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Accurately determining whether an ongoing service conversation will continue or has effectively ended is

central to operational control in chat-based service systems. Premature conversation closures can induce

costly customer re-contacts, whereas overly cautious closures waste agent capacity. Using large-scale conver-

sational data from a food delivery service organization, we study two related prediction tasks: short-term

conversation continuation and end-of-service completion. We compare three modeling paradigms—stochastic

self-exciting point processes, metadata-based neural networks, and large language models (LLMs) operating

on full conversation text. Our results reveal a sharp distinction between the tasks. For short-term con-

tinuation prediction, lightweight Hawkes process models capture temporal dynamics most effectively and

achieve competitive accuracy at minimal computational cost. In contrast, end-of-service prediction benefits

substantially from semantic information: a fine-tuned Transformer-based text classifier outperforms all tem-

poral models, while zero-shot prompted LLMs perform poorly despite their scale. A cost–accuracy analysis

shows that large models are only justified for specific, high-stakes decisions. Motivated by these findings, we

propose a hybrid approach that combines real-time Hawkes-based monitoring with selective LLM queries.

This strategy exploits the complementary strengths of temporal and semantic models and achieves a best-

of-both-worlds cost–accuracy tradeoff for operational decision-making in service conversations.
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1. Introduction

Text-based chat platforms have become a primary channel for providing service delivery and cus-

tomer support. These chats may be handled by a human representative, a chatbot system, or a

hybrid of the two. Relative to traditional call centers, a major advantage of chat-based services

is the ability to reduce waiting times by allowing resources (either humans or bots) to handle

multiple customers concurrently and improve effective capacity (Luo and Zhang 2013, Tezcan and

Zhang 2014). However, concurrency also introduces new challenges. In particular, because these

parallel conversations are conducted through sporadic texts, it is difficult to monitor progress and
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determine when a conversation is truly over and whether the service-providing resources can be

released (whether this means freeing chatbot-server memory or opening a human agent’s concur-

rency slot). This uncertainty directly affects resource utilization. Relying on customers to explicitly

signal that the chat is over is not effective, as many customers leave the chat without providing

any closing signal e.g., indicate resolution or closing the application. This phenomenon, known as

“silent abandonment,” was formally measured in Castellanos et al. (2025), which showed that it

occurs at substantial rates (often exceeding 20% of the customers).

To manage this uncertainty, companies typically apply a simple rule of thumb for chat closure.

For example, setting a fixed inactivity timeouts (e.g., close a chat after X minutes of no customer

activity). These policies have several risks. If the timeout is too short, chats may be closed prema-

turely, leading to long waits when the customers attempt to reopen them and causing dissatisfaction

(especially if the customer needs to re-explain their situation to a new agent). Premature closure

also wastes resources, since previously provided information must be reprocessed (e.g., by the next

agent). On the other hand, letting chats remain open for too long reduces effective capacity and

increase system-wide delays. Using real conversational data from a food delivery service organiza-

tion, we estimate that approximately 19% of conversations in our dataset were prematurely closed

(see Appendix EC.2).

In this work, we develop methods to predict whether and when a service problem was solved in

real time. Such prediction may enable automatic closure of chats in a safe and efficient manner

(Castellanos et al. 2024). These type of prediction models must operate at scale, be computa-

tionally efficient, and avoid overloading the system with excessive requirements: keeping resource

consumption lean is critically important. To this end, we compare lightweight prediction models

that rely only on metadata capturing conversation dynamics with richer models that leverage on

the full text of the conversation. Specifically, the focus of this paper will be comparing leading

ML/AI models that leverage the conversation’s text (i.e., what you say) in comparison to stochastic

process models that are temporally driven (i.e., when you say it.)

Empirically, prior research has shown that a bivariate marked Hawkes cluster model effectively

captures burstiness, side-to-side reciprocity, and speaker-specific patterns in large-scale chat data

from a human-based contact center, outperforming memoryless baselines and passing both residual

and Monte Carlo goodness-of-fit diagnostics (Daw et al. 2025). Hawkes processes model when the

messages arrive and yield interpretable intensities with minimal dependence on raw text (Hawkes

1971, Laub et al. 2021). This family of models represents the state of each conversation through

a single quantity—the process intensity—and prediction models that rely on this intensity are

therefore lightweight. The Hawkes intensity rate function may depend solely on simple metadata
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or incorporate more elaborate message-level and/or system-level statistics, such as message word

count, sentiment score, or concurrent agent load.

On the other end of spectrum are full-text models. Conversation text encodes intent, sentiment,

and resolution cues, and large language models (LLMs) can leverage this information to achieve

high predictive power. Recent practitioner-facing studies document the rapid adoption of LLM-

based tools in the customer service industry, where LLMs can be integrated into the service itself,

either by helping agents to provide faster solutions or by replacing human agents in more and

more complex tasks (Buesing et al. 2024, Ferraro et al. 2024). Yet, this does not comes freely.

There are operational and governance costs: LLM inference is compute- and memory-intensive,

and serving many concurrent conversations requires careful throughput/latency engineering and

scheduling (Kwon et al. 2023, Mitzenmacher and Shahout 2025). Moreover, using full conversation

text raises additional privacy and compliance risks, including potential memorization and disclosure

of sensitive information, which has motivated both technical safeguards and regulatory guidance

(Carlini et al. 2021, (EDPB) 2025).

In this work, we contrast three modeling paradigms — full-text LLMs, metadata-based neu-

ral networks, and stochastic self-exciting models — across two prediction tasks within customer-

agent service interactions. The first task concerns short-term conversation surveillance: predicting

whether a conversation will be active within the next ∆ units of time. The second task targets

closure decisions by predicting whether service has been completed. The context for the real-world

data we use in this study is given in Section 3. Section 4 describes in detail the specific model

families and variants considered. To ensure a fair comparison, we evaluate all methods using a com-

mon experimental scaffold, including identical checkpoint definitions, labels, and computational

constraints, allowing us to isolate where each approach excels.

Contrasting the three prediction approaches, our results in Section 5 highlight clear complemen-

tarities across the three model types. LLMs, which leverage the full conversation text, excel at

content understanding and therefore perform best on the end-of-service prediction task. In contrast,

lightweight Hawkes-based models capture short-term temporal dynamics well and are better suited

for real-time monitoring and control. Section 5.3 quantifies the resulting cost–accuracy tradeoffs

for both tasks.

Motivated by these empirical findings, in Section 6 we propose a stylized hybrid approach that

combines the strengths of both paradigms in optimal manner. The proposed model tracks Hawkes

intensities in real time and selectively queries an LLM only in situations where semantic information

is most valuable. We show that this hybrid strategy achieves a superior cost–accuracy tradeoff

when deciding whether and when to close service conversations.
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2. Literature Review

Our work connects several streams of literature: (i) modeling customer-agent interactions in service

systems, (ii) temporal point process and intensity-based models for short-term activity prediction,

and (iii) the use of machine learning and LLMs in conversation analysis and operational decision-

making. We review each stream in turn and clarify our contribution relative to existing work.

2.1. Customer-Agent Interactions in Service Systems

A substantial literature studies the dynamics of customer-agent interactions in service systems,

with particular emphasis on workload and performance outcomes (see surveys Gans et al. 2003,

Aksin et al. 2007, and references therein). A growing body of work further demonstrates the

operational value of incorporating predictive information into service-system decision making. Even

imperfect foresight can meaningfully improve admission, routing, and completion policies when

mapped to simple thresholds (Spencer et al. 2014, Bertsimas and Kallus 2020, Castellanos et al.

2024, Daw et al. 2025). The predictive signals considered in this literature span a wide range of

information sources. These include metadata related to arrival processes and system state (Xu

and Chan 2016), customer characteristics such as expected value (Yom-Tov et al. 2020), and

semantic information extracted from interactions, such as customer sentiment (Altman et al. 2021).

Collectively, these studies highlight how diverse forms of information can be operationalized to

improve system performance.

In this context, determining when a service interaction has effectively ended is a particularly

important operational challenge. Closure decisions directly affect routing, workload management,

and agent utilization. Recent work suggests that real-time information about service termination

can be leveraged to enhance system performance and reduce inefficiencies (Daw and Yom-Tov

2024). Premature closures of service interaction may trigger customer recontacts and additional

workload (Armony and Maglaras 2004, Goes et al. 2018), while delayed closures waste scarce agent

capacity (Castellanos et al. 2024).

Our paper contributes to this line of work by studying real-time prediction of both short-term

conversation continuation and service completion at the conversation level, using detailed interac-

tion data from a large-scale service system.

2.2. Temporal Point Processes and Conversation Dynamic Modeling

Recent work has increasingly emphasized the behavioral nature of service interactions, in which

customer behavior and agent actions mutually influence one another and jointly determine out-

comes such as service duration, quality, and satisfaction (Ilk and Shang 2022, Ashtar et al. 2021). In

this context, Daw et al. (2025) demonstrate the effectiveness of marked and bivariate Hawkes mod-

els for capturing such behavioral dynamics when modeling conversations on chat and messaging

platforms.
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More broadly, temporal point process models, and Hawkes processes (Hawkes 1971) in particular,

have been widely used to model bursty and self-exciting event sequences across a range of domains,

including financial markets (Embrechts et al. 2011), social media and information diffusion (Rizoiu

et al. 2017), epidemiology (Rizoiu et al. 2018, Chiang et al. 2022), and queueing systems (Daw

and Pender 2018, Koops et al. 2018). In human communication settings, Hawkes-type models nat-

urally capture event clustering, mutual excitation between participants, and time-varying activity

intensity (Blundell et al. 2012, Halpin and De Boeck 2013, Daw and Pender 2022).

These properties make Hawkes models particularly well suited for activity prediction tasks, as

they explicitly encode temporal dependence and excitation effects. Building on this literature, our

work evaluates several Hawkes-based specifications and benchmarks their performance against neu-

ral and text-based models, highlighting their strong cost-effectiveness for short-term conversation

continuation prediction. We also offer a new way to use Hawkes models — to control the use of

LLMs in operations. To the best of our knowledge, we are the first to offer such use.

