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Abstract. Problem definition: Determining the optimal length of stay (LOS) and

post-treatment location is critical for hematology-oncology (blood cancer) patients,

who are highly vulnerable to life-threatening infections. Early discharge to home care

reduces infection risk, while extended hospital observation minimizes mortality risks

if an infection occurs. We address this trade-off by developing LOS optimization

models tailored to these patients.

Methodology/results: We develop a Newsvendor-type model to explore how infec-

tion and mortality risks influence optimal LOS of individual patients. We further con-

sider the social optimization problem in which capacity constraints limit the ability

of hospitals to keep patients for the entirety of their optimal LOS. We find that, in

the optimal solution to the fluid model used to approximate the original stochastic

system, each type of patient is discharged at at most two discrete time points, one of

which might be equal to zero or to the optimal uncapacitated length of stay. Based on

this analysis, we propose an online index-based speedup policy (ISP) to guide patient

discharge decisions.

Managerial implications: Our model enables physicians to personalize LOS based

on patients’ risk profiles and dynamically adapt to hospital capacity constraints. In

a case study, we show that around 75% of the patients need some observation, and

a speedup-only policy, that discharges all patients at the same discrete time point,

is optimal for 90% of patient types during high demand. Adopting ISP can reduce

patient mortality rate by 27.7% compared to current practice.

Key words: Healthcare Operations, Hospitalization, Home Care, Mortality,

Infection Risk, Discharge Policy

1. Introduction
Cancer is a leading cause of death in the US, and imposes significant health and financial burdens. In 2014,

cancer-related healthcare costs in the US totaled $87.8 billion, with 27% attributed to hospital inpatient

stays (AHRQ 2014). Cancer inpatients typically face higher hospital costs and longer lengths of stay (LOS)
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compared to non-cancer inpatients (Suda et al. 2006). Beyond treating the disease itself, hospitals man-

age complications such as healthcare-associated infections (HAI), which are more common among cancer

inpatients and significantly increase both LOS and mortality (Cornejo-Juárez et al. 2016).

Hematology-oncology malignancies, including Acute Leukemia (AL), Chronic Leukemia (CL), Lym-

phoma (L), and Multiple Myeloma (MM)), are particularly challenging due to treatments that significantly

weaken the immune system. In a large retrospective study of over 41,000 cancer patients admitted for sus-

pected infection, mortality rates among those who were treated for leukemia, lymphoma, and myeloma

were as high as 14.3%, 8.9%, and 8.2%, respectively (Kuderer et al. 2006). These mortality risks following

infection are so high that it may be best to keep patients at the hospital for the sake of monitoring and rapid

intervention in case of infection (Carmen et al. 2019). Determining a patient’s “optimal” LOS thus hinges

on balancing infection and mortality risks (among other factors), making it important to understand the

factors influencing the timing of discharge, especially for cancer patients.

Modeling papers in Operations Management typically assume that, everything else being equal, it is bet-

ter to keep patients hospitalized for as long as medically indicated. In particular, in the absence of cost

considerations or capacity constraints, there should be no rush to send a patient home. However, this per-

spective often overlooks the significant risk of HAI that has been observed empirically (e.g. Hauck and

Zhao (2011), Bichescu and Hilafu (2023)). According to Magill et al. (2018), in 2015, 3.2% of hospitalized

patients developed HAI. These risks are much higher for Hematology patients. For instance, Carmen et al.

(2019) report that 41.6% of chemotherapy cycles for hematology patients ended with infection during hos-

pitalization. This highlights an additional critical benefit of early discharge beyond cost or capacity savings:

reducing infection risk.

Deciding when to send a patient home aligns with the growing trend of shifting treatments from hos-

pitals to outpatient clinics or home care (Clarke et al. 2021, Americal Hospital Association 2023); both

settings can support physician and nurse visits as well as diagnostic tests (Song et al. 2022). These solutions

have been shown to be safe for some hematology-oncology patients (van Tiel et al. 2005). However, their

implementation requires balancing the risks and benefits of hospital versus out-of-hospital alternatives for

each patient. Key factors include the patient’s health status and home environment, such as proximity to the

hospital, availability of an isolated space, and access to personal and medical support. This work develops

a systematic approach that incorporates these considerations, to determine the optimal LOS, shedding light

on how in-hospital and home-care observations should be combined.

Our work builds on an empirical study by Carmen et al. (2019) conducted in a hematology ward (HW)

of an Israeli hospital, which shows that the risk of infection is higher in the hospital than at home, and both

risks follow similar time-dependent trends (see Figure 1(a)). Conversely, patients who develop infections

in the hospital have higher survival rates due to immediate access to care (see Figure 1(b)). This tradeoff

highlights that the decision of when to send a patient home should be based on location-dependent infection
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and mortality risks. Further complicating this decision, the time-to-infection hazard rate varies by patient-

specific factors, such as their underlying disease (see Figure 1(c)). Given this trade-off, the LOS decision is

relevant even in the absence of cost or capacity constraints. Thus, we examine both the uncapacitated and

the capacitated cases.
Infection Risk (r) Source: Carmen et al (2017)
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Figure 1 Infection Hazard-rate Functions and Mortality Risk (Carmen et al. 2019) (AL, CL, L, and MM)

In the uncapacitated case (§3), we focus on individual patients, assuming minimal interaction between

them. We formulate the decision of when to transition a patient to home care as a Newsvendor-type problem,

aiming to maximize the total expected survival reward minus observation costs. While the optimal time to

move a patient to home care is monotone in most system parameters, we find the surprising result that it is

not monotone in the at-home infection hazard rate.

In the capacitated case (§4), a key question is determining the capacity needed to meet system demand.

This is related to the system’s offered load—the expected number of patients under unlimited capacity.

However, due to high costs stemming from the need for isolated rooms and specialized medical staff, as

well as increased demand driven by advancements in treatment and patient survival (LLSC 2016), capacity

typically falls short and hospitals cannot handle all the offered load. For example, data from the Technion

SEELAB show that the hematology unit at Rambam Medical Center, a large tertiary hospital in Israel

operates at an average of 97% occupancy. This highlights the need to consider capacity constraints and

establish rules for determining which patients should be moved to home care and optimize the transfer

timing.

Traditionally, studies on offered load in queueing systems treat service time as exogenous (Whitt 2013).

For example, in a stationary multiserver G/G/N queue, the offered load is the product of the arrival rate

and the expected service time. What distinguishes our setting is that the service time here is a result of an

optimization—specifically, the optimal hospital LOS is an output of the Newsvendor-type problem formu-

lation in the uncapacitated case.

https://seelab.net.technion.ac.il
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Optimizing the timing of patients discharge in an overloaded system raises some important questions.

Ideally, the optimal thing to do would be to send every patient home at the time prescribed by the unca-

pacitated case analysis. But, with limited capacity, we must consider whether it is better to use an equitable

policy that sends all patients home earlier than optimal, or to send some patients home at the optimal time

while sending others home immediately. Alternatively, a more complex policy may be needed, with multiple

thresholds applied to different patient groups.

While the space of possible policies is large, we find that the capacitated problem reduces to dividing each

patient group into at most two classes, each with its own threshold for discharge time. In the heterogeneous

patient case, we prove that most patient types remain as single classes, with at most one patient type divided

into two. The conditions that characterize these thresholds reveal an intuitive index that guides the LOS

decision. This is formalized through the development of the practical Index-based Speedup Policy (ISP) for

online discharge decisions (§4.3).

In a case study (§5) based on real patient data, we demonstrate how the optimal discharge threshold

varies by patient profile. This analysis suggests that 75% of the patient population needs some hospital

observation period (§5.1). We compare the resulting bed occupancy with actual hospital data, suggesting

a capacity shortage that might limit full implementation of the patient-optimal policy. We then examine

how the discharge policies should adjust under capacity constraints (§5.2). We apply both homogeneous

(§5.2.1) and heterogeneous (§5.2.2) solutions developed in Sections 4.2 and 4.3, respectively, and show that

while some patient groups require a two-threshold policies, a single-threshold speedup is most commonly

optimal.

The ISP algorithm developed in Section 4.3 estimates that the studied hospital can reduce patient mortal-

ity rate by 27.7%. This reduction is split between capacity-based mortality (4.2%) and optimization-based

mortality (23.5%), suggesting that optimizing LOS accounts for 3/4 of the effect. This case study pro-

vides evidence that even under capacity constraints, hospitals can significantly reduce mortality by choosing

wisely which patients should be observed at the hospital and which ones should be moved to home-care

observation and when. Finally, we analyze the sensitivity of our results to location-based differences in

observation quality, measured by the gap in survival probabilities between hospital and home care (§D.2).

The paper is organized as follows: Section 2 provides background on the motivating medical context

and surveys the relevant literature. In Section 3, we formulate and solve the single-patient uncapacitated

problem, exploring the structural properties of the solution. Section 4 formulates the hospital capacitated

problem, solved using fluid approximation, and introduces the ISP algorithm. Section 5 details the results

of our numerical experiments. Finally, Section 6 summarizes our results and suggests directions for further

research.
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2. Medical Context and Literature Review
Our paper relates to three key research streams: optimization of medical decisions, optimization of patient

flow, and asymptotic approximations of queueing systems.

Our research is relevant to all cancer treatments and was specifically motivated by HW data (Car-

men et al. 2019). According to the World Health Organization, cancer is a leading cause of death glob-

ally, responsible for an estimated 10 million deaths in 2020, or 1 in 6 deaths worldwide (https:

//www.who.int/news-room/fact-sheets/detail/cancer). Among cancer types, patients

with hematological malignancies are particularly susceptible to infections due to a weakened immune sys-

tem caused by the disease or its treatment, leading to considerable infection-related mortality (Cornely et al.

2015, Taccone et al. 2009). Despite significant advances in treatment strategies for hematological cancers

over the past decade, infection prevention and effective treatment for infected patients remain critical chal-

lenges.

Our paper is inspired by growing empirical evidence on the impact of physical location of treatment or

observation on health outcomes. Specifically, Carmen et al. (2019) demonstrated that the choice of post-

treatment observation location (dedicated ward, general ward, or home) impacts infection and mortality

rates among hematology patients. More broadly, patient off-placement found to impact LOS, mortality,

and readmission (Song et al. 2020). Overall, these studies highlight the critical role of location choice in

determining treatment outcomes.

