of the LOS on optimal target arrivals.

EC.5. Simulation Study: Comparison of Policy Performance
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Figure EC.7  Comparison of policy performance by combinations (total demand ~ N (2000, 20)).
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Figure EC.9  Comparison of policy performance by combinations (total demand ~ N (7000, 70)).
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