2.3. Machine Learning Models and LLMs for Conversation Dynamic Analysis

Neural architectures such as multilayer perceptrons (MLPs) and long short-term memory (LSTM)

networks have been widely used to model sequential conversational data, including applications

such as next-sentence prediction (Chandwani et al. 2020), response-time estimation (Roddy and

Harte 2020), and time-to-derailment prediction (Janiszewski et al. 2021). These models offer sub-

stantial flexibility in capturing nonlinear relationships and temporal dependencies. However, they

typically rely on handcrafted features, and their operational effectiveness depends critically on the

availability, stability, and real-time reliability of such features.

LLMs represent the most recent advances in machine learning for text analysis. Transformer-

based models such as BERT and its variants (Devlin et al. 2019, Sanh et al. 2019), as well as causal

LLMs including Llama (Grattafiori et al. 2024) and Phi (Abdin et al. 2024), have shown strong

performance across a broad range of NLP tasks by capturing rich semantic and contextual structure.

In the context of conversational dynamics, Pinto and Belpaeme (2024) study LLMs’ ability to

predict turn-switching in human-bot interactions, while Jiang et al. (2023) extend TurnGPT to

condition end-of-turn prediction on both conversation history and anticipated responses.

Recent work further explores the potential of LLMs for time-series and sequential prediction tasks

(Jin et al. 2024b), often requiring architectural adaptations or fine-tuning (Jin et al. 2024a, Gruver

et al. 2023). Consistent with this emerging evidence, we find that fine-tuned LLMs substantially

outperform zero-shot and few-shot prompt-based LLMs for operational service prediction tasks.

Our work also connects to a growing literature emphasizing the importance of cost-accuracy

tradeoffs in deploying predictive models. Despite their impressive representational power, the suit-

ability of LLMs for real-time operational control remains unclear due to latency, privacy, and cost
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considerations. While large models often deliver significant accuracy gains, they incur substantial

computational and energy costs (Strubell et al. 2019). From an operations perspective, models

must be evaluated not only by predictive power but also by feasibility under real-time constraints

(Mahadevan and Mathioudakis 2024). Our paper contributes to this emerging literature by pro-

viding one of the first systematic, end-to-end evaluations of learning models for real-time service

prediction, explicitly quantifying the cost–accuracy tradeoff across a wide spectrum of models,

from lightweight Hawkes processes to heavyweight LLMs.

Finally, our work relates to recent efforts on hybrid approaches that combine multiple model-

ing paradigms. For example, Lee and Deng (2024) integrate DistilBERT with GRU networks for

real-time end-of-turn prediction, while Shahout et al. (2025) reuse LLM embeddings as inputs to

lightweight classifiers. We propose a different hybrid strategy: dynamically scheduling queries to a

fine-tuned DistilBERT model using real-time signals from a lightweight Hawkes process, thereby

exploiting the complementary strengths of temporal intensity modeling and semantic understand-

ing.

3. Data and Context

We analyze 78,386 human-agent chat conversations from a U.S.-based company in the food delivery

industry. The chats were handled by the company’s service center, where customers seek assistance

with issues such as late deliveries and billing problems.1 The service platform is AI-augmented:

agents receive automatically generated response suggestions from an AI system, which they may

use when replying to customers. The conversations were conducted between October and December

2021.

We exclude approximately 8,000 chats in which customers abandoned the queue before being

assigned to an agents. These conversations contain only customer messages and were closed by the

customer. This final dataset therefore consists of 70,662 chats that include messages from both

customers and agents. Of these chats, 27.3% were closed by the system, a phenomenon we refer to

as automatic closure, which we identify by the presence of a canned (i.e., pre-populated) closing

message at the end of the conversation. The median number of messages in a chat is 8, and the

median chat duration is 5 minutes. Additional summary statistics are reported the Appendix in

Table EC.1.

For each chat, the data include the text of each message, an indicator of the message sender, and

the timestamp the message. Figure 1 presents a schematic timeline of events within a conversation.

We define the following notations for conversation i ∈ {1, . . . ,M}. Let Ti,k denote the timestamps

of the k-th messages in conversation i; the timestamps are ordered so that Ti,1 <Ti,2 < · · ·<Ti,ni
,

where ni is the total number of messages in conversation i and Ti,1 = 0. Let Ri,k ∈ {Ag,Cu} indicate
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time

Agent msg (R=Ag)

Customer msg (R=Cu)

Customer
arrives

Assigned
to agent

Ti,1 Ti,2

· · ·

checkpoint t

∆

τapp
i = Ti,ni

last observed msg

post-end window (60 min)

complaint-coded
return (if any)

Figure 1 Timeline of conversation i: message times Ti,k (agent/customer). τapp
i is the apparent end (last

observed message).

the sender of message k, where ‘Ag’ indicates an agent and ‘Cu’ indicates a customer, and let

Wi,k ∈N denote the number of words in message k within conversation i. Finally, define τ app
i := Ti,ni

as the apparent end of conversation i, corresponding to the time of its last observed message or an

explicit closure message.

Define, Ni(t) :=
∑ni

k=1 1{Ti,k ≤ t} as the counting process of messages up to time t, and Hi,t :=

{(Ti,k,Ri,k,Wi,k) : Ti,k ≤ t} as the observed history of conversation i up to time t. For brevity, when

the conversation index is clear from the context, we omit it and write N(t) and Ht.

3.1. Context and Cohort Labeling

A natural quality indicator in a service system is the proportion of conversations that are success-

fully closed (i.e., where the customer’s issue is resolved). However, the system’s automatic-closure

policy can interfere with successful resolution, as the system may time out a customer before the

service is completed, simply because they respond slowly. In a retrospective study, we use positive-

unlabeled (PU) learning (Elkan and Noto 2008, Bekker and Davis 2020) to estimate the proportion

of chats that were prematurely closed due to these system policies in our data (see Appendix EC.2).

The finding suggests that 19% of the chats where prematurely closed by the system. Operationally,

however, what interests organizations is to be able to verify if a specific chat can be safely closed

in real time. To support such decisions, we build models that classify chats into those that were

successful closed versus those that were prematurely closed.

A natural indicator of premature closure is customer return. However, our data do not contain

unique customer identifiers, so conversations cannot be directly linked to returning customers.

Instead, we use text analysis to classify conversations to three groups: class N for successful closures,

class P for premature closures with verified returns, and class U for uncertain closures.

A chat is labeled as a successful closure if the conversation ends with explicit resolution signals

from the customer, such as expressions of gratitude (e.g., “thank you”) or a negative response to

a follow-up question such as “Do you need any further help today?”. By contrast, a conversation
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is a premature closure if the customer returns with a new chat for the same issue soon after the

first was closed. Conversations that do not fall into either of these two categories are labeled as

uncertain closures.

To identify premature closures with verified returns, we used the following procedure to overcome

the fact that our data does not contain customer ID’s. First, we identify conversations that begin

with customer messages referring to a prior premature termination of service by the service platform,

for example by stating that the chat was “cut off” or “timed out.” Conversations in which the

customer explicitly attributes the return to their own action (e.g., “I closed the conversation by

mistake”) are excluded from this set. We denote by Ci ∈ {0,1} an indicator equal to one if chat

i is identified as a system-blamed returning chat; we refer to such chats as having a complaint-

coded return indicator. Next, for each conversation with Ci = 1, we examine all chats that occurred

within the preceding 60-minute interval. We manually match the current conversation to a prior

one if both refer to the same customer issue (e.g., topic or location), correspond to the same stage

of the service process (e.g., the payment stage), and the earlier conversation does not carry a

successful closure label. (See Fig. 1 for the post-end window and indicator.) The manual matching

step ensures that the identified returns correspond to conversations that were prematurely closed.

To summarize, the three classes are:

• P (premature closures with verified returns): conversations with a verified complaint-coded

return within 60 minutes.

• N (successful closures): conversations where the conversation ends with explicit resolution

signals from the customer and no complaint-coded return within 60 minutes.

• U (uncertain closure): Conversations that do not fall into either class P nor N .

We identified 96 conversations in class P (due to human constraints of the significant effort

required to identify these idiosyncratic cases, not for lack of their existence) and 5,145 conversations

in class N . Note that the majority of conversations could not be classified into either of these

categories. This results in 65,421 conversations in class U , representing 86% of our sample. Hence,

we have used PU learning was needed to estimate the proportion of premature closures in our data.

4. Methods

Next, we develop and evaluate methods for predicting, in real time, whether a conversation has

ended and can safely be closed. Specifically, we aim to predict the probability that a conversation

will remain active over a predefined future interval.

Let ∆> 0 denote a short prediction horizon (e.g., 30 seconds). We define Chat Continuation as

the probability that at least one message will be sent in the next ∆ units of time. Formally, we

predict

pi(t; ∆) := Pr (Ni(t+ ∆)−Ni(t) ≥ 1 | Hi,t) . (1)
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Note that ∆ may also be infinite. In this case, pi(t;∞) denotes the probability that the conversation

has not ended (regardless of when the next message will occur), and 1− pi(t;∞) is the probability

that the conversation ended before time t.

This prediction problem is evaluated both at discrete checkpoints t∈ Ti during the conversation

and after an apparent end, which we denote by t = τ app
i .

4.1. Model Families

We consider three model families, which differ in the type of information they exploit. The most

parsimonious family consists of Hawkes models that rely solely on metadata, specifically timestamp

information. The second family comprises neural network models that additionally incorporate

textual and system features. The final family consists of large language models (LLMs), which

operate on the full conversation text. All these models are used to estimate the continuation

probability defined in Eq. (1) at a given checkpoint time t for two values of ∆.