Patients’ LOS has also been linked to health outcomes (e.g., Hauck and Zhao 2011). Reducing LOS

(speedup) in response to high load has been shown to increase mortality (Kc and Terwiesch 2009, Bar-

tel et al. 2020) and readmission rates (Kc and Terwiesch 2012, Bichescu and Hilafu 2023). Conversely,

the longer patient’s LOS, the higher the risk of hospital-acquired conditions, such as pressure ulcers and

infections (Berry Jaeker and Tucker 2017). These findings underline the importance of incorporating the

influence of LOS on health outcomes in models designed to optimize it. For example, Chan et al. (2012)

formulated a model to support ICU discharge decisions, while Shi et al. (2021) proposed a hospital-wide

optimization method for patient-discharge decisions.

Research also shows that post-discharge followup can effectively reduce mortality risk (Leschke et al.

2012). Recent developments show that, for some patient types, telemedicine followup can be as effective

as in-person followups (Marquez-Algaba et al. 2022). These studies support the notion that home care and

home observation can be safe when adequate follow-up resources are provided, compensating for shorter

LOS.

Most LOS optimization studies assume that the hospital is the best location for patients until recovery,

with early discharges driven mostly by capacity or cost constraints. However, in hematology, there is an

additional delicate tradeoff between location, LOS, and health due to the high infection risk and its reduction

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
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in home care. Therefore, in this context, discharge decisions should not be driven only by capacity and cost

considerations.

Cancer chemotherapy is typically administered in treatment cycles (averaging 8.68 cycles per patient, see

Carmen 2017). Our study focuses on a single cycle1. Each cycle starts with chemotherapy treatment (of 1–

10 days) followed by a 30-day recovery stage to allow the immune system to recuperate. Treatments lasting

over 7 hours are conducted in the HW, while shorter protocols are given in an outpatient clinic. The recovery

stage can be done either at the HW protective isolation or through home care. The highest risk during this

stage is developing infection. During recovery, patients are monitored for infection and immune recovery

via temperature and blood tests. Therefore, home-care recovery requires rest and tests to be done either at

home or at the outpatient clinic. If signs of infection (e.g., fever) arise, patients are instructed to immediately

visit the hospital ED for tests and treatment. Infection treatment necessitates hospitalization, usually at a

general ward. The flexible component of patient LOS, during the treatment cycle, is the post-procedure,

pre-infection recovery stage, which serves as the focus of our optimization model.

Over-congestion is a common challenge faced by hospitals worldwide. Various strategies have been used

in practice or proposed in the literature to manage over-congestion, including early discharge (speedup),

admission control (blocking), and prioritization. For example, in ED services, blocking can be done by

ambulance diversion (Allon et al. 2013). In our context, sending a patient home immediately after treatment

can be viewed as a form of blocking. The tradeoff between admission control and speedup has been explic-

itly studied in the literature. This tradeoff has been analyzed in Markovian settings, including single-server

queueing systems (Adusumilli and Hasenbein 2010, Ata and Shneorson 2006), multi-server queueing sys-

tems (Lee and Kulkarni 2014, Yom-Tov and Chan 2021), and multi-class queueing systems (Ulukus et al.

2011). In our capacitated model (§4), we extend these approaches by generalizing the underlying assump-

tions, considering general service time distributions and general risk functions in a multi-server multi-class

setting.

Dynamically changing patient severity has been considered in various papers. For example, Mills et al.

(2013) addressed the prioritization of patient evacuation in mass-casualty events, and Deo et al. (2013)

focused on allocating doctor appointments for chronic patients whose medical state may depend on the

allocation decisions. Ouyang et al. (2020) considered the tradeoff between speedup and blocking in an off-

placement scenario, where patients may be moved between the ICU and general wards within the hospital.

Their model considered a single patient class, with health status modeled by a two-state Markov chain. They

formulated an MDP to minimize patient mortality and developed heuristics for more elaborate health-status

Markov chains. Some of their heuristics are closely related to the ISP algorithm we propose in Section 4, as

1 In addition to chemotherapy, HW also provides other treatments such as bone marrow transplants and radiotherapy, but this study
focuses on chemotherapy patients.
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well as the myopic policy benchmark proposed in Section 5.2.2. We explain the mathematical similarities

and differences in Section 4 and provide a numerical comparison in Section 5.2.2.

Mathematically, our analysis of the capacitated model builds on the literature of heavy-traffic approxima-

tions for general queueing systems. The most closely related framework is that developed by Whitt (2006),

which uses a fluid model to approximate an overloaded G/G/n+GI queueing system. This framework was

further utilized by Bassamboo and Randhawa (2016), who studied prioritization policies in a queueing

model with general abandonment and service times (G/G/n+GI). Their focus was on which customers to

serve next, considering that some might abandon the queue if forced to wait too long before their service

starts. In their framework, service is uninterruptible once started. In contrast, our focus is on deciding who

to send home next, which, in queueing theory terms, translates to deciding whose service time should be

truncated and by how much.

3. The Uncapacitated Case: A Single-Patient Perspective
We start by studying the uncapacitated case, focusing on a single patient with no capacity constraints.

The goal is to determine the optimal hospital LOS that maximizes the patient’s expected survival reward

while minimizing treatment costs associated with hospitalization and home care. Our approach mimics the

Newsvendor model, where the decision of how many newspapers to buy is replaced by the decision of how

long to keep the patient in the hospital.

We model the decision of when to send a patient home as a problem of pre-selecting a patient-specific

stay-up-to threshold. The patient stays in the ward until this threshold, unless they develop an infection

before that time. If infection occurs, the patient will remain in the hospital—typically in a general ward—

where they are treated for the infection. Conversely, if the patient remains uninfected until that threshold,

they are discharged to home care at that time. The resulting HW observation LOS is thus the minimum

of the time until infection and the stay-up-to threshold. There are costs associated with both keeping the

patient in the hospital for too long (overage cost) and discharging the patient prematurely (underage cost).

Determining the optimal stay-up-to threshold mirrors the Newsvendor problem, where decisions balance

the trade-off between overage and underage costs, with some important differences that we will discuss

later.

Our formulation assumes a finite decision horizon T for the recovery stage of a specific treatment cycle.

This aligns with the working assumption for hematological patients that if a patient does not develop an

infection within the first 30 days after treatment, any subsequent infection is unlikely to be related to that

specific chemotherapeutic treatment (Carmen et al. 2019).

We next introduce relevant notations. Let rw(t) (rh(t)) denote the hazard-rate function of developing an

infection at time t, given that the patient is in the ward (at home) at that time. That is, rw(t) (rh(t)) is the

risk of infection in the ward (at home) at time t, conditional on the patient remaining infection-free up to
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that point. These functions, rw and rh, are of general form. To illustrate their empirical behavior, Figure

1(c) displays these functions for two patient types: CL and AL. For CL patients, the hazard rate is monotone

decreasing, while for AL patients, the hazard rate follows a non-monotonic pattern, initially increasing and

then decreasing.

For simplicity, we assume that the hazard-rate functions depend on the time elapsed since the completion

of the treatment and the patient location at that time, and not on the duration the patient has been in a par-

ticular location. For example, rh(t) is the risk of developing an infection exactly t time units after treatment

(provided no infection has occurred earlier), given that the patient is at home at time t and independently of

when the patient was transitioned from the hospital to home care.

If a patient develops an infection, their survival probability is pw if the infection occurs at the hospital,

or ph if it occurs at home. (Clearly, the survival probability is complementary to the mortality risk pre-

sented in Section 1, and is used instead for convenience.) Our model also includes treatment costs for both

hospital and home care. Let cw (ch) denote the per-unit-time cost of caring for a patient in the ward (or at

home). Additionally, let cI denote the cost of treating an infection. This infection treatment cost includes

all hospitalization expenses incurred from the onset of infection until recovery or death and is assumed to

be independent of when or where the infection started. For convenience, we formulate cI as part of the

reward received if no infection occurs by time T . Finally, let R denote the reward associated with surviving

a treatment cycle. Without loss of generality, we normalize R= 1, and assume that all cost parameters (cw,

ch, and cI) are scaled accordingly.

We assume the following properties for the system parameters:

ASSUMPTION 1.

1. Infection risk at the hospital is higher than home care, i.e., 0≤ rh(t)≤ rw(t),∀t.
2. Survival probability at the hospital is higher than at home, i.e., 0≤ ph ≤ pw < 1.

3. Cost of care at the hospital is higher than at home, i.e., cw ≥ ch ≥ 0.

4. The cost associated with treating an infection is higher than the per-time-unit cost of hospital care

(and, consequently, home care as well), i.e., cI ≥ cw ≥ 0.

As noted in the introduction, these assumptions, and especially items (1) and (2), align with the empirical

findings of Carmen et al. (2019). The model parameters may be influenced by the patient’s medical condition

as well as exogenous factors. For example, the patient’s home environment, such as their ability to maintain

a semi-sterile setting, may impact the infection risk at home (rh). The level of support available at home

may impact both medical risks and the cost of home care (ch).

Denote by τ the stay-up-to threshold, and letGτ be the cumulative distribution function (CDF) of the time

until infection for a patient who is sent home at τ if no infection develops by that time. By the connection

between the CDF and the hazard rate, we have:

Gc
τ (t) := 1−Gτ (t) = e−(

∫ τ∧t
0 rw(u)du+

∫ τ∨t
τ rh(u)du). (1)
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The expected reward associated with a threshold τ , denoted by Jτ , can be expressed as:

Jτ = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T ), (2)

where the first term is the product of the probability of developing infection in the ward (before time τ ) and

the probability of surviving it (pw). The second term is the product of the probability of developing infection

at home (between time τ and T ) and the probability of surviving it (ph). The third and fourth terms are the

hospitalization and home-care costs, respectively, and the fifth term is the reward obtained if no infection

has occurred up to time T .

Let τopt be the minimal optimal threshold for the reward function Jτ . That is, τopt is the smallest value

of τ that maximizes Jτ . The existence and uniqueness of τopt follows from the continuity of Jτ over the

compact set [0, T ].