4.1.1. Self-Exciting Stochastic Models. Following the modeling approach and empirical

application in Daw et al. (2025), the first family of models we test is based on an endogenously

driven cluster process, derived from the original self-exciting point process introduced by Hawkes

(1971). A Hawkes process is a stochastically time-varying point process whose intensity is defined

as an integral over the past history of the process. In general, a Hawkes process may include both an

exogenous baseline component (equivalent to a homogeneous Poisson process) and an endogenous

self-exciting component. In our setting, as in Daw et al. (2025), we view each conversation as a

single cluster with only a self-exciting component. Each process cluster starts when a customer

opens a service request.

Let λi(t | Hi,t) denote the intensity of messages in conversation i at time t, given its history up

to time t, Hi,t. The Hawkes process intensity is governed by a kernel function g(·), such that

λi(t | Hi,t) =

∫ t

0

g(t−u)dNi(u).

For a point process with conditional intensity λi(u | Hi,t) for u > t, the probability of observing

at least one event in the interval (t, t+ ∆] is

p̂i(t; ∆) = 1− exp

(
−
∫ t+∆

t

λi(u | Hi,t)du

)
. (2)

Hence, the prediction relies solely on timestamp information. To fit such a model, one must

specify a kernel function and estimate its parameters via maximum likelihood. Generally, the

quality of the prediction depends on how well the Hawkes model fits the event dynamics in the

data.

We test three variants of Hawkes process models for conversations, which differ in their kernel

structure.2
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• UHP (univariate exponential). The first variant is a standard univariate Hawkes cluster

model with an exponential kernel and independent and identically distributed instantaneous impact

functions on the intensity rate.

Specifically, for t > 0, the intensity rate function is

λi(t | Hi,t) =
∑

k:Ti,k<t

αe−β(t−Ti,k),

where α denotes the jump in intensity induced by each event, and β is the exponential decay rate.

• IUHP-Exp (initialized univariate with exponential kernel). The second variant uses

the same exponential kernel but the conversation-start excitation is scaled separately by a constant

λ0, capturing an initial “kick-off” effect of the first automated agent greeting message:

λi(t | Hi,t) = λ0e
−βt +

∑
k:Ti,k<t

αe−β(t−Ti,k). (3)

• IUHP-Gamma (initialized univariate with Gamma kernel). The third variant is again

an initialized univariate Hawkes model, but with a Gamma kernel rather than an exponential

kernel. A Gamma kernel allows the excitation response to peak after a delay and provides additional

shape flexibility. Accordingly, the exponential term above is replaced by a Gamma probability

intensity function (pdf) kernel, denoted by gρ,θ(·):

λi(t | Hi,t) = λ0 gρ,θ(t) +
∑

k:Ti,k<t

αgρ,θ(t−Ti,k),

where, as before, α denotes the jump in intensity induced by a single event and λ0 is the scale

parameter differentiating the start-event excitation from a regular excitation (modeling the kick-off

effect), and gρ,θ(u) = θρ/Γ(ρ)uρ−1e−uθ.

We also estimated and evaluated a Bivariate Hawkes Model (BHP) with exponential kernels

(Appendix EC.3), but its omitted from the main results due to its low performance on this data

set.

For all Hawkes models, parameters are estimated by maximum likelihood by maximizing the

point-process log-likelihood aggregated across conversations. We treat each conversation as an

independent Hawkes cluster, re-center time so the conversation start is at t = 0. We evaluate

the point-process log-likelihood on the observed event times from conversation initiation until

termination, and the overall objective sums these contributions across all conversations. Parameter

estimation is optimized numerically, subject to standard positivity and stability constraints. For

background on maximum-likelihood estimation for Hawkes processes see Laub et al. (2021, Ch. 5).

The estimated parameters for our dataset can be found in Table EC.2 in the Appendix.
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4.1.2. Neural Network Models. The second family of models consists of deep neural net-

works that learn a nonlinear mapping (Goodfellow et al. 2016) from structured conversation features

to the chat-continuation probability in (1).

At each checkpoint time t, we define the supervised continuation label

Yi(t; ∆) := 1{Ni(t+ ∆)−Ni(t) ≥ 1}, (4)

and train neural models to approximate pi(t; ∆) = Pr(Yi(t; ∆) = 1 | Hi,t). These models incorpo-

rate (i) message-level features, such as message timestamps, message order, word counts, and the

corespondent’s role (agent or customer), (ii) chat-level features, such as the Hawkes intensity level

(see Section 4.1.1); and (iii) system-level features, such as the agent’s concurrency level.

We examine two variants that differ in the depth of history they utilize.

• Multilayer Perceptron (MLP) model with current-event features. The first neural

model is an MLP model, a feed-forward neural network composed of multiple layers of intercon-

nected processing units (neurons). MLPs are among the most common learning architectures and

are widely used to approximate complex, nonlinear functions (Goodfellow et al. 2016).

At checkpoint time t, the MLP input is a feature vector Zi(t) ∈Rp summarizing the current state

of conversation i. The vector Zi(t) comprises p features, including message-level features of the

most recent message (e.g., last-message word count, and corespondent role), as well as chat-level

and system-level features at time t, such as the Hawkes intensity estimate and agent’s concurrency

level. In our implementation, we train several MLP variants that differ in the subset of features

included in Zi(t).

Let fγ : Rp →R denote the MLP logit function parameterized by γ. For an input vector z ∈Rp

(in our application, z = Zi(t)), an MLP with L affine layers can be written as a composition of

affine maps and pointwise nonlinearities:

fγ(z) = AL hL−1 + aL, hℓ = ϕ(Aℓ hℓ−1 + aℓ) , ℓ= 1, . . . ,L− 1, h0 = z.

Here, hℓ denotes the hidden-layer representation ℓ (ℓ = 0, . . . ,L− 1), Aℓ and aℓ are the weight

matrix and bias vector of layer ℓ, respectively, ϕ(·) is the hidden-layer activation (ReLU (Nair and

Hinton 2010) in our implementation), and L is the total number of affine layers (hidden layers plus

the output layer). The output layer applies a logistic sigmoid to map the logit to a probability:

p̂i(t; ∆) = σ(fγ(Zi(t))) , σ(x) = (1 + e−x)−1.

Before fitting, we standardize the input features using training-set statistics (z-scoring). We

estimate γ by minimizing the binary cross-entropy loss on the continuation labels, using class

weights to mitigate class imbalance. Optimization is performed using Adam (Kingma and Ba 2014),

and dropout regularization is applied during training (Srivastava et al. 2014).
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• Long short-term memory (LSTM) model with full-history features. The second

neural model is an LSTM network, a recurrent architecture designed to learn patterns in sequential

data while capturing long-range dependencies (Hochreiter and Schmidhuber 1997). LSTMs are

especially designed to handle vanishing and exploding gradients when sequences are long. They

maintain and update an internal memory state, allowing the network to selectively store, retrieve,

or discard information over time. This makes them particularly effective for tasks where the order

and context of past events influence future predictions. Therefore, they are well suited to our

setting, where response times may include long silent intervals and messages impact subsequent

ones (Daw et al. 2025).

Let Ki(t) denote the index of the most recent message observed by checkpoint time t, i.e.,

Ki(t) := max{k : Ti,k ≤ t}. For each message k ≤Ki(t), we build a per-message feature vector ψi,k

and form the sequence

Ψi(t) =
(
ψi,1, . . . ,ψi,Ki(t)

)
.

Each feature vector ψi,k is measured at the time of message k and includes message index, elapsed

time since conversation start, word count, corespondent role, agent concurrency, and Hawkes inten-

sity. As with the MLP, we train several LSTM variants that differ in the subset of features included

in ψi,k.

Sequences are right-padded to a fixed maximum length and masked. After processing Ψi(t), the

LSTM outputs a hidden state hi(t), which is mapped to continuation probability via

p̂i(t; ∆) = σ
(
uThi(t) + b

)
,

where u and b are output-layer parameters and σ(·) denotes the logistic sigmoid.

Model parameters are estimated by minimizing binary cross entropy loss on the continuation

labels, using the Adam optimizer (Kingma and Ba 2014) with dropout regularization (Srivastava

et al. 2014). Early stopping based on validation loss is employed during training.

4.1.3. Large Language Models (LLMs). The final family of models we consider consists

of LLMs that operate directly on the raw conversation text, rather than structured features. These

models are based on the Transformer architecture (Vaswani et al. 2017) and can exploit semantic

cues related to intent, sentiment, and service resolution that are unavailable to timing- or metadata-

based models. Because service transcripts may contain sensitive information, and due to our privacy

agreement with the company, we evaluate open-weight models locally (offline) and do not transmit

text to external services.

Let xi,k denote the text of message k in conversation i, and let Xi(t) denote the concatenated

message text observed by checkpoint time t, ordered chronologically. Formally,

Xi(t) := xi,1 ∥ xi,2 ∥ · · · ∥ xi,Ki(t),



13

where ∥ denotes text concatenation with whitespace separators. Each LLM model maps Xi(t) to

a continuation probability p̂i(t; ∆) using softmax probability.

We examine the following two paradigms:

• Fine-Tuned Transformer Encoder (DistilBERT). DistilBERT is a compact Trans-

former encoder distilled from BERT (Devlin et al. 2019, Sanh et al. 2019). Unlike prompted

LLMs, DistilBERT is trained specifically for the continuation prediction task. We fine-tune

distilbert-base-uncased for binary classification using checkpoint-level examples. Given the

tokenized transcript prefix Xi(t), the model outputs two logits (ℓi,0(t), ℓi,1(t)) corresponding to the

classes {no continuation, continuation}. We define the continuation probability as the softmax

probability of the continuation class:

p̂i(t; ∆) =
exp(ℓi,1(t))

exp(ℓi,0(t)) + exp(ℓi,1(t))
.

Model parameters are estimated by minimizing cross-entropy loss on the continuation labels using

AdamW optimizer (an Adam variant that applies weight decay regularization) (Loshchilov and

Hutter 2019). We employ a linear learning-rate schedule with warmup (controls the step size in

gradient updates) and train for a fixed number of epochs.

• Prompted-Based LLMs (Phi-3, and Llama-3). We also evaluate instruction-tuned causal

LLMs in a zero-shot or few-shot settings, using open-weight models from the Phi-3 and Llama-3

families (Abdin et al. 2024, Grattafiori et al. 2024). In contrast to DistilBERT, these models are

not fine-tuned for our task and are instead queried via natural-language prompts.

Given the transcript prefix Xi(t), we append a fixed yes/no question aligned with the continua-

tion target (e.g., “Will there be another message within the next ∆ minutes? Answer strictly with

‘yes’ or ‘no’.”). The model is then asked to generate the next token following the prompt, and we

record each token’s logit score.

Specifically, using the model tokenizer, which maps text strings to sequences of token IDs from

a fixed vocabulary V, we identify token IDs vyes and vno corresponding to a single-token realization

of the answers yes and no, respectively. We search over common whitespace variants (e.g., " yes"

and " yes").

Let si,v(t) denote the logit assigned by the LLM to some token v as the next token following the

prompt. The next-token probabilities for yes and no are computed by softmax:

pi,yes(t) =
exp

(
si,vyes(t)

)∑
v∈V exp

(
si,v(t)

) , pi,no(t) =
exp

(
si,vno(t)

)∑
v∈V exp

(
si,v(t)

) .
If no single-token realization is found for either answer (yes and no), we assign both answers

next-token probability 0.5.
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We map these quantities to a scalar continuation probability by renormalizing over the two

candidate answers:

p̂i(t; ∆) =
pi,yes(t)

pi,yes(t) + pi,no(t)
.

Overall, the three model families we consider span a spectrum of information usage and modeling

complexity. Structured-feature models (Hawkes-based and neural models) rely on timing, count,

and system-level signals that are available in real time and are straightforward to deploy, but

they abstract away the semantic content of messages. In contrast, text-based Transformer models

operate directly on raw conversation transcripts and can exploit rich linguistic cues related to

intent, sentiment, and resolution, at the cost of substantially higher computational requirements

and stricter privacy constraints. By evaluating these approaches side by side under a common

prediction task and checkpointing framework, we can quantify, in the next section, the incremental

predictive value of semantic information beyond event timing and operational features.

4.2. Evaluation Design and Performance Measures

We evaluate the models described in Section 4.1 at predefined checkpoint times and under two pre-

diction horizons, yielding two complementary test cases. The short-term continuation test assesses

each model’s ability to predict whether a conversation will remain active over the next ∆ = 60 sec-

onds, that is, to estimate pi(t; 60). The end-of-service test evaluates the ability to predict whether

a conversation has not yet ended, corresponding to pi(t;∞).

We report performance as a function of time relative to the conversation’s apparent end time

τ app
i . Specifically, we stratify checkpoints by their offset from the apparent end,

offseti(t) := t− τ app
i ,

measured in minutes, and compute evaluation metrics within offset bins. Offsets may be negative

(during active service) or positive (after the apparent end of service). The offset variable is used

solely for evaluation and reporting. Because it depends on τ app
i , it is not available to the models at

inference time. Bins with fewer than 5 positive or negative examples are omitted when reporting

accuracy measures for stability.

4.2.1. Short-Term Conversation Continuation. For the short-term continuation test

(∆ = 60 seconds), we train all models using unclassified conversations from the U cohort (see Sec-

tion 4.3). At each checkpoint time t, we use the trained models to estimate pi(t; 60). Predictions

are evaluated every 30 seconds up to the apparent end time τ app
i ; that is, only at negative offset

times.
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The short-term continuation task can be viewed as a dynamic binary classification problem,

in which a conversation is classified as either continuing or not continuing over a forward-

looking window of length ∆ = 60 seconds. Accordingly, model performance at each checkpoint

time t is assessed using the area under the receiver operating characteristic curve (ROC-AUC)

and the average precision (AP) derived from the precision-recall curve. We report both metrics.

For completeness, we also report pooled ROC-AUC and pooled AP scores aggregated across all

checkpoints.

4.2.2. End-of-Service Evaluation. For the end-of-service test (∆ =∞), we retrain the mod-

els to predict the probability that a conversation has not yet ended at checkpoint time t, which is

equivalent to estimating pi(t;∞). A high value of pi(t;∞) indicates that additional messages are

likely to occur and that closing the conversation at time t would be premature.

Model training for this task uses labeled data from the P and N cohorts (see Section 4.3). The P

cohort consists of conversations that were verified to have ended prematurely, while the N cohort

contains conversations that were verified to have successfully ended at their apparent end time

τ app
i .

We evaluate end-of-service predictions at both negative and positive offset times relative to τ app
i .

Because model behavior may change sharply around the apparent end time, we distinguish between

two checkpoints in its immediate neighborhood. Specifically, we consider a checkpoint just before

the apparent end, at t = τ app
i − ε, where the available history is

Hi,t
0−

= {(Ti,k,Ri,k,Wi,k) : k≤ ni − 1},

and a checkpoint just after the apparent end, at t = τ app
i + ε, where the available history is

Hi,t
0+

= {(Ti,k,Ri,k,Wi,k) : k≤ ni}.

Here, ε > 0 denotes a vanishingly small numerical offset that separates the regimes immediately

before and after the final message.

In the results presented in Section 5, we report these two checkpoints separately as 0− and 0+

to highlight the model’s behavior around the apparent end of service.

Because the labels of all conversations at negative offset times are deterministically equal to

one (there is at least one additional message observed in the transcript), ranking-based metrics

using ROC-AUC and AP measurements are not informative in this regime. Instead, we summarize

time-varying performance at each offset using (i) mean predicted probability and (ii) the Brier

score. Both qualities are reported separately for the P and N cohorts, reflecting the probability of

correctly classifying conversations in each group.
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4.3. Train and Test Cohorts

Cohorts are constructed based on the labeling procedure described in Section 3.1. As noted there, we

identified 96 conversations in cohort P, corresponding to premature closures with verified returns;

5,145 conversations in cohort N , corresponding to successful closures; and 65,421 conversations

in cohort U , for which closure status is uncertain. From the unlabeled cohort U , we construct

disjoint training and test samples. Specifically, Utrain consists of a random subsample of 16,000

conversations, and Utest consists of a random subsample of 5,000 conversations. Because cohorts P

and N are substantially smaller, we employ resampling strategies when these cohorts are used for

model training.

For the short-term continuation task, all models are trained on Utrain, and performance is reported

separately on the P, N , and Utest cohorts. Because each conversation contributes multiple check-

points, we quantify statistical uncertainty using a conversation-level bootstrap. Specifically, we

resample test conversations with replacement, recompute the metric of interest on each resam-

pled dataset, and report pointwise 2.5%–97.5% percentile intervals). For time-varying performance

curves presented in Section 5, these intervals are shown as shaded confidence bands.

For the end-of-service prediction task, training requires labeled data from the much smaller P

and N cohorts. Accordingly, Hawkes models are trained on Utrain, while neural network models

and LLM-based models are trained using a five-fold cross validation procedure. We first matched

the sample size between the cohorts, taking only 96 random conversations from the N cohort.

Then, in each fold repetition, the training sets Ptrain and Ntrain each consist of 77 conversations,

respectively. Performance is evaluated on the hold-out fold test sets, Ptest and Ntest, each containing

19 conversations in each iteration. Again, we perform the cross-validation on conversation-level

data, ensuring that all checkpoints from a given conversation appear exclusively in either the

training or the test set within a fold, but never in both. Once again bootstrap is used within each

test fold and averaged to gain confidence intervals.

5. Empirical Results

We now present empirical results for the two prediction tasks described in Section 4.2.

5.1. Short-Term Conversation Continuation Prediction

Figures 2, 3, and 4 report time-varying performance for the short-term continuation prediction task

(∆ = 60 seconds) for the P, N , and Utest cohorts, respectively. Evaluation is conducted at 30-second

checkpoints, spanning offsets from −7 minutes to −1.5 minutes relative to the apparent end time.

In each figure, the left panel displays ROC-AUC scores, while the right panel displays AP scores.

Each figure includes results for the best-performing Hawkes model variant, which is the IUHP–

Exp model; the best-performing neural network model of each type (MLP and LSTM); and the
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three LLM-based models. For the MLP, the best-performing feature set includes (i) message-level

features—elapsed time since conversation start, word count, and correspondent role—and (ii) a

chat-level feature, namely the UHP intensity evaluated at the checkpoint. For the LSTM, the best-

performing feature set includes (i) a message-level feature, elapsed time, and (ii) a conversation-level

feature, the UHP intensity evaluated at the checkpoint.

(a) ROC-AUC

(b) AP

Figure 2 Short-Term Continuation Test (∆=60s): Prediction Accuracy by Offset Time, Cohort P (Premature

Closures with Verified Returns), 96 Conversations.

We make the following observations. Across all cohorts, models based on conversational

metadata—namely the Hawkes processes and the neural networks—exhibit the strongest and most

stable performance, reliably identifying whether a conversation will continue in the near term. In

particular, the IUHP variants and the MLP typically achieve ROC-AUC values in the range of
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(a) ROC-AUC

(b) AP

Figure 3 Short-Term Continuation Test (∆=60s): Prediction Accuracy by Offset Time, Cohort N (Successful

Closures), 5,145 Conversations.

approximately 0.60–0.75 and AP values in the range of approximately 0.65–0.80, with performance

varying by cohort and offset bin.

In contrast, zero-shot prompted LLMs (Phi-3 and Llama 3) perform substantially worse in this

task. Although Llama 3 shows some improvement as the conversation approaches its apparent end,

both zero-shot models remain inferior to the Hawkes and neural network models across most offsets.

However, when trained explicitly for the task, text-based models improve markedly. The fine-tuned

DistilBERT model performs competitively across cohorts, though its performance degrades near

the apparent end of the conversation (offsets between −2.5 and −1 minutes), where the Hawkes

and MLP models retain an advantage.

Overall, these results suggest that short-term continuation prediction within an ongoing chat can

be accurately identified by temporal dynamics and operational state. Such signals are well captured
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(a) ROC-AUC

(b) AP

Figure 4 Short-Term Continuation Test (∆=60s): Prediction Accuracy by Offset Time, Cohort Utest (Uncertain

Closure), 5,000 Conversations.

by the Hawkes intensities and lightweight structured features. Textual content provides only limited

incremental predictive value for this task, and mainly at earlier stages of the conversation.