The formulation (2) differs from the well-known Newsvendor problem due to the nonlinearity of the

overage and underage costs. This key difference means that, in general, Jτ is not concave and a closed-form

solution for the optimal threshold τopt cannot be readily derived. Instead, the solution typically requires

numerical methods or analytical approaches tailored to the structure of Jτ .

Next, we analyze a specific case where Jτ exhibits a simple structure, allowing the resulting optimal

policy to be derived directly. Specifically, we assume that the risk functions are constant over time, enabling

us to find a closed-form solution, as characterized in the following proposition.

PROPOSITION 1. Assume that Assumption 1 holds and that, in addition, 0 < rh < rw and both are

constant over time. Let

τ0 := T +
1

rh
ln

(pw− ph)rw + ch · rw/rh− cw
(rw− rh)(1 + cI − ph + ch/rh)

.

Then,

τopt =

 τ0, if 0≤ τ0 ≤ T ;
0, if τ0 < 0;
T, if τ0 >T.

All the proofs for this section appear in Appendix A. Additional closed-form solutions, assuming that

Assumption 1 does not hold, appear in an online supplement.

Having established the tractability of solving for the optimal threshold (at least numerically) under any

given set of system and patient parameters, we now turn to analyze the structural properties of τopt. The

reward formulation (2) allows us to uncover key monotonicity properties of the τopt with respect to various

parameters.

PROPOSITION 2. Under Assumption 1, the minimal optimal threshold τopt is monotone decreasing in

cw, cI , and ph, and monotone increasing in ch and pw. It is also monotone increasing in rh, assuming that

ch = 0.
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While most of these properties align with one’s intuitive expectations, we discover a counterintuitive

result: the optimal threshold, τopt, is not monotone with respect to the in-hospital risk of developing an

infection, rw. It is intuitive to expect τopt to be monotone decreasing in rw, implying that a higher in-hospital

infection risk would prompt earlier transfer to home care. Surprisingly, this intuition does not always hold.

As illustrated in the (discrete-time) counterexample in Table EC.1 in Appendix A, the interplay of system

parameters may result in non-monotonic behavior of τopt with respect to rw.

4. The Capacitated Model: A Hospital Ward Perspective
So far, we have examined the problem of determining the optimal time to send a patient to home care

assuming that the hospital has ample capacity. In practice, hospitals often face capacity constraints, where

limited number of beds, equipment, or medical personnel necessitate discharging patients earlier than would

be ideal under an uncapacitated policy. This section focuses on the question of how should the time of

sending patients to home care be adjusted when capacity is limited?

We start with a general discussion of our modeling approach and the mathematical method used to study

this problem. Then, Section 4.1 introduces the queueing model and formalizes a discharge policy. In Section

4.2, we introduce a fluid approximation for the queueing model under a general policy structure, assuming

a homogeneous patient population. We prove that the fluid optimal solution can take only five possible

structures and derive conditions for optimality for each. Finally, in Section 4.3, we expand the analysis

to heterogeneous patient populations, identify necessary conditions for optimality, and propose a practical

Index-based Speedup Policy (ISP), which is evaluated numerically in the next section.

The first question in the capacitated case is how to determine when the hospital is indeed capacity-

constrained. To address this, we model the hospital ward as a queueing system with n beds. Let λ be the

patient arrival rate into the ward and S be the random variable of patient LOS. Define the offered load

inflicted on the system by its patients as U = λE[S]. Then, to determine whether the system is in under-

or over-loaded states, compare U to n: if U << n, capacity constraints are minimal; if U ≥ n, they are

substantial. A specific challenge in this context is that the service time, S, and consequently its expected

value, E[S], is not exogenous. Instead, the patient LOS is an outcome of optimization and may be impacted

by the system’s capacity.

To disentangle patient LOS from system capacity, we consider an alternative definition of offered load:

the expected number of busy servers in an infinite-server queue. Recall that τopt is the minimal optimal

threshold for a patient in the uncapacitated case. In particular, in a system with an infinite number of servers,

a patient will stay in the hospital until time τopt and then sent home, unless they developed an infection

earlier. We will refer to this as a full stay. Let Sτopt be the patient LOS given a full stay. The system’s offered

load is then defined as Uτopt = λE[Sτopt ], and the system is considered overloaded if Uτopt >>n.

In our study, the overloaded regime is particularly relevant for two reasons: (1) It is exactly in this regime

that the tradeoff between utilizing capacity and optimizing hospital LOS is critical. (2) The hospital ward
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motivating this study operates in a highly-loaded state, with an average occupancy of 97%. Such high

load is typical due to the high costs of hematology hospitalizations (stemming mostly from the need for

patient isolation during and after treatment) and increased demand (stemming from advancements in cancer

treatment in recent decades).

We assume that patients who cannot be hospitalized for observation in the ward due to capacity con-

straints are sent to home care immediately. Therefore, our model will have blocking dynamics. While

in practice, a patient without an available ward bed might be admitted to another ward, this is generally

undesirable for hematology patients. Such off-placements not only increase exposure to hospital-acquired

infections (Carmen et al. 2019) but may also lead to inferior patient care (Song et al. 2020). In fact, Carmen

et al. (2019) showed that Internal wards may be strictly inferior to home care for hematology patients. Thus,

assuming that no patients are sent to a ward other than the HW and that the same threshold τopt is used to

determine when to send a patient home for all patients who are not blocked, we can model this system as a

G/G/n/n loss system in the overload regime, with service time distribution as Sτopt .

REMARK 1. The n beds in the HW queue are assumed to be a fixed capacity dedicated to patient obser-

vation. However, in practice this assumption may be violated in two ways: (1) infected patients may remain

in the HW, occupying some of this “dedicated” capacity, and (2) ward beds may also be used for other

purposes, such as patient treatments. To address (1), one could use an argument analogous to Chan et al.

(2012), which incorporates readmission load into the cost parameters rather than explicitly modeling patient

returns. This approach was further validated by Armony et al. (2018) using a high-fidelity simulation. To

bypass (2), we examine hospital data to uncover the average number of beds allocated to observation in

practice and use this as the baseline capacity in our numerical study (Section 5).

The complexity of the underlying stochastic process makes exact analysis to identify the optimal policy in

the capacitated case prohibitively complex. Instead, we approximate the system using a fluid model, where a

discrete flow of patients is modeled as a continuous flow and discrete-time is replaced with continuous-time.

This fluid model approach has been successfully applied in queueing theory by Whitt (2006), Kang and

Ramanan (2010), and Zhang (2013) for systems with general service times and abandonment distributions,

with rigorous justification provided in those settings. Our approach mimics the methodology of Bassamboo

and Randhawa (2016), who used fluid approximations to optimize scheduling in an overloaded queueing

system with impatient customers, albeit with a focus on prioritization rather than patient service times, as we

do here. While we do not rigorously establish that the fluid model is the limiting behavior of the underlying

stochastic system, we adopt it as a reasonable and practical approximation.

4.1. The G/G/n/n Fluid Model

Consider a G/G/n/n system with generally distributed service time (LOS) Sτopt and an offered load

Uτopt = λE
[
Sτopt

]
. Assume that the ward has n beds, and let ρ =

Uτopt
n

=
λE[Sτopt ]

n
. We assume that the
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system is overloaded, thus ρ > 1. In an overloaded system, arriving patients frequently encounter a full

ward. In such cases, the following two options can be considered for handling a new patient arrival:

1. Blocking: Send the new patient directly to home care.

2. Speedup: Send to home care the patient who has been observed in the ward the longest (before their

optimal stay-up-to threshold τopt) to make room for the new patient.

Note that the Speedup policy may be considered more fair as it treats all patients the same, in distribution.

More generally, a policy can involve a combination of blocking and speedup, with variations in the choice

rule of which patient to discharge when applying speedup and under what conditions. The fluid model can

be utilized to approximate the reward function for any given policy. We proceed with formulating this fluid

model.

Consider an arbitrary discharge policy π where discharge times do not exceed τopt. Let Sπ be the service

time of patients under the policy π, with corresponding CDF Fπ, mean service time mπ, and service rate

µπ. In particular, we have:

mπ =
1

µπ
=E[Sπ] =

∫ τopt

0

F c
π(x)dx, (3)

where F c
π := 1−Fπ. To describe the fluid model in steady state, we adapt the characterization provided by

Whitt (2006) to blocking (loss) systems.

The G/GI/n/n Fluid Model in Steady State. For an arbitrary policy π, the G/GI/n/n fluid model

with service-time distribution Fπ that operates under overloaded conditions, where ρπ := λE[Sπ ]

n
> 1, has

a unique steady state q(t), characterized as: q(0−) = λ̄, q(0) = µπ, and q(t) = µπF
c
π(t), t≥ 0, where λ̄ :=

λ/n. The fluid blocking rate is given by λ̄−µπ.

Loosely speaking, q(t) describes the fluid content in steady state of all of the fluid that arrived exactly t

time units ago. Patients may stay up the the optimal LOS, τopt. Figures 2(a)–2(b) depicts the fluid model for

the two specific policies described above (among other cases - as described later in Corollary 1): (a) Block or

Full Stay: Patients are either blocked or complete their full stay if admitted; (b) Speedup Only: Patients are

discharged early to accommodate new arrivals. While in the stochastic system the Speedup Only policy is

not necessarily a threshold policy, it becomes a threshold policy under the (deterministic) fluid model. This

is because, in steady state, all the fluid with the longest system time arrived at exactly the same moment. Let

τspd denote the threshold under the Speedup Only policy, representing the maximal LOS of patients under a

single-threshold being used when capacity constraints prevent everyone from staying until τopt. To compute

the Speedup Only threshold, τspd, solve:

1/λ̄=

∫ τspd

0

Gc
T (x)dx, (4)

where GT is the CDF of the time until infection if the patient remains hospitalized for the full horizon T,

as given by Equation (1). The solution for Equation (4) exists and is unique due to the intermediate-value

theorem, the overload assumption, and the continuity of the distribution GT .