5.2. End-of-Service Prediction

Figures 5(a) and 5(b) report time-varying performance for the end-of-service prediction task (∆ =

∞) for the N and P cohorts, respectively. Evaluation is conducted at 60-second checkpoints,

spanning offsets from −2 minutes to 5 minutes relative to the apparent end time, and includes the

boundary checkpoints 0− and 0+, corresponding to instants immediately before and after the last

observed message.

In each figure, we plot the average predicted probability assigned to the correct label, which we

refer to as the probability of correctness. For checkpoints with ground-truth label 1 (the conversation
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(a) 5-fold Ntest cohorts (Successful Clo-

sures)

(b) 5-fold Ptest cohorts (Premature Closures)

Figure 5 End-of-service Test (∆=∞): Average Probability of Correctness as a Function of Offset Time.

has not yet ended), this quantity equals the model prediction p̂i(t;∞). For checkpoints with ground-

truth label 0 (the conversation has ended), it equals 1− p̂i(t;∞). At negative offsets (corresponding

to checkpoints before the last message) the ground-truth label is always 1, since at least one

additional message is observed in the transcript. At positive offsets (corresponding to checkpoints

after the last message) the ground-truth label depends on the cohort: conversations in cohort N

have ended, whereas conversations in cohort P eventually resume. Accordingly, we report separate

curves for cohorts N and P. In both cases, higher values indicate better performance.

Figure 5 shows that, for this task, the DistilBERT model achieves the strongest overall per-

formance across most timestamps. This advantage is particularly pronounced for the P cohort,

where its probability of correctness is close to 90% over a wide range of offsets, making it the
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best-performing model for end-of-service prediction. In contrast, the Hawkes-based models exhibit

substantially more volatile behavior and comparatively weaker performance for this task.

Delving deeper, we observe that the LLM-based models exhibit constant performance levels at

positive offsets. This behavior is expected: because predictions at each checkpoint may only use

information available up to that time, once the conversation reaches τ app
i the observed message

history becomes fixed. Consequently, the textual input to the LLMs does not change for offsets

t > τ app
i , and their predictions remain constant over time. In contrast, models that incorporate time-

dependent covariates, most notably Hawkes-based intensities, continue to update their predictions

as the elapsed time since the last message increases, resulting in time-varying behavior at both

negative and positive offsets. However, time adaptivity does not necessarily translate into better

performance. The key challenge in this task is the ability to distinguish between the post-end

dynamics of the N and P cohorts. Here, we identify a fundamental limitation of the Hawkes models,

which is most clearly illustrated by examining their behavior around offset time 0.

Naturally, we observe a discontinuity at the boundary between 0− and 0+ for most models,

reflecting the arrival of highly informative new data at time 0, namely the last observed message

of the conversation. This discontinuity is particularly pronounced for the Hawkes models. By con-

struction, the occurrence of a new event immediately increases the predicted probability of future

events in the Hawkes model, regardless of the underlying cohort (see Equation 3). As a result,

Hawkes models experience an immediate drop in correctness for the N cohort—where no further

messages will arrive—and a corresponding increase for the P cohort—where the conversation will

eventually resume. Over time, however, as no additional messages are observed, the Hawkes inten-

sity decays. This leads the model to become increasingly pessimistic about continuation, which

is appropriate for the N cohort but incorrect for the P cohort, ultimately reversing the initial

correctness evaluation.

In contrast, text-based models, including DistilBERT and the prompt-based LLMs, while flat

across positive offsets for the reasons discussed above, nevertheless exhibit distinct post-end pre-

diction levels for the N and P cohorts. These differences are driven solely by the content of the

observed transcript—most notably the final message—indicating that semantic cues can provide

meaningful information about restart risk at τ app
i .

We also report in Figure 6(a) ROC-AUC performance evaluated at sequential message times-

tamps, where each model is applied after each message to predict whether the conversation has

reached end-of-service. This evaluation can only be conducted on the N cohort, for which we

verified the successful closure message of each conversation.

We observe that, here as well, the fine-tuned DistilBERT model achieves consistently high classifi-

cation performance, with ROC-AUC values in the range of approximately 0.82–0.90. This indicates
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(a) ROC-AUC (b) AP

Figure 6 End-of-Service Test (∆=∞): Prediction Accuracy by Message Index, Cohort N (Successful

Closures), 5,145 Conversations.

strong reliability in distinguishing between conversations that are still ongoing and those that have

already completed. Notably, DistilBERT substantially outperforms both few-shot prompt-based

LLMs and the non-text-based models in this message-wise evaluation.

In contrast, the few-shot prompted LLMs perform well only at early stages of the conversation,

but their accuracy degrades markedly as the number of messages increases. Specifically, both Llama

and Phi exhibit a decline in ROC-AUC from roughly 0.85–0.90 at the beginning of the conversation

to approximately 0.40–0.55 at later stages. The widening confidence intervals at higher message

indices (toward the right side of the figure) are expected, as fewer conversations are sufficiently

long to contribute observations at those indices, resulting in increased statistical uncertainty.

Taken together, Figures 5 and 6(a) highlight that end-of-service prediction hinges more on seman-

tic cues in the final message than on temporal dynamics, making fine-tuned text-based models such

as DistilBERT substantially more effective than intensity-based approaches once the conversation

reaches its apparent end.

The analysis also reveal a potential collaboration between the models—if no-activity occurs in

a conversation for a long time and the Hawkes give high recommendation to close, the LLM can

verify that decision. Such collaboration is also motivated by the cost-accuracy analysis we perform

in the next section.
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5.3. Cost-Accuracy Tradeoff

Figure 7 summarizes the cost-accuracy landscape across model families for both prediction tasks,

using two complementary notions of computational cost. The horizontal axis reports model cost

measured either by the number of features (left panels) or by query run time (right panels), both

for inference time queries and shown on a logarithmic scale. The vertical axis reports predictive

accuracy, measured by pooled ROC-AUC aggregated across all offset times. Models closer to the

upper-left corner achieve higher accuracy with lower cost and are therefore preferable. The blue

curve depicts the efficiency frontier, consisting of the models that are not dominated in terms of

the cost-accuracy tradeoff.

(a) Short-Term Continuation, Num. of Parameters

(Cohort Utest)

(b) Short-Term Continuation, Run Time (Cohort Utest)

(c) End-of-Service, Number of Parameters (Cohorts P

and N )

(d) End-of-Service, Run Time (Cohorts P and N )

Figure 7 Cost-Accuracy Tradeoff Across Model Families for Different Prediction Tasks.
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In the short-term continuation task (∆ = 60s; upper panels), performance clusters within a

relatively narrow horizontal band, with the best models achieving pooled ROC-AUC approximately

0.65. Extending the comparison in Section 5.1, we report the best three variants within each model

family. A key operational takeaway is that the initialized Hawkes models (IUHP-Gamma and IUHP-

Exp) lie on, or very close to, the efficient frontier: despite having only a handful of fitted parameters,

they achieve pooled ROC-AUC comparable to substantially larger neural architectures. Their run

time is also at least 4 orders of magnitude shorter than the other models. Moving from Hawkes

to learned neural models (MLP and LSTM) yields, at best, modest accuracy improvements, but

at a substantially higher computational cost (more parameters and much longer run time). These

accuracy gains are also sensitive to feature design: the strongest neural variants combine message-

level structure (e.g., word count and corespondent role) with chat-level temporal state (Hawkes

intensity). Among text-based models, as was seen in Section 5.2, the fine-tuned DistilBERT is the

only LLM that reaches the top tier of ROC-AUC in this task, but it does so at several orders-

of-magnitude higher parameter count than Hawkes or neural networks and at several orders-of-

magnitude higher run time than the Hawkes. (The run time of neural networks and LLMs are

approximately of the same magnitude.) In contrast, zero-shot prompted-based causal LLMs (Phi-3

and Llama 3) are clearly dominated in this short-horizon task: they require billions of parameters

yet deliver substantially lower ROC-AUC and the longest run time.

The picture changes sharply for the end-of-service task (∆ = ∞; lower panels), evaluated at the

0+ checkpoint for both P and N cohorts. Again, we compare models by the number of parameters

(left panel) and their inference-time latency per checkpoint (right panel). The efficiency frontier is

formed by some representatives of the three model families: (i) the Hawkes model, which achieves

very low latency, require low complexity, but provide overall low accuracy, (ii) the MLP neural

network with with medium range complexity and run time, and (iii) the fine-tuned DistilBERT

classifier, which delivers excellent accuracy at the cost of substantially higher complexity and

latency. Notably, the fine-tuned LLM is still two orders of magnitude faster than the few-shot

prompt-based LLMs. The prompted Phi-3 and Llama-3 models are not competitive in this setting:

they incur very high inference times (hundreds to thousands of milliseconds per query) while

achieving substantially lower accuracy than fine-tuned DistilBERT. The LSTM models also lie off

the efficiency frontier, as they attain only moderate ROC-AUC while requiring inference times

comparable to that of the DistilBERT classifier. The best MLP offers moderate performance with

mid-range run time, balancing cost and accuracy.

To summarize, the long inference latency of LLMs may render them unsuitable for continuous

end-of-conversation surveillance, as activity prediction must be performed in real time and at

high frequency to support operational concurrency control. In the next section, we propose a new
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approach that addresses this challenge by leveraging the complementary strengths of the lightweight

models and cost–accuracy tradeoffs identified in our analysis.