Armony and Yom-Tov: Hospital versus Home Care
Article submitted to Manufacturing & Service Operations Management 13

	
	
	
	
	

 
	
	
	
	
	
	
		"! = 0																										"" = "#$%																		%															"! = 0																				"" > 0																																									
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																													"! > 0																"" = "#$%					%												0																										" = "&$' 										"#$%							
	
	
	
	
	
	
	
	
	
	
	

													
	
	
																											"! > 0												"" < "#$%								%				
	
	
	
	
	

Case	1	Case	5	

Case		3	Case	4	

Case	2	

q(t)	

t	
	

t	

q(t)	

q(t)	

q(t)	

q(t)	

(a) Block or Full Stay (Bl-FS)

	
	
	
	
	
	
	
	
	
	
	
	
	"& = 0																										"' = "#$%																	%													0																											" = "($) 																		"#$%							
		
	
	
	
	
	
	
	
	
	
	

Blocking	or	Full	Stay	 Speedup	

q(t)	 q(t)	

t	

(b) Speedup Only (1×Sp)	
	
	
	
	

 
	
	
	
	
	
	
			"! = 0																										"" = "#$%																		%															"! = 0																				"" > 0																																									
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																													"! > 0																"" = "#$%					%																																												"! = "" > 0	
	
	
	
	
	
	
	
	
	
	
	

													
	
	
																											"! > 0												"" < "#$%								%				
	
	
	
	
	

Case	1	Case	5	

Case		3	Case	4	

Case	2	

q(t)	

t	
	

t	

q(t)	

q(t)	 q(t)	

q(t)	

(c) Block or Speedup (Bl-Sp)

	
	
	
	
	

 
	
	
	
	
	
	
			"! = 0																										"" = "#$%																		%															"! = 0																				"" > 0																																									
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																													"! > 0																"" = "#$%					%																																												"! = "" > 0	
	
	
	
	
	
	
	
	
	
	
	

													
	
	
																											"! > 0												"" < "#$%								%				
	
	
	
	
	

Case	1	Case	5	

Case		3	Case	4	

Case	2	

q(t)	

t	
	

t	

q(t)	

q(t)	 q(t)	

q(t)	

(d) 2-level Speedup (2×Sp)

	
	
	
	
	

 
	
	
	
	
	
	
		"! = 0																										"" = "#$%																		%															"! = 0																				"" > 0																																									
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																													"! > 0																"" = "#$%					%												0																										" = "&$' 										"#$%							
	
	
	
	
	
	
	
	
	
	
	

													
	
	
																											"! > 0												"" < "#$%								%				
	
	
	
	
	

Case	1	Case	5	

Case		3	Case	4	

Case	2	

q(t)	

t	
	

t	

q(t)	

q(t)	

q(t)	

q(t)	

(e) Speedup or Full Stay (Sp-FS)

Figure 2 Fluid Content (q(t)) as a Function of LOS (t) for the Five Possible Solutions to the Capacitated

Optimization Problem (7)

LEMMA 1. Assuming the system is overloaded, τspd is: (1) monotone increasing in the risk of developing

infection in the ward, rw, and in the number of ward beds, n. (2) monotone decreasing in the patient arrival

rate, λ. (3) independent of all other system parameters.

The proof follows directly from Eq. (4) and the definition of Gc
T using the hazard-rate function rw.

Lemma 1 shows that under the Speedup Only policy, in an overloaded system, LOS is determined by the

infection risk at the hospital and the arrival rate per bed. For a fixed number of beds, a higher hospital

infection risk increases the “allowed” patient LOS in the hospital. Interestingly, τspd is independent of the

home-care parameters as long as the system is overloaded.

4.1.1. General Policies. Up to now, we have focused on single-threshold policies, where patients

are sent home at the specified threshold (τ = 0 under blocking or τ = τspd under speedup only) unless they

develop an infection beforehand. In general, we might consider a broader family of policies π, in which,

for all x> 0, a fraction ψπ(x) of patients who have been in the ward for x time units are sent home at time

x, where 0 ≤ ψπ(·) ≤ 1. For x = 0, ψπ(0) refers to the fraction of patients who are blocked upon arrival.

We follow the mathematical convention that at any point in time, speedups occur before blocking. In the

overloaded regime ψπ(0) is determined by the values of ψπ(x), x> 0, and the ward capacity. That is, ψπ(0)

is the smallest number such that the system is not overcapacity. A threshold policy τ (τ ≥ 0) is a special

case of this family, with ψπ(τ) = 1 and ψπ(x) = 0 for all 0< x < τ . For simplicity, we focus on policies
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where the set of time points x such that ψπ(x)> 0 is finite.2 We refer to this finite set of K + 2 thresholds

as ~τ = {τk, k ∈ {0,1, ...,K,K + 1}},K <∞, where 0 = τ0 < τ1 < ... < τK < τK+1 = τopt.

In the fluid model, this policy may equivalently be described as a pair (~τ ,~δ), where ~τ is the set of thresh-

olds, matched by ~δ= {δk ≥ 0, k ∈ {0,1, ...,K,K+1}}—its corresponding set of non-negative mass values.

At each threshold τk the fluid content decreases instantaneously by a mass of δk. The steady-state fluid

content under this general policy is described as follows: the process starts at q(0−) = λ̄, then decreases

instantly to q(0) = λ̄− δ0, and at time t, the fluid content is given by

q(t) =

λ̄− ∑
{k:τk≤t}

δk
Gc
T (τk)

Gc
T (t), for t≥ 0. (5)

For this policy to be admissible, the following condition must be satisfied:
∑K+1

k=0
δk

Gc
T

(τk)
= λ̄.

To show that the two representations of the general policy—(~τ ,~δ) and ψ—are equivalent, note that we

have that for all x> 0,

ψ(x) =

{ δk
q(τk)+δk

if x= τk for some k,

0 otherwise.
(6)

Given the above policy description, it is natural to seek to optimize over all the admissible pairs (~τ ,~δ)

to identify the pair that maximizes the overall value function in steady state. To facilitate this, we now pro-

vide an alternative and equivalent description of the policy, which is particularly well-suited for evaluating

the value function. Following Bassamboo and Randhawa (2016), we observe that the admissible policy

π = (~τ ,~δ) may alternatively be described as a partition of the patient population into K + 2 classes, each

with an arrival rate of λ̄k = δk
Gc
T

(τk)
, for k = 0,1, ...,K + 1. For class k, we apply the single-threshold pol-

icy πk = τk. Figure 3 illustrates the equivalence between the two policy representations. Thus, a general

admissible policy may be described equivalently as π = (~τ ,~λ), since, given ~τ , there is a one-to-one corre-

spondence between ~δ and ~λ. With this policy characterization, we are now ready to formalize our fluid-level

optimization problem.

2 Given the continuity of the value function Jτ , we may approximate any general policy to the desired level of accuracy using a
finite set of thresholds (see Remark 1 in Bassamboo and Randhawa 2016).
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Figure 3 Fluid Content (q(t)) as a Function of LOS (t) Viewed as (a) a Single Class with Multiple Thresholds

Versus (b) Multiple Classes with a Single Threshold Each
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4.2. The Fluid-level Capacitated Optimization Problem

To find the optimal policy for hospital LOS in the capacitated case at the fluid level, we seek to divide the

fluid-level patient population λ̄ into K + 2 classes of sizes λ̄k (k = 0,1, ...,K + 1) and determine a set

of K + 2 discharge thresholds that maximize the total value gained by the entire patient population. The

optimization problem is given by

sup
K∈N; (~λ,~τ)∈RK+2

+ ×RK+2
+

K+1∑
k=0

λ̄kJτk (7)

s.t.
K+1∑
k=1

λ̄kmτk ≤ 1,

K+1∑
k=0

λ̄k = λ̄,

0 = τ0 ≤ τ1 ≤ τ2...≤ τK ≤ τK+1 = τopt,

where Jτ is the value function associated with a threshold policy τ as defined in (2), andmτk is the expected

time in the ward for a patient of class k:

mτ =
1

µτ
=

∫ τ

0

xgT (x)dx+

∫ ∞
τ

τgT (x)dx=

∫ τ

0

xgT (x)dx+ τGc
T (τ),

recalling that GT is the CDF of the time until infection for a patient remaining in the hospital until time T ,

and gT its PDF. Note that, mτ is differentiable with respect to τ and that m′τ =Gc
T (τ).

We next argue that, in optimality, the system is critically loaded; that is, there exists an optimal solution

to (7) where the first constraint is obtained as an equality.

LEMMA 2. If the system is overloaded when all patients are sent home according to the threshold pol-

icy τopt, then if an optimal solution to (7) exists, then there exists a solution to (7) where the constraint∑K+1

k=1 λ̄kmτk ≤ 1 is obtained as an equality.

All the proofs for this section appear in Appendix B.

By Lemma 2, problem (7) may be equivalently rewritten as

sup
K∈N; (~λ,~τ)∈RK+2

+ ×RK+2
+

K+1∑
k=0

λ̄kJτk (8)

s.t.
K+1∑
k=1

λ̄kmτk = 1,

K+1∑
k=0

λ̄k = λ̄,

0 = τ0 ≤ τ1 ≤ τ2...≤ τK ≤ τK+1 = τopt.
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Observe that for a fixed value of K and a given set ~τ , the problem (8) reduces to a linear program in ~λ

with two constraints. Consequently, a basic solution will have at most two non-zero values of λk. Therefore,

as in Bassamboo and Randhawa (2016), we conclude that there exists a solution to (8) where at most two

classes are non-empty. This result is formalized in the next proposition.

PROPOSITION 3. There exists an optimal solution to (7) (and (8)) with at most two non-empty classes.

The proof is essentially identical to the proof of Proposition 1 in Bassamboo and Randhawa (2016) and

is hence omitted. By Proposition 3, optimization problem (8) may be reduced to the following:

sup
0≤λ̄l≤λ̄;0≤τl≤τh≤τopt

λ̄lJτl + (λ̄− λ̄l)Jτh (9)

s.t. λ̄lmτl + (λ̄− λ̄l)mτh = 1.

Given τl and τh, λ̄l is uniquely determined by solving the equality constraint in (9), as λ̄l =
λ̄−µτh

1−µτh/µτl
if

τl 6= τh, and λ̄l = 0, otherwise. Furthermore, for λ̄l to satisfy the conditions of the optimization problem (9),

the following must hold:

µτopt ≤ µτh ≤ λ̄≤ µτl ≤∞. (10)

Recalling the definition of τspd in (4), it follows from (10) that any feasible solution must satisfy τl ≤

τspd ≤ τh. Since µτh > 0, we have λ̄l ≤ λ̄ and the optimization problem (9) simplifies to

sup
0≤τl≤τspd≤τh≤τopt

λ̄l(τl, τh)Jτl + (λ̄− λ̄l(τl, τh))Jτh , (11)

where λ̄l(τl, τh) =
λ̄−µτh

1−µτh/µτl
, if µτl 6= µτh , and λ̄l(τl, τh) = 0, otherwise.

The culmination of this discussion is summarized in the following corollary, which states that the solution

of the capacitated problem reduces to five simple and mutually exclusive cases, as depicted in Figure 2.

COROLLARY 1. There exists an optimal solution to the capacitated problem (7) with up-to-two thresh-

old structure as in (11), with the following exhaustive and mutually exclusive cases:

1. Block or Full Stay (Bl-FS): τl = 0, τh = τopt,

2. Speedup only (1×Sp): 0< τl = τh ≤ τopt,

3. Block or Speedup (Bl-Sp): τl = 0, 0< τh < τopt,

4. Two-level Speedup (2×Sp): 0< τl < τh < τopt,

5. Speedup or Full Stay (Sp-FS): 0< τl < τh = τopt.

Now that we have identified the five possible cases for the solution of the capacitated problem, we turn to

the question of identifying the specific solution given certain characteristics of the problem primitives. We

begin by specifying some necessary conditions for the optimal solution of (11).
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PROPOSITION 4 (Necessary optimality conditions). If the function Jτ is differentiable with respect to

τ , with derivative

J ′τ =Gc
τ (τ) ((pw− ph)rw(τ)− (cw− ch)) +Gc

τ (T ) (rh(τ)− rw(τ)) (1 + cI − ph)

− ch
(

(rh(τ)− rw(τ))

∫ T

τ

Gc
τ (u)du)

)
,

then,

(a) An optimal solution to (11) of the form (τl, τh) with 0< τl < τspd < τh < τopt (the 2×Sp policy) must

satisfy
Jτh − Jτl
mτh −mτl

=
J ′τl

1−GT (τl)
=

J ′τh
1−GT (τh)

. (12)

(b) An optimal solution to (11) of the form (0, τh) with τspd < τh < τopt (Bl-Sp policy) must satisfy

Jτh − J0

mτh

=
J ′τh

1−GT (τh)
≥ J ′0

1−GT (0)
≡ J ′0. (13)

(c) An optimal solution to (11) of the form (τl, τopt) with 0< τl < τspd < τopt (Sp-FS policy) must satisfy

Jτopt − Jτl
mτopt −mτl

=
J ′τl

1−GT (τl)
≤

J ′τopt
1−GT (τopt)

. (14)

(d) An optimal solution to (11) of the form (0, τopt) (Bl-FS policy) must satisfy

J ′0 ≡
J ′0

1−GT (0)
≤
Jτopt − J0

mτopt

≤
J ′τopt

1−GT (τopt)
. (15)

Proposition 4 establishes that the ratio ξ(τ) := J ′τ/(1−GT (τ)) plays a critical role in characterizing the

solution. This ratio expresses the marginal increase in patient’s value from raising the threshold relative

to the corresponding marginal increase in expected service time. While the former potentially benefits the

patients, the latter hurts the patient population by reducing available capacity.

Examining the necessary conditions of (14) and (15), we note that if τopt is an internal maximum of Jτ ,

these conditions will never be satisfied. This is because, in such a case ξ(τopt) = J ′τopt = 0. In particular, in

such cases, it is never optimal to keep patients in the hospital for their full stay (FS). This observation is

formalized in the next corollary:

COROLLARY 2. If τopt is an internal maximum point of Jτ , that is, if 0 < τopt < T , then the policies

Sp-FS or Bl-FS are not optimal. In particular, under these conditions, it is never optimal to keep a patient

in the hospital for their full stay when the hospital ward is overloaded.

While Proposition 4 provides necessary conditions for optimality of (11), it would also be desirable

to establish sufficient conditions for optimality. Such conditions are provided in Lemma EC.8. However,

as it turns out, the conditions presented in that lemma are practically unrealistic (see Figure 5 and the

accompanying discussion). Hence, we include the lemma in the Appendix for completeness.
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4.3. The Multi-Patient Type Case

We now extend the capacitated ward problem to the heterogeneous-patient case, accounting for multiple

patient types, each with its own characteristics. Let type-i patients (i= 1, ..., I), rih(·) and riw(·) denote their

infection hazard-rate functions at home and in the ward, respectively, and let pih and piw be the corresponding

probabilities of surviving that infection. These characteristics result in a type-dependent reward function

J iτ and a type-specific optimal threshold τ iopt. The arrival rate for type-i patients is denoted by λi. In this

heterogeneous-patient setting, the hospital needs to determine optimal stay-up-to thresholds for each type,

while accounting for its limited capacity.

To model overload in this context, let Si
τ iopt

be the LOS of a type-i patient under a full stay policy with

threshold τ iopt. Define the system’s offered load as U =
∑I

i=1 λ
iE
[
Si
τ iopt

]
, where n is the number of beds

and ρ= U
n

is the ward load. The system is considered overloaded if ρ> 1.

Similarly to the single-patient type case, we use a fluid-model approximation to evaluate the system’s

workload in steady state. We again consider a generic policy that divides each patient type i into Ki + 2

classes. For class k (k = 0, ...,Ki + 1) of patient type i, the arrival rate is λ̄ik and a single threshold τ ik
is applied. The thresholds satisfy 0 = τ i0 ≤ τ i1 ≤ ... ≤ τ iKi ≤ τ

i
Ki+1

= τ iopt. The corresponding multi-type

optimization problem is given by:

sup
~K∈NI ; (~λi,~τ i)∈RK

i+2
+ ×RK

i+2
+ , i=1,...,I

I∑
i=1

Ki+1∑
k=0

λ̄ikJ
i
τ i
k

(16)

s.t.
I∑
i=1

Ki+1∑
k=1

λ̄ikm
i
τ i
k

= 1,

Ki+1∑
k=0

λ̄ik = λ̄i, i= 1, ..., I,

0 = τ i0 ≤ τ i1 ≤ ...≤ τ iKi ≤ τ
i
Ki+1 = τ iopt, i= 1, ..., I,

where the expected LOS of a patient of type i and class k is

mi
τ i
k
≡ 1

µi
τ i
k

=

∫ τ ik

0

xgiT (x)dx+

∫ ∞
τ i
k

τ ikg
i
T (x)dx=

∫ τ ik

0

xgiT (x)dx+ τ ik(1−Gi
T (τ ik)). (17)

The first constraint above should be
∑I

i=1

∑Ki+1

k=1 λ̄ikm
i
τ i
k
≤ 1 as opposed to

∑I

i=1

∑Ki+1

k=1 λ̄ikm
i
τ i
k

= 1, but

by an argument analogous to that of Lemma 2, the two formulations are equivalent.

For fixed values ofK1, ...,KI and ~τ 1, ...,~τ I , the above is a linear program in ~λ1, ...,~λI with
∑I

i=1(Ki+2)

variables and I + 1 constraints. By a similar argument to Proposition 3, there exists an optimal solution to

(16) with at most I + 1 non-empty patient classes. This is formalized next.

PROPOSITION 5. There exists an optimal solution to (16) that creates at most I + 1 patient classes. In

that solution, at least I− 1 of the patient types have a single type-specific threshold applied to them and up

to one patient type has up to two type-specific thresholds applied to it.
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We conclude that handling the multi-patient type capacitated case is not as onerous as one might think.

It involves determining which single patient type should be assigned two thresholds and identifying the

corresponding I + 1 thresholds. The I − 1 classes, each with the single threshold, apply a speedup only

policy (Figure 2(b)), where the speedup threshold can also be 0. Unlike the homogeneous-patient case,

the speedup threshold here cannot be simply characterized as in (4), because the relationship between the

patient types influence the optimal thresholds.

By Proposition 5, the optimization problem (16) can be equivalently written as

sup
(λi
l
,τ i
l
,τ i
h

)∈R3
+, i=1,...,I

I∑
i=1

(
λ̄ilJ

i
τ i
l

+ (λ̄i− λ̄il)J iτ i
h

)
(18)

s.t.
I∑
i=1

(
λ̄ilm

i
τ i
l

+ (λ̄i− λ̄il)mi
τ i
h

)
= 1,

0≤ λ̄il ≤ λ̄i, i= 1, ..., I,

0≤ τ il ≤ τ ih ≤ τ iopt, i= 1, ..., I.

Referring back to Proposition 5, we note that, since it is unknown a priori which patient type will require

two thresholds and which type one, the formulation allows up to two thresholds per patient type for all I

patient types. Our next result establishes necessary conditions for the optimality of a solution to the problem

(18).

PROPOSITION 6 (Necessary optimality conditions). If the functions J iτ , i = 1, ..., I , are all differen-

tiable as a function of τ , with derivatives J i
′
τ , respectively, then an optimal solution to (18) must satisfy for

all i, j ∈ {1,2, ..., I}, τ i ∈ {τ il , τ ih}, τ j ∈ {τ
j
l , τ

j
h},

J i
′

τ i

1−Gi
T (τ i)

=
J j
′

τj

1−Gj
T (τ j)

, 0< τk < τkopt, k ∈ {i, j}, (19)

J i
′

0 ≤
J j
′

τj

1−Gj
T (τ j)

, τ i = 0, 0≤ τ j ≤ τ jopt, (20)

and
J i
′

τ iopt

1−Gi
T (τ iopt)

≥
J j
′

τj

1−Gj
T (τ j)

, τ i = τ iopt, 0≤ τ j ≤ τ jopt. (21)

Proposition 6 highlights the pivotal role of the index ξi(τ) := Ji
′
τ

1−Gi
T

(τ)
in determining the speedup and

blocking thresholds for various patient types. Specifically, it states that: (1) if it is optimal to use blocking

for a certain patient class (i.e., setting a speedup threshold τ = 0), then the index ξi(τ) is minimal at time 0

(see (20)). (2) if it is optimal to allow a full stay for a class (i.e., setting a speedup threshold τ = τopt), then

the index ξi(τ) is maximal at time τopt (see (21))3. Intuitively, the index ξi(·) expresses the tradeoff between

3 Similarly to Corollary 2, we will see that under practically relevant conditions, this case will not be optimal unless τopt = T . This
is formalized in Corollary 3.
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the marginal value of extending the patient’s stay and the corresponding marginal expected service time (or

LOS). These two necessary conditions align with a policy that prioritizes speedups for the patient type that

minimizes this index. This motivates us to propose the dynamic Index-based Speedup Policy (ISP), which is

reminiscent of the well-known generalized Cµ rule (van Mieghem 1995, Mandelbaum and Stolyar 2004).