6. Combining Prediction Methods Optimally: A Stylized Model and a
Data-Driven Experiment of Hybrid Hawkes-LLM Prediction Policies

As the experiments on real-world data shows, both the strength and the weakness of the Hawkes

model lie in the fact that it is inherently cautious. Because each new jump in the intensity increases

the likelihood of future activity, the Hawkes will hedge its bets in predictions. As we have seen in

the data, this is a highlight of the model for short-term predictions within services, but it is also

a drawback for long-term predictions, especially towards the close of service, where the temporal

hesitance of the model limits its ability to make meaningful insights. By contrast, those same

settings are precisely where the ML/AI models shine, with their predictions can leverage the actual

text to make sense of long-term and end-of-service questions. However, the performance of the

ML/AI models suffers on the intra-service settings, where the contexts may not be clear enough

to make reliable predictions.

To illustrate how these different types of predictions can be best combined, let us walk through

a stylized example based around the Hawkes model. First, notice that, in some sense, the Hawkes

is overly cautious even when it is the true data generation model. That is, because the Hawkes

intensity jumps with every message, it will always increase its predicted probability that there are

more messages to be sent, even after the last message itself. So, when possible, we would want to

try to augment the purely temporal predictions from the Hawkes with some additional context.

In this stylized example, let us suppose that the data is being generated according to an initialized

univariate Hawkes process as defined in (3). Then, let us additionally assume that we have access

to another predictor for the (in)existence of future service activity that is highly accurate but

expensive to query (such as the fine-tuned DistilBERT). By comparison to the self-excitation-driven

predictions directly from the Hawkes process, a natural tradeoff arises: if we query the expensive

predictor often, we regularly gain valuable information on whether the service is ongoing, but we

pay a high cost. On the other hand, if we query the expensive predictor infrequently, we save on

costs but don’t have many opportunities to leverage potential improvements in predictions.

Specifically, let us consider policies of the following form: let η ∈ R+ with η ≤ λ0 be some level

such that, whenever the Hawkes intensity λ(t) reaches η, then we query the expensive predictor.

Immediately, we have that the probability of future activity in the Hawkes process at this level will

be e−η/β. Hence, the total number of times that the Hawkes intensity reaches (meaning, decays

down to, not jumps over) the level η is geometrically distributed with probability parameter e−η/β,

meaning that we expect to run the expensive predictor for an eη/β number of queries. On the other
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hand, if η is near 0, there is already a high probability that no messages remain, and thus the

information gain from the expensive predictor is low. By comparison, if η is high (e.g., near the

initial level λ0, which itself can be larger than the jump size α), then the potential information

gain should be nontrivial. Accordingly, we can measure the weighted entropy of the event that no

messages remain, −e−η/β log(e−η/β) = (η/β)e−η/β.

Together, this yields a cost-accuracy tradeoff objective for this prediction combination problem

of

Ce
η
β − η

β
e−

η
β , (5)

where C > 0 reflects the weighting of the expensive query costs relative to the benefits of the

information gain. In Proposition 1, we show that, so long as the cost of queries are not too expen-

sive, this objective has a unique optimal level at which to combine the semantic model with the

temporal.3

Proposition 1. Suppose C < 1. Then, the optimal Hawkes intensity level at which to query the

expensive predictor with minimal expected cost is

η∗ =
β

2

(
2−W0

(
2Ce2

))
> 0, (6)

where W0 is the principal branch of the Lambert-W function. For C ≥ 1, the expensive predictor is

not cost effective.

Notice that, though the Lambert-W may be less familiar than many other named functions,

its basic properties can quickly show that η∗ provides an intuitive policy. First, because W0(·) is

non-decreasing, we have that as the per-query cost increases, then the optimal level decreases,

meaning we call the expensive predictor less often. At the extreme, as C → 1, meaning that the

cost of running the expensive predictor is as large as the value of gaining the information for this

binary event, then η∗ → 0, meaning we will never query the expensive predictor despite its perfect

accuracy. On the other hand, if C decreases, then η∗ increases, and we query the expensive predictor

more often. Interestingly, though, as the predictor becomes effectively cost-free, this stylized model

still suggests to only query it a handful of times: η∗ → β as C → 0, meaning that the expected

number of queries is just eη
∗/β → e.

6.1. Evaluating the Hybrid Hawkes-LLM Prediction Policy on the Service Data

Following the insights of the stylized model in which the conversation is truly driven by a Hawkes

process and the expensive predictor has perfect accuracy, let us now actually evaluate these ideas

on the real service data, where we have already seen that no predictor is perfect and no model
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exactly captures the true dynamics. Specifically, let us now present the accuracy results of a hybrid

model for the end-of-service real-time prediction task.

With the hyperparameter η, the hybrid predictor operates as follows: At every message time-

stamp Ti, the intensity level of the IUHP-Exp model is updated to λ(Ti). Then, we define an LLM

checkpoint between message i and i+ 1 (i.e, during the time interval [Ti,Ti+1)) if the value of the

intensity λ(t) decreases below η from above during that time interval (λ(Ti) exp{−β(Ti+1−Ti)} ≤
η). The prediction at this checkpoint is computed via the best-performing end-of-service LLM,

fine-tuned DistilBERT.

In order to ensure that there are both positive and negative values on every sample path so that

we can compute the ROC-AUC of the experiment, we evaluate this hybrid prediction policy on

the N cohort. To evaluate the nature of the combination, we consider a range of η values. Recall

that, in the theoretical setting of the stylized model, we can let the hyperparameter take values

up to the initial value of the IUHP, η ≤ λ0, to ensure that the threshold is reached at least once.

However, in this data-driven experiment, we allow η to actually exceed λ0 = 112.72 up to a slightly

higher value, η ≤ 148, at which the average number of total LLM queries in the hybrid predictor

in the experiment is the same as the average number of messages per conversation in the data.4

We search over values of η with a unit step size.

Figure 8 Cost-Accuracy Tradeoff of the Hybrid Hawkes-LLM Policy Across η Values: Real-Time End-of-Service

Prediction, Cohort N (Successful Closures), 5,145 Conversations.

Figure 8 illustrates the resulting cost–accuracy tradeoff as a function of η, together with two

benchmarks. The first benchmark corresponds to a Hawkes-only predictor, in which the LLM is
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never queried; is shown by the purple × (with run time on the order of 10−5 ms). The second bench-

mark corresponds to an LLM-only predictor, in which the DistilBERT model is queried after every

message; this policy is marked by a red × in the figure. For reference, we also mark the point η = α

using a black ×. All ROC-AUC values in this figure use a conversation-level construction to report

an overall accuracy measurement. For each conversation i, we calculate the continuation proba-

bilities p̂i(Ti,k;∞) at each message checkpoint and form two scores: sprei = mink=1,...,ni−1 p̂i(Ti,k;∞)

(labeled 1, since the conversation continues after every pre-last checkpoint) and sendi = p̂i(Ti,ni
;∞)

(labeled 0, since no messages remain after the final checkpoint). We then compute pooled ROC–

AUC over the resulting 2|N | labeled points {(sprei ,1), (sendi ,0)}i∈N .) This construction evaluates a

model’s ability to avoid premature closure by penalizing any overly low continuation probability

before the last message (via the minimum), while still requiring the probability to drop at the

true close of service. In this sense, this ROC-AUC calculation summarizes the within-service and

end-of-service accuracies into one metric.

We observe that even for very small values of η, the hybrid policy substantially improves predic-

tion accuracy relative to the Hawkes-only baseline without incurring high run times, approaching

and even exceeding the accuracy of the always-on LLM policy while reducing computational cost

by an order of magnitude. Moreover, we observe that that accuracy does not increase monotonically

with η. As η increases, the LLM is invoked more frequently, and the policy gradually improves,

until reaching maximal performance at η = 43, which is slightly above β but below 2α. Then, we

see that it is possible to have too much of a good thing: the accuracy values of η beyond this range

are not beneficial, and the performance begins to deteriorate.

Notice that, for η ≫ α, the LLM will be invoked mostly at times when the conversation has a

burst of activity (i.e., sequences of closely timed messages). That is, after a period of inactivity,

it takes several jumps, and not merely one jump, for the intensity to cross η and trigger an LLM

query. This may be inherently capitalizing on natural cadences in customer-agent communication

patterns, where quick exchanges of messages are mostly focused on the same subject, and thus

repeated LLM calls do not add much value. In this way, it seems that a little bit of such screening

is beneficial for performance whereas too much screening can hamper performance. Thus, in this

setting, more frequent LLM usage can be counterproductive, leading to both higher cost and lower

accuracy. Consequently, intermediate values of η achieve the most favorable cost–accuracy tradeoff,

underscoring the importance of carefully tuning η in practice, with the insight above suggesting

α ≤ η ≤ λ0 as the most promising range of values, yet any choice of η > 0 offers a hybrid model

performance that achieves better accuracy than either predictor alone.

Interestingly, this data-driven experiment matches the observation from the stylized model that,

in terms of accuracy but regardless of cost, it is most effective to query the LLM just a handful of
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times. That is, for the observed peak of the ROC-AUC at η = 43, the average number of LLM queries

per conversation was 3.61. By contrast, the average number of messages per conversations in the

N cohort is 12.57. Hence, across all values of η and the corresponding range of total computational

costs, the most accurate performance is achieved through only a few LLM queries.

Much like the stylized model suggests, our overarching takeaway from this experiment is that the

best way to combine these two types of models is to let each focus on their respective strengths. The

Hawkes process, as a temporal-history-driven self-exciting stochastic model, is inherently cautious

and expects that present activity will beget future activity. That concept captures the spirit of the

back-and-forth interaction between the customer and agent, but eventually the service will cease.

It would take the Hawkes some time to recognize that inactivity, and this is precisely where the

text-driven LLM can step in. By selectively calling the fine-tuned DistilBERT only at the handful

of times at which the Hawkes process intensity starts to drop low, we both save on computational

effort and set the AI model up to handle tasks at which it is best suited. By comparison to

the simple and analytically tractable setting of the stylized model, though, this experiment now

provides evidence that this stochastic-model-and-AI combination holds promise even when the

stylized model’s assumption clearly do not apply: the data used here is authentic data, rather than

Hawkes-generated, and the AI model is good but not perfect. Nevertheless, we have seen here that

the hybrid predictor can both improve performance and save cost relative to simply deploying the

AI model on its own.