The Dynamic Index-based Speedup Policy (ISP). Building on Proposition 6, we propose a dynamic

discharge policy for hospital wards operating under capacity constraints. Under this policy, when the hospi-

tal ward is at full capacity and a new patient arrives, the system identifies and discharges the patient with the

lowest index ξ(τ) := J ′τ/(1−GT (τ)), where τ is the current hospitalization time. If a patient remains in the

ward until their optimal threshold τopt, they are automatically discharged at that time. Algorithm 1 provides

a discrete-time implementation of the ISP algorithm. Note that this algorithm is sufficiently flexible to allow

for a dynamic update of the index functions ξ based on real-time patient status changes. This algorithm will

be evaluated numerically in the next section, demonstrating its performance in realistic hospital scenarios.

Algorithm 1: The Discrete-Time ISP Algorithm
When a new patient arrives with τ iopt > 0, if there is a bed available, admit the patient to the ward.

If there are no beds available, calculate the following index for all patients in the ward:

1. For hospitalized patients, calculate ξi(τ) = J i
′
τ /(1−Gi

T (τ))≈ Ji(τ+1)−Ji(τ)

1−Gi
T

(τ+1)
, where τ is their current

LOS.

2. For the new patient, calculate ξi(0) = J i
′

0 /(1−Gi
T (0))≈ Ji(1)−Ji(0)

1−Gi
T

(1)
.

Find the patient with the lowest index.

If the lowest index corresponds to the new patient, block that patient. If the lowest index corresponds

to a currently hospitalized patient, send that patient to home care and admit the new one.

REMARK 2. The ISP algorithm is more elaborate than the heuristic proposed by Ouyang et al. (2020),

though it shares a common structure: in both cases, when a patient arrives to a full unit, an index-based

policy chooses whether the new patient is admitted or another patient is sped up. The key difference is the

proposed indexes. Ouyang et al. (2020) analyzed a single-class case where all patients’ health conditions

and LOS were governed by the same Markov chain (with six health-stages). They evaluated two policies

(among others): (a) The Greedy policy uses the mortality risk difference as an index, which, in our notation,

corresponds to Jτopt − Jτ (assuming costs are zero); (b) The Ratio policy applies the ratio of the mortality

risk difference to the patient’s LOS (given their medical state) as the index, which translates to
Jτopt−Jτ
mτopt

in

our framework. In contrast, the ISP algorithm uses a data-driven index of ξ(τ) = J
′
τ

(1−GT (τ))
, which reflects

the predicted marginal increase in mortality risk divided by the predicted expected change in the patient

LOS (based on their current state). Furthermore, the ISP algorithm accommodates heterogeneous patients

with varying risk functions, making it more versatile.
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We end this section with Corollary 3, observing that if the reward functions J are increasing up to their

optimal threshold τopt, it is never optimal to keep a patient for its full stay unless their τopt = T . This follows

straightforwardly from Proposition 6.

COROLLARY 3. If the functions J i are differentiable and J i
′
(τ)> 0 for all τ < τ iopt, and if patient type i

obtains its maximum reward, J i, at an internal point 0< τ iopt <T , then the full stay policy is never optimal

for patient type i in the overloaded regime.

5. Numerical Analysis
In this section, we explore the practical relevance of our theoretical results through numerical simulations

based on real-world scenarios inspired by Carmen et al. (2019). First, we explore the uncapacitated, single-

patient case (§5.1) and then investigate the impact of capacity constraints (§5.2). For consistency with actual

hospital practices, which involve daily decision-making, and the prediction models of Carmen et al. (2019),

we conduct all simulations in daily resolution.

Carmen et al. (2019) provides risk models based on patient profile including: demographics (e.g., age,

disease), treatment details (e.g., chemotherapy treatment length), health status (e.g., white blood cell (WBC)

counts), and location (e.g., post-treatment location). We integrate their risk function into our model to eval-

uate the performance of our policies in practice.

5.1. The Uncapacitated Case

In this section, we explore the optimal LOS for hematology patients in the hospital ward under uncapacitated

conditions, focusing on how patient-specific factors influence the decision. Our analysis includes the four

main types of hematological cancers (AL, CL, L, and MM). For each disease type, we vary key patient

characteristics such as age and treatment length, and then compute the optimal effective threshold using

the single-patient optimization model presented in Section 34. Consistent with typical clinical practices,

the maximal hospital LOS is set to 30 days (T = 30). In addition, for ease of exposition, we assume zero

hospitalization costs (i.e., cw = ch = cI = 0).

The infection risk functions used across the investigated cases can be categorized into two main types,

as shown in Figure 1(c): monotone decreasing functions, where the infection risk consistently declines over

time, and increasing-decreasing functions, where the infection risk initially rises, reaches a peak, and then

declines. Notably, for each patient type, the infection risk functions for home and hospital settings share

the same shape, differing only in their respective risk level. We find that the increasing-decreasing risk

functions generally result in no observation period unless the patient has a significant infection history, such

as more than eight prior infections, and is over 40 years old. In contrast, monotone decreasing risk functions

consistently lead to non-zero observation periods. (See Appendix D.1.)

4 The numerical results rely on the discrete-time MDP model presented in E.1, which is equivalent to a discrete-time version of the
continuous-time Newsvendor-type model discussed in Section 3.
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Considering a specific case study, presented in Figure 4, which analyzes the discharge policy based on age

for patients with a significant history of infections (9 prior episodes) but in a good post-treatment condition

(WBC > 1000). The infection risk function here is of the increasing-decreasing type, peaking on day 12

regardless of age, while overall risk levels increase with age (see Figure 4(a)). Figure 4(b) highlights a

sharp policy shift: no observation is recommended for patients aged 40 or younger, while for those above

45, observation is recommended until around the risk function peak. This abrupt shift between the two

policies cannot be readily inferred from the incremental effect of age on the risk function, which is relatively

small. This change arises from the behavior of the expected reward function Jτ , shown in Figure 4(c).

For younger patients, Jτ is decreasing, favoring immediate discharge, whereas for older patients, Jτ is

increasing-decreasing, justifying observation. Finally, Figure 5(a) presents the ISP index (ξ) for different

age groups, along with the corresponding τopt values for each group. A closer look at the decision-relevant

range, shown in Figure 5(b), focuses on age groups where τopt > 0 and considers only days up to τopt.

Within this range, ξ remains positive (as assumed in Lemma EC.8 in the Appendix), but it is not necessarily

monotone—it increases and then decreases over time.
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We now turn to examining the interaction between the discharge policy, system occupancy, and patient

LOS using data of 1332 patients who were candidates for observation during a specific period in the HW

(dataset details in Carmen et al. (2019)). Figure 6(a) shows a histogram of the optimal policy for observa-

tion time, τopt, as determined by our uncapacitated model (‘Policy’, solid line). While τopt is the maximal

LOS under our model, actual observation LOS can be shorter if patients get an infection during their stay.

To provide a realistic depiction of actual observation LOS under the optimal policy, we simulated infection

incidents and the resulting observation times for each patient, assuming the optimal policy was implemented

and sufficient capacity was always available (‘Simulation’, dotted line). Note that we rely on simulated

infection events rather than the historical data of patient’s infection time, because many patients were dis-

charged earlier than τopt, providing no information on whether or not they would have gotten infection had

they not been released that early. The results indicate that under the optimal policy with no capacity con-

straints, only 18.2% of the patients should not stay for observation, while the remainder would benefit from

some hospital stay. Furthermore, a substantial fraction of the patients (50.4%) would experience a shorter

LOS than optimal due to hospital-acquired infections.

In practice, the hospital may have capacity constraints, leading to either speeding up currently-observed

patients or blocking new patients from being observed. Figure 6(b) displays actual LOS of patients in our

sample (’Actual’, solid line), based on observed data, alongside the simulated LOS from Figure 6(a) for

comparison. We observe that, in the data, 33.9% of the patients had zero observation days, with 26.6%

discharged immediately after treatment and 7.3% contracting an infection right away. Additionally, the

actual LOS is statistically shorter than the simulated LOS assuming infinite capacity (’Simulation’, dotted

line). However, the actual stay exhibits a slightly heavier right tail. Besides limited capacity, another possible

explanation for this gap in LOS is the use of a different discharge policy by physicians, recommending

shorter LOS for some patients.

Figure 6(c) displays the histogram of observation bed occupancy for both the optimal uncapacitated

policy and the actual policy used at the hospital. The optimal uncapacitated policy would have occupied
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up to 10 observation beds simultaneously, while the actual hospital policy used up to 8 beds. On average,

the optimal uncapacitated policy would have needed 4.1 beds (SD= 1.83), while in practice, the average

number of patients in observation was 1.6 (SD= 1.24).

Our data also allows for comparison between the actual policy and the optimal uncapacitated policy with

respect to patient outcomes. By simulating the mortality rate under the optimal uncapacitated policy, we

found that, while the actual mortality rate in the data was 4.43%, it could have been reduced by 27.5%

to 3.2% with the optimal uncapacitated policy. This suggests that patient outcomes could be improved by

changing the discharge policy and increasing capacity. In the next section, we apply our capacitated models

to explore the effect of limited capacity.

5.2. The Capacitated Case

Next, we examine how capacity constraints affect the optimal policy and study the performance of the ISP

algorithm. In Section 5.2.1, we analyze the homogeneous-patient case, and in Section 5.2.2 the heteroge-

neous case. Our main performance measure is the expected reward, J , with focus on the survival rate, which

is obtained from J by setting hospitalization and home-care costs to zero.

5.2.1. The Capacitated Case with Homogeneous Patients We start by examining how the

shape of the expected reward functions affects the impact of limited capacity. As demonstrated in Fig-

ure 4(c), the reward function, J , is generally flat around the optimal threshold τopt, with more significant

changes occurring as we move farther from τopt. Therefore, strict capacity constraints will likely result in

higher mortality rate (lower survival rates), while less stringent constraints are unlikely to change mortality

rate dramatically.

Next, we examine the optimal policy types for patients in our data, considering their profile and system

load under the assumption of a homogeneous patient population. According to Corollary 1, the optimal

policy may involve up to two thresholds and fall into one of five possible types. We aim to empirically test

which of these types is more prevalent in practice. For this analysis, we assume the system is overloaded,

with system loads ranging from moderately to highly overloaded, corresponding to values of ρ equal 1.02,

1.05, 1.1, or 1.2 (i.e., the arrival rate (λ̄) is µτopt × ρ).

We solve the optimization problem for 19,200 combinations of disease (4), WBC level (2), age (15),

number of past infections (10), treatment protocol length (4), and system load (4). For these combinations,

we identify the parameter sets that result in the optimality of each of the five policy types depicted in Figure

2. Table 1 presents the frequency of each policy type. Because τspd is rarely an integer, exact 1×Sp policies

are infrequent due to discretization. Therefore, we define “1×Sp-type” policy as one where τh − τl = 1,

meaning the two groups that are sped up are discharged within two consecutive days. This category is

further divided into two subcases: one where the upper threshold τh = τopt (which is also an Sp-FS policy)

and another where the upper threshold τh < τopt (which is also a 2×Sp policy). These two subcases are
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labeled in Table 1 as “1×Sp or Sp-FS” and “1×Sp or 2×Sp”, respectively. Notably, we observed no patient’s

parameter set with pure Sp-FS policy solutions but did encounter some parameter sets with pure 2×Sp

policy solutions.

Table 1 Frequency of solution types as a function of patient characteristics

Case Bl-Sp 2×Sp 1×Sp or 2×Sp 1×Sp or Sp-FS Sp-FS Bl-FS

All 2.5% 7.2% 45.1% 45.0% 0.0% 0.1%
Age 20 1.8% 4.6% 38.8% 54.9% 0.0% 0.0%

30 1.6% 4.7% 40.3% 53.0% 0.0% 0.4%
40 2.4% 5.5% 41.6% 50.1% 0.0% 0.4%
50 2.3% 6.6% 43.2% 47.9% 0.0% 0.0%
60 3.0% 7.6% 45.3% 43.5% 0.0% 0.7%
70 2.4% 8.4% 47.5% 41.7% 0.0% 0.0%
80 3.0% 9.1% 49.8% 38.2% 0.0% 0.0%
90 2.9% 10.1% 51.6% 35.3% 0.0% 0.0%

Disease AL 7.9% 0.0% 62.9% 28.7% 0.0% 0.4%
CL 0.0% 10.9% 32.5% 56.6% 0.0% 0.0%
L 0.0% 17.4% 35.2% 47.4% 0.0% 0.0%

MM 0.0% 2.5% 44.4% 53.1% 0.0% 0.0%
Load 1.02 0.0% 8.7% 16.9% 74.2% 0.0% 0.2%

1.05 0.2% 11.2% 34.0% 54.4% 0.0% 0.2%
1.1 0.9% 8.8% 56.6% 33.5% 0.0% 0.2%
1.2 8.7% 0.2% 73.0% 18.1% 0.0% 0.0%

Our numerical analysis leads to the following observations: a) Policies of 1×Sp type account for approx-

imately 90% of our examples. Only 7.2% correspond to a pure 2×Sp type, 2.5% to a Bl-Sp type, and 0.1%

to a Bl-FS type. In practice, Bl-Sp and Bl-FS policy types should be hardly used. b) As the system load

increases, the 1×Sp policy type becomes more prevalent compared to a pure 2×Sp type. However, the

Bl-Sp policy type is more common under extremely high loads (e.g., when ρ= 1.2). c) The prevalence of

policy types across different cancer types is similar, with the exception of AL, which shows a higher per-

centage of Bl-Sp and “1×Sp or 2×Sp” policy types. The dominance of the 1×Sp type over all other cases

demonstrates that optimality and fairness often align, so that one does not need to sacrifice one goal for the

other.

Comparing the total reward (which is equivalent to the total survival rate because of the zero hospital-

ization and home-care costs assumption) under the uncapacitated and capacitated policies, we find that the

decrease in survival rate due to capacity limitation is relatively small. Specifically, the reduction is less than

1.5% when ρ= 1.2, 0.7% when ρ= 1.1, and 0.25% when ρ= 1.05.

The high prevalence of 1×Sp-type policies naturally raises the question: how much would the total sur-

vival rate decrease if we restricted decisions to this simple and fair policy? To examine this, we compared

the expected reward (with zero hospitalization and home-care costs) under the 1×Sp policy versus the opti-

mal capacitated policy. Across all examined combinations, the reduction in survival rate remained below
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0.5%. Notably, Proposition 5 established that in a multi-class setting, the optimal policy follows a 1×Sp

structure for all but one patient type. Hence, this analysis provides an empirical upper bound on the potential

loss if one were to impose a single-threshold constraint per class in the multi-class optimization.

5.2.2. The Capacitated Case with Heterogeneous Patients Thus far, we have assumed a lim-

ited capacity setting with homogeneous patients. We now extend our analysis to the multi-type patient

scenario. Section 4.3 introduced the ISP algorithm, which implements a multi-threshold policy by selecting

patients for early discharge or blocking using the index ξ from Proposition 6. To evaluate the algorithm’s

performance, we conduct a data-driven simulation using the same 1332-patient sample from Section 5.1.

In the simulation, patient arrivals followed the actual chemotherapy completion dates. Each patient infec-

tion and mortality risk functions were based on their actual profile at admission. We calculated the optimal

uncapacitated LOS threshold and allowed patients to stay for that duration if observation beds were avail-

able and no infection was detected. If no bed was available upon arrival, we calculated the index ξ(τ) =

J
′
τ/(1−GT (τ)) (or its discrete-time equivalent), as outlined in Algorithm 1, for both the new patient and

for all currently hospitalized patients. The patient with the lowest index was sent to home care (which was

done by either blocking the new arrival or expediting an existing patient’s discharge, depending on whose

index is lower). We varied the number of hospital beds dedicated to observation from 0 to 10; note that we

chose to stop at 10 beds because it was the maximal number of occupied beds under infinite capacity (see

Figure 6(c)).

Figure 7 presents the ISP simulation results (‘ISP’, solid lines), and the actual hospital data (‘Data’,

dashed lines). It also includes results for a myopic policy (‘Myopic’, dotted line), which we will describe

later. Figure 7(a) shows that the average number of occupied beds under ISP does not exceed 4.1, which

occurs when capacity is 10, compared to 1.6 in practice. Naturally, occupancy increases as bed capacity

increases. Notably, with capacity of only 2 available beds, the ISP algorithm and the actual hospital data

exhibit the same average occupancy.
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Figure 7(b) displays the mortality rate as a function of available observation beds (3-std confidence inter-

vals are marked with gray shading). With 10 beds, the ISP algorithm reduces mortality rate to 3.2%, a 27.7%

improvement over the data baseline of 4.43%. To distinguish between the benefits of ISP to those of added

capacity, we compare the mortality rate in the data to the mortality under ISP policy in the case of equal

average capacity usage. As seen in Figure 7(a), this occurs when ISP is used with two beds. Figure 7(b)

shows that, with a capacity of two available beds, the ISP algorithm achieves a 23.5% reduction in mor-

tality rate (from 4.43% to 3.39%). Therefore, the remaining 4.2% improvement is attributable to increased

capacity. However, this comparison is not exactly “apples to apples” because, in practice, beds availability

for observation changes dynamically and physicians also have access to discretionary real-time information

about patients’ medical status and home-care suitability. Our simulation lacks access to such discretionary

information, which could further refine decision-making. For example, Kim et al. (2015) estimated that

discretionary information improved ICU admission decisions more than a small capacity increase.

As an additional benchmark, we compare ISP to a myopic policy that evaluates hospitalization versus

home care based on short-term mortality risk. Chan et al. (2012) established a 50% performance guarantee

for a myopic discharge policy and demonstrated that it typically performs better in practice. The myopic

approach mimics a physician’s real-time decision-making by comparing immediate risks rather than long-

term consequences. Specifically, for each patient observed for t days, we calculate the index rh(t+ 1)(1−

ph)/rw(t+ 1)(1− pw), which compares the next-period mortality risk at home versus at the hospital. An

index greater than 1 means that risk at home care is greater than at the hospital. Under limited capacity, the

same index determines which patient is prioritized for discharge, by identifying the patient with the lowest

index.

Figure 7 presents the performance of this myopic policy (’Myopic’, dotted lines). It uses very little

capacity and achieves an 8.8% reduction in mortality rate compared to observed hospital data. Still, this

is significantly lower than the 27.7% reduction achieved by ISP. In particular, with ample capacity, ISP

reduces mortality by 20.5% compared to the baseline of the myopic policy.

REMARK 3. As explained in Remark 2, the policies suggested by Ouyang et al. (2020) can be interpreted

using our J and τopt notations. We specifically examined the analogy of the Ratio policy (RP), which

outperformed the Greedy policy in Ouyang et al. (2020). Unlike our setting, Ouyang et al. (2020) does not

have an underlying uncapacitated optimization problem. To ensure a ‘fair’ comparison, we implemented

RP assuming that patient LOS is first optimized according to Section 4. Our findings indicate that, unlike

the myopic policy, RP achieves similar performance to ISP, when used as a decision index instead of ξ. This

suggests that ISP’s advantage stems primarily from its look-ahead quality and its integration of both the

value function and the optimal LOS, rather than from its specific functional form.
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6. Conclusions
Our paper developed methodologies to optimize LOS for hematology patients, balancing hospital-acquired

infection risk (which incentivizes early discharge of high-risk patients) and home-acquired infection risk

(which favors extended observation at the hospital to enable timely infection treatment), while considering

their resulting mortality risks. Using newsvendor-type formulation, we explore how infection risk dynamics

shape optimal observation policies for individual patients. We then extend this analysis to the social opti-

mization problem where capacity constraints limit adherence to the unconstrained optimal solution. Our

analysis covers a wide range of risk function dynamics that occur in practice, providing actionable insights

for hospital observation policies.