7. Conclusion

In this paper we have tested three family of learning methods to predict conversation continuation.

Our first conclusion is that both predicting the short-term conversation continuation and determin-

ing whether a conversation has truly ended are challenging tasks, even when the full conversation

transcript is available. Most models exhibit limited ability to capture customer behavior in the

short run, with the maximal pooled ROC-AUC for short-term continuation prediction reaching

only about 0.65. For this short-horizon task, no model clearly dominates the Hawkes approach: it

provides the most reliable performance at the lowest computational cost. This is unsurprising, as

Hawkes models are specifically designed to capture short-term temporal dynamics and excitation

effects, which are central to near-future activity prediction.

In contrast, long-term end-of-service prediction appears to be a more tractable problem, with

the best-performing models achieving substantially higher ROC-AUC. For this task, temporal

dynamics alone are insufficient. Instead, language models that exploit the full transcript and extract

semantic cues related to customer intent offer a significant advantage. Importantly, however, zero-

shot LLMs perform poorly in this setting; effective performance requires task-specific fine-tuning.
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Both prediction tasks are operationally important but serve different purposes. Short-term con-

tinuation prediction supports real-time routing and staffing decisions, where immediate activity

intensity informs agent workload and availability. End-of-service prediction, in contrast, is critical

for closure decisions and the prevention of premature termination. Furthermore, as our analysis

and experiments of prediction combination shows, good short-term predictors actually have an

additional use: determining when to run the end-of-service predictions.

The cost-accuracy analysis, together with the distinct strengths of temporal and text-based mod-

els, suggests clear complementarities between these approaches. Hawkes models excel at capturing

short-term dynamics efficiently, while fine-tuned LLMs are better suited for interpreting long-term

intent from textual content. Combining these strengths offers the potential to improve accuracy

without prohibitive cost, yielding a system whose performance exceeds that of any individual com-

ponent. Our stylized theoretical model suggested a practical method for achieving such integration.

We posit that by monitoring conversations using the Hawkes prediction model, one can optimally

control the frequency of running the LLM and scheduled it to the appropriate times. We show

the effectiveness of such approach in a final data-driven experiment. Here, we found that it is

possible to actually improve upon the performance of the best ML/AI model, the fine-tuned Distil-

BERT LLM, while only incurring half the computational cost. This best-of-both-worlds scenario is

achieved by selectively querying the LLM at checkpoints strategically determined by a lightweight

Hawkes model, which also handles the prediction at all other time points.

Our analysis paves the way for a new approach to combining multiple learning models. While

traditional ensemble methods (e.g., bagging, boosting, and stacking) aggregate predictions across

models, our approach combines models operationally, by synchronizing when each model is invoked

over time. This enables improved predictive performance while making more efficient use of com-

putational resources.

Although we apply this paradigm to chat-based service interactions, the idea extends naturally

to other settings, such as AI assistant systems (e.g., chatbots). These systems also manage ongoing,

chat-like interactions and must decide when a conversation has effectively ended so that working

memory and computational resources can be released.

Notes
1We use the terms “chat” and “conversation” interchangeably throughout the paper.

2Some model parameters, i.e. α, are repeated across the model variants for simplicity of expression, but they need

not be the same exact value.

3The proof appears in Appendix EC.6.

4As given in Table EC.2, the parameters for the IUHP-Exp are α= 24.31, β = 39.23, and λ0 = 112.72.
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EC.1. Summary Statistics of Data and Hawkes Models Estimated
Parameters

Table EC.1 provides summary statistics of our data.

Table EC.1 Summary Statistics at the Message and Conversation Levels.

Variable Mean SD 50pct 75pct Max

Conversation-level
Total messages per conversation 8.41 5.72 8 11 176
Customer messages per conversation 3.77 3.51 3 5 158
Agent messages per conversation 4.65 2.67 4 6 36
Total conversation duration (seconds) 414.2 314.5 333.46 528.97 5,456.10
Inter-message gap (seconds)a 48.02 68.86 23.87 54.46 2,907.46
Customer response time (seconds)b 36.62 45.11 23.21 43.61 1,422.68
Agent response time (seconds)c 56.09 74.72 29.08 67.51 1,468.50

Message-level
Words per message 133.9 79.8 120 167 1,892

System-level
Mean concurrency per hour of the dayd 2.20 0.76 1.96 2.43 4.14

Notes. (a) Time between consecutive messages within the same conversation. (b) Time from an
agent message to the next customer message. (c) Time from a customer message to the next agent

message. (d) Concurrency is the number of simultaneous conversations handled by an agent per hour

of the day.

Table EC.2 provides the Hawkes models parameters estimated with Utrain.

Table EC.2 Estimated Hawkes-family parameters.

Model Parameter Estimate
UHP α 14.33

β 16.04
IUHP-Exp α 24.31

β 39.23
λ0 112.72

IUHP-Gamma α 4.56
ρ 0.62
θ 0.88
λ0 34.52

BHP α11 4.22
β11 55.48
α12 35.25
β12 3.81
α21 28.25
β21 80.47
α22 46.30
β22 22.71
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EC.2. Estimating the Percentage of Premature Closure using Positive
Uncertain (PU) learning

Our analysis relies on real conversational service data from a food-delivery service organization. A

central challenge is that data logs do not directly indicate whether a conversation ended successfully

or was closed prematurely. While we carefully construct labeled cohorts using text analytics with

manual verification (see Section 3), only a small fraction of true premature closures are explicitly

observed in the data—namely, those followed by a verified customer return with a complaint within

60 minutes. As a result, a potentially large share of premature closures remains unlabeled.

Conversations that reappear as complaint-returns provide a conservative lower bound on the

prevalence of premature closures, but do not reveal their full magnitude. The data therefore consist

of positively labeled instances P (premature closures with verified complaint-return), a limited set

of negatively labeled instances N (successful closures), and a large pool of unlabeled conversations

U . To estimate the prevalence of premature closures, we turn to PU learning, which is designed for

precisely such settings.

PU learning enables the estimation of both the class prior (the true prevalence of premature

closure) and the labeling probability under mild assumptions, such as the Selected Completely At

Random (SCAR) (Elkan and Noto 2008, Bekker and Davis 2020). This allows us to quantify the

extent of unobserved “silent” premature closures.

Formally, let Vi ∈ {0,1} indicate whether conversation i was prematurely closed (latent ground

truth), and let V̄ =
∑M

i=1 Vi denote the (unobserved) total number of premature closures. Let

Si ∈ {0,1} denote a complaint indicator, where Si = 1 if conversation i is followed within 60 min-

utes by a complaint-return conversation j with Cj = 1. Let S̄ =
∑M

i=1 Si denote the number of

observed positives (certified premature closures), and let C̄ =
∑M

i=1Ci denote the total number of

complaint-return conversations (the returns chats themselves).

The ideal case of having unique customer identifier. When unique customer identifiers are avail-

able and complaint-return conversations are de-duplicated to the first qualifying return per prede-

cessor, each complaint-return certifies exactly one predecessor conversation. In this ideal setting,

the number of complaint-return conversations equals the number of observed positives, and thus

C̄ = S̄.

Class prior. Let π = Pr(V = 1) = V̄ /M denote the (unknown) prevalence of premature closures

in the population.

Labeling probability. Let δ = Pr (S = 1 | V = 1) denote the probability that a prematurely closed

conversation is observed as such via a complaint-return. Then,

E[S̄] = δV̄ ⇒ E

[
S̄

M

]
= δ π.
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Lower bound. Every observed positive, Si, corresponds to a true premature closure, Vi, whereas

some premature closures remain unlabeled. Hence S̄ ≤ V̄ , implying S̄/M ≤ V̄ /M = π. Therefore,

S̄/M provides a conservative lower bound on true prevalence π. Moreover, if a lower bound δmin

on the labeling probability is available, then

S̄

M
≤ π ≤ S̄

δminM
.

Calibration set. We construct a manually verified calibration set P , consisting of |P | = 96

premature-closure conversations with verified complaint.

PU prevalence. In the data, unique customer identifiers are not available; consequently, neither

the true number of premature closures V̄ nor the indicator Si is directly observable. What is

observable is the number of complaint-return conversations, denoted by C̃, which can serve as

an estimator for C̄. We found C̃ = 436 such conversations. Under the assumption that (i) the

prematurely closed predecessor of each complaint-return lies within the analysis window and (ii)

each complaint-return certifies at least one premature closure, we have C̃ ≤ V̄ , implying C̃/M =

0.0062 ≤ π. This bound implies that the true prevalence of premature closures is substantially

larger than what is directly observed (96).

To obtain verified positives, we manually constructed a set P of premature closures by identifying

complaint-return conversations that explicitly reference specific items or locations, enabling reliable

linkage to a predecessor conversation within a 60-minute window. This procedure yields |P | = 96

conversations. Since P ⊆ {i : Vi = 1}, we obtain the conservative bound max
(
|P |/M, C̃/M

)
≤ π.

Let U denote the set of unlabeled conversations. Under the PU framework, |P | = δ πM . Rear-

ranging this equation so that δ = |P |/πM , and inserting the lower bound π≥ C̃/M , we obtain an

upper bound δmax ≤ 96/436 ≈ 0.22.

To estimate δ and π, we follow standard PU-learning practice. We train a probabilistic classifier

g(x) ≈ Pr (S = 1 | x) to distinguish conversations in cohort P from ones in cohort U using covariates

x. Under the Selected Completely At Random (SCAR) assumption, in which it is assumed that

every true positive is labeled with the same probability,

g(x) = Pr (S = 1 | x) = δPr (V = 1 | x) .

We estimate δ as the average of g(x) over held-out observations from cohort P, and estimate π as

the average of g(x)/δ over U , using 6-fold cross-validation.

This procedure yields δ̂ ≈ 0.007 and π̂ ≈ 0.19 (SE ≈ 0.056), which is within the range we iden-

tified. These results indicate that a substantial fraction of premature closures remain silent and

don’t explicitly complain when reconnecting.
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EC.3. Bivariate Hawkes Process

The bivariate Hawkes process (BHP) cluster model with two event types and exponential self- and

cross-excitation kernels is defined as follows. For conversation i, let {T (1)
i,k }k≥1 and {T (2)

i,k }k≥1 denote

the timestamps of agent and customer messages, respectively, and let Hi,t denote the joint history

of both types up to time t.

Specifically, for t > 0, the intensity rate functions are

λi,1(t | Hi,t) =
∑

k:T
(1)
i,k

<t

α11 e
−β11(t−T

(1)
i,k

) +
∑

k:T
(2)
i,k

<t

α12 e
−β12(t−T

(2)
i,k

),

λi,2(t | Hi,t) =
∑

k:T
(1)
i,k

<t

α21 e
−β21(t−T

(1)
i,k

) +
∑

k:T
(2)
i,k

<t

α22 e
−β22(t−T

(2)
i,k

).

Here αrs ≥ 0 denotes the jump in the type-r intensity induced by a type-s event, and βrs > 0 is

the exponential decay rate of that influence (self-excitation when r = s and cross-excitation when

r ̸= s).

EC.4. Metrics Pooled Across Bins

Table EC.3–EC.4 provides the pooled performance measures for the short-term conversation contin-

uation prediction task shown in Figures 2–4 and 7 for Hawkes, MLP, LSTM, and LLM, respectively.

Table EC.3 Pooled performance (Short-Term Conversation Continuation, ∆=60s) by
evaluation cohort: Hawkes models.

Model Cohort Prevalence ROC–AUC [95% CI] PR–AUC [95% CI]

UHP P 0.569 0.561 [0.531, 0.588] 0.626 [0.593, 0.657]
N 0.673 0.543 [0.536, 0.549] 0.719 [0.713, 0.726]
Utest 0.618 0.547 [0.538, 0.554] 0.661 [0.652, 0.669]

IUHP-Exp P 0.569 0.630 [0.604, 0.654] 0.682 [0.650, 0.711]
N 0.673 0.638 [0.632, 0.643] 0.770 [0.764, 0.775]
Utest 0.618 0.639 [0.632, 0.645] 0.728 [0.721, 0.734]

IUHP-Gamma P 0.569 0.629 [0.599, 0.651] 0.680 [0.648, 0.707]
N 0.673 0.638 [0.633, 0.644] 0.770 [0.765, 0.775]
Utest 0.618 0.639 [0.632, 0.646] 0.728 [0.722, 0.735]

EC.5. Brier Score for End-of-Service Evaluation

In Figure 1(a), we report the Brier score for the end-of-service prediction task (∆ = ∞) as a

function of offset time, shown separately for N cohort (left panel) and P cohort (right panel). Lower

Brier scores indicate better probabilistic accuracy. Checkpoints with negative offsets correspond to

evaluations conducted before the last message, where the arrival of at least one additional message

is guaranteed, whereas checkpoints with positive offsets correspond to evaluations conducted after

the last message.



ec6

Table EC.4 Pooled performance (Short-Term Conversation Continuation, ∆=60s) by
evaluation cohort: LLMs.

Model Cohort Prevalence ROC–AUC [95% CI] PR–AUC [95% CI]

DistilBERT P 0.569 0.630 [0.599, 0.658] 0.680 [0.644, 0.715]
N 0.673 0.665 [0.659, 0.672] 0.780 [0.772, 0.788]
Utest 0.618 0.657 [0.649, 0.665] 0.727 [0.718, 0.737]

Phi-3 P 0.565 0.404 [0.383, 0.424] 0.559 [0.528, 0.587]
N 0.669 0.386 [0.381, 0.391] 0.639 [0.633, 0.646]
Utest 0.614 0.389 [0.384, 0.395] 0.591 [0.583, 0.599]

Llama-3 P 0.569 0.443 [0.413, 0.469] 0.529 [0.494, 0.570]
N 0.673 0.399 [0.392, 0.406] 0.610 [0.602, 0.617]
Utest 0.618 0.400 [0.392, 0.407] 0.555 [0.546, 0.564]

Table EC.5 Pooled performance (Short-Term Conversation Continuation, ∆=60s) by evaluation cohort: MLP models.

Model Cohort Prevalence ROC–AUC [95% CI] PR–AUC [95% CI]

Version 1: Time+Words+Sender+UHP intensity (λ) P 0.569 0.572 [0.546, 0.600] 0.645 [0.617, 0.676]
N 0.673 0.553 [0.547, 0.560] 0.735 [0.729, 0.741]
Utest 0.618 0.570 [0.561, 0.577] 0.691 [0.684, 0.699]

Version 2: Time+Words+Sender P 0.569 0.549 [0.521, 0.580] 0.626 [0.595, 0.659]
N 0.673 0.539 [0.532, 0.545] 0.724 [0.718, 0.730]
Utest 0.618 0.557 [0.549, 0.565] 0.679 [0.672, 0.687]

Version 3: Time+Position P 0.569 0.562 [0.533, 0.591] 0.639 [0.611, 0.672]
N 0.673 0.546 [0.539, 0.553] 0.735 [0.729, 0.741]
Utest 0.618 0.565 [0.557, 0.572] 0.692 [0.684, 0.700]

Version 4: Time+Words P 0.569 0.451 [0.418, 0.481] 0.543 [0.508, 0.579]
N 0.673 0.467 [0.461, 0.473] 0.668 [0.659, 0.676]
Utest 0.618 0.450 [0.442, 0.458] 0.604 [0.595, 0.616]

Version 5: Time+Words+Concurency P 0.569 0.565 [0.538, 0.595] 0.639 [0.610, 0.672]
N 0.673 0.549 [0.542, 0.556] 0.734 [0.728, 0.740]
Utest 0.618 0.570 [0.561, 0.577] 0.693 [0.686, 0.701]

Version 6: Position only P 0.569 0.540 [0.507, 0.574] 0.610 [0.579, 0.648]
N 0.673 0.502 [0.495, 0.509] 0.684 [0.676, 0.691]
Utest 0.618 0.506 [0.498, 0.514] 0.631 [0.623, 0.639]

Version 7: Time only P 0.569 0.555 [0.528, 0.583] 0.636 [0.610, 0.667]
N 0.673 0.548 [0.541, 0.555] 0.737 [0.731, 0.743]
Utest 0.618 0.570 [0.562, 0.577] 0.698 [0.691, 0.706]

Note. Best seven models.

EC.6. Proof of Proposition 1

Proof. After taking the derivative with respect to η and simplifying, the first order condition

(FOC) of the prediction combination objective in (5) is given by

Ce
2η
β +

η

β
= 1.

Clearly, the left-hand side of the FOC is strictly increasing in η whereas the right-hand side is

constant, and thus there is at most one solution to this equation. Letting x = η/β for simplicity in

notation, this FOC can be re-arranged to

2Ce2 = 2(1−x)e2(1−x), (EC.1)
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Table EC.6 Pooled performance (Short-Term Conversation Continuation, ∆=60s) by evaluation cohort: LSTM models.

Model Group Prevalence ROC–AUC [95% CI] PR–AUC [95% CI]

Version 1: Position only P 0.569 0.559 [0.533, 0.585] 0.634 [0.609, 0.663]
N 0.673 0.603 [0.597, 0.609] 0.755 [0.749, 0.760]
Utest 0.618 0.597 [0.591, 0.604] 0.699 [0.691, 0.708]

Version 2: Time only P 0.569 0.572 [0.544, 0.600] 0.644 [0.618, 0.674]
N 0.673 0.611 [0.605, 0.616] 0.765 [0.759, 0.772]
Utest 0.618 0.605 [0.599, 0.613] 0.710 [0.702, 0.719]

Version 3: Time+Position P 0.569 0.572 [0.544, 0.601] 0.646 [0.617, 0.675]
N 0.673 0.608 [0.601, 0.613] 0.763 [0.756, 0.769]
Utest 0.618 0.603 [0.597, 0.610] 0.709 [0.701, 0.717]

Version 4: Time+Words+Sender P 0.569 0.602 [0.576, 0.627] 0.658 [0.629, 0.687]
N 0.673 0.638 [0.632, 0.644] 0.775 [0.770, 0.782]
Utest 0.618 0.640 [0.633, 0.646] 0.727 [0.719, 0.734]

Version 5: Time+Words+Sender+Concurrency P 0.569 0.600 [0.576, 0.624] 0.660 [0.632, 0.689]
N 0.673 0.638 [0.632, 0.644] 0.776 [0.770, 0.782]
Utest 0.618 0.641 [0.634, 0.649] 0.729 [0.721, 0.738]

Version 6: Time+UHP intensity (λ) P 0.569 0.599 [0.572, 0.625] 0.661 [0.632, 0.689]
N 0.673 0.635 [0.629, 0.641] 0.776 [0.770, 0.783]
Utest 0.618 0.640 [0.633, 0.647] 0.727 [0.718, 0.735]

Version 7: Time+IUHP-Gamma intensity (λ) P 0.569 0.594 [0.568, 0.620] 0.657 [0.627, 0.686]
N 0.673 0.631 [0.625, 0.636] 0.773 [0.767, 0.779]
Utest 0.618 0.639 [0.631, 0.645] 0.727 [0.719, 0.735]

Note. Best seven models.

(a) Cohort N (b) Cohort P

Figure EC.1 End-of-Service Task (∆=∞): Brier Score as a Function of Offset Time.

which follows by first subtracting x from both sides and then multiplying both sides by 2e2−2x.

At this point we can recognize that there will be no x > 0 which solves the FOC if C ≥ 1, as the

right-hand side of (EC.1) is strictly decreasing in x and thus 2(1−x)e2(1−x) ≤ 2e2.

Now, taking C < 1. the right hand side is ready for us to apply the Lambert-W, and, by the

hallmark identity of that function, we can further simplify the expression to

W0

(
2Ce2

)
= W0

(
2(1−x)e2(1−x)

)
= 2(1−x).

Finally, solving for x, we achieve the stated η∗ via η∗ = βx. □
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