A key aspect of our model is its incorporation of patient heterogeneity, reflecting the reality that HWs

treat multiple patient types simultaneously. Our numerical analysis of the single-patient type suggests that

restricting ourselves to the speedup-only policy has a minimal impact on patient risk, simplifying imple-

mentation in the multi-type patient setting. Even when this simplification is suboptimal, our multi-type

capacitated model reveals that at most one patient type will need more than a single discharge threshold.

HWs are inherently small due to the need to keep patients isolated (which is expensive), and hence

are typically overloaded. But, our model also applies for other medical units, where capacity may be less

constrained. In such units, patient volumes may fluctuate over time and infection risk may depend on ward

occupancy, influencing the hospitalization versus home-care decision. Such dependencies are natural to

consider because infection risk may increase with the number of people a patient encounters during her

stay. Further work could explore these dependencies.

Another promising direction is optimizing discharge timing when patient risk assessments evolve dynam-

ically. We note that models for predicting infection risk of Hematology patients dynamically over time do

not exist in the literature yet. Hence, following Carmen et al. (2019), we assume that the infection haz-

ard rates are fixed at treatment completion, with no real-time updates during observation (expect for the

elapsed time and whether or not the patient got an infection). For all practical purposes, our current models

are the best that can be implemented with current technology. But we believe that new information that is

received during observation may change the infection hazard rate of a specific patient and thus the optimal

observation time may need to be updated dynamically. Our uncapacitated (single-patient) model can natu-

rally extend to this setting and our ISP algorithm remains applicable with dynamic risk functions. However,

further research is needed to determine if the index we proposed performs well in this case. This will be

important to address as new models for predicting patient risks dynamically become available.

Our analysis assumes that patients are either observed in the HW or at home care. In practice, however,

patients without an available HW bed may instead be hospitalized in the general ward rather than be sent

home. While this alternative prevents immediate discharge, prior research (Carmen et al. 2019) indicates

that dedicated HW care is superior to general-ward care, in terms of both infection and mortality risk. This
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suggests that our analysis may be utilized to incorporate the option of general-ward hospitalization versus

home care in a nested fashion.

Additionally, insurance reimbursement policies may penalize readmissions. For example, in the US,

Medicare contracts with quality reviewers who assess whether hospital discharge planning was adequate

and may deny payment for certain readmissions. Our uncapacitated model can provide justification for dis-

charge recommendations in such settings. In the capacitated case, readmission costs are explicitly captured

by the parameter cI , which accounts for hospitalization costs following an infection. If reimbursement rules

impose higher costs when infections occur at home rather than in the hospital, this distinction can be easily

incorporated into our model.

To summarize, our paper explored the question of where a patient should be observed following cancer

treatment, considering that both hospital care and home care have their pros and cons. Our framework allows

one to find a solution that strikes the right balance between the two locations, effectively achieving the “best

of both worlds.” In particular, we show that, in many cases, smartly timing the transition between hospital

and home care considering both clinical and capacity factors can significantly improve patient outcomes.

Beyond healthcare, our framework may be applied to other service systems, where there are inherent trade-

offs between professional service and self-service and a fine balance needs to be achieved.
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Appendix A: Proofs and Additional Details for Section 3

PROOF OF PROPOSITION 1: Assume that Assumption 1 holds and that, in addition, 0< rh < rw and both are constant

over time. In this case, we have that

J ′τ = e−rwτ
(

(pw− ph)rw− (cw− ch) + e−rh(T−τ)(rh− rw)(1 + cI − ph)− ch
rh− rw
rh

(
1− e−rh(T−τ)

))
.

Solving for J ′τ = 0 we obtain

e−rh(T−τ) =
(pw− ph)rw + ch

rw
rh
− cw

(rw− rh)(1 + cI − ph + ch/rh)
,

So that the unique value of τ0 that solves for J ′τ = 0 satisfies

τ0 := T +
1

rh
ln

(pw− ph)rw + ch
rw
rh
− cw

(rw− rh)(1 + cI − ph + ch/rh)
.

Thus,

τopt = min

{
T,max

{
0, T +

1

rh
ln

(pw− ph)rw + ch
rw
rh
− cw

(rw− rh)(1 + cI − ph + ch/rh)

}}
.

To confirm that τopt is indeed a global maximum of the function Jτ we take the second derivative of Jτ with respect

to τ and evaluate it at τ0, as follows:

J ′′τ =−rwJ ′τ + rhe
−rwτe−rh(T−τ)(rh− rw)(1 + cI − ph + ch/rh),

so that

J ′′τ0 = rhe
−rwτ0e−rh(T−τ0)(rh− rw)(1 + cI − ph + ch/rh)< 0.

�

We next prove Proposition 2 by breaking it into smaller more specific lemmas each concentrating on the monotonic-

ity with respect to a different parameter. But first we prove a structural lemma that will be used throughout.

LEMMA EC.1 (Monotonicity of the survival function). Under Assumption 1, we have that:

(a) The survival function Gc
τ (·) is decreasing in τ .

(b) The expected time in the ward
∫ τ

0
Gc
τ (u)du, is increasing in τ .

(c) The expected time of being observed at home
∫ T
τ
Gc
τ (u)du is decreasing in τ .

(d) The probability that a patient will develop infection at home, Gτ (T )−Gτ (τ), is decreasing in τ .

(e) The probability that a patient will develop infection at the hospital, Gτ (τ), is increasing in τ .

PROOF: Let τ1 < τ2.

(a) We wish to show that Gc
τ1

(t)≥Gc
τ2

(t), for all t.

Gc
τ1

(t) = exp
(
−
∫ τ1∧t

0

rw(u)du−
∫ τ1∨t

τ1

rh(u)du

)
≥ exp

(
−
∫ τ2∧t

0

rw(u)du−
∫ τ2∨t

τ2

rh(u)du

)
=Gc

τ2
(t),

where the inequality follows from Assumption 1 and specifically from assuming that the risk of developing infection

is higher at the hospital than at home.

(b) We wish to show that
∫ τ1

0
Gc
τ1

(t)dt≤
∫ τ2

0
Gc
τ2

(t)dt.∫ τ1

0

Gc
τ1

(t)dt=

∫ τ1

0

exp
(
−
∫ t

0

rw(u)du

)
dt≤

∫ τ2

0

exp
(
−
∫ t

0

rw(u)du

)
dt=

∫ τ2

0

Gc
τ2

(t)dt.
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(c) We wish to show that
∫ T
τ1
Gc
τ1

(t)dt≥
∫ T
τ2
Gc
τ2

(t)dt.∫ T

τ2

Gc
τ2

(t)dt≤
∫ T

τ2

Gc
τ1

(t)dt≤
∫ T

τ1

Gc
τ1

(t)dt,

where the first inequality follows from item (a).

(d) We first observe that Gτ (T )−Gτ (τ) =Gc
τ (τ)−Gc

τ (T ). By definition,

Gc
τ (τ)−Gc

τ (T ) = exp
(
−
∫ τ

0

rw(u)du

)(
1− exp

(
−
∫ T

τ

rh(u)du

))
,

which is decreasing in τ as a product of two function who are both decreasing in τ .

(e) The result follows by observing that Gτ (τ) = (Gτ (τ)−Gτ (T )) +Gτ (T ) which is a sum of two functions that

are increasing in τ by items (d) and (a).

�

LEMMA EC.2 (Monotonicity in cw). Under Assumption 1, the effective threshold τopt is monotone decreasing in

cw. That is, as the hospitalization cost, cw, increases the patient will be discharged home earlier.

PROOF: Recall the expression for the expected reward function in (2)

Jτ (cw) = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

= f(τ)− cw
∫ τ

0

Gc
τ (u)du,

where we explicitly write the dependence of J on the parameter cw, and f(·) is a generic function which is a function

of τ but not of cw. Let c1
w < c

2
w, and let τ 1

opt and τ 2
opt be the optimal thresholds associated with c1

w and c2
w, respectively.

We wish to show that τ 1
opt ≥ τ 2

opt.

Let τ > τ 1
opt, then it is sufficient to show that Jτ (c2

w) ≤ Jτ1opt(c
2
w), because this would imply that τ cannot be the

optimal threshold with respect to c2
w. The latter inequality indeed holds since

Jτ1opt(c
2
w)− Jτ (c2

w) = f(τ 1
opt)− f(τ) + c2

w

(∫ τ

0

Gc
τ (u)du−

∫ τ1opt

0

Gc
τ1opt

(u)du

)

≥ f(τ 1
opt)− f(τ) + c1

w

(∫ τ

0

Gc
τ (u)du−

∫ τ1opt

0

Gc
τ1opt

(u)du

)
= Jτ1opt(c

1
w)− Jτ (c1

w)≥ 0,

where the first inequality follows from Lemma EC.1 (b) and the fact that c1
w ≤ c2

w, and the second inequality follows

from the optimality of the threshold τ 1
opt. �

LEMMA EC.3 (Monotonicity in ch). Under Assumption 1, the effective threshold τopt is monotone increasing in

ch. That is, as home-care cost, ch, increases the patient will be discharged home later.

PROOF: Recall the expression for the expected reward function in (2)

Jτ (ch) = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

= f(τ)− ch
∫ T

τ

Gc
τ (u)du,
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where we explicitly write the dependence of J on the parameter ch, and f(·) is a function of τ but not of ch. Let

c1
h < c2

h, and let τ 1
opt and τ 2

opt be the optimal thresholds associated with c1
h and c2

h, respectively. We wish to show that

τ 1
opt ≤ τ 2

opt.

Let τ > τ 2
opt, then it is sufficient to show that Jτ (c1

h) ≤ Jτ2opt(c
1
h), because this would imply that τ cannot be the

optimal threshold with respect to c1
h. The latter indeed holds since

Jτ2opt(c
1
h)− Jτ (c1

h) = f(τ 2
opt)− f(τ) + c1

h

(∫ T

τ

Gc
τ (u)du−

∫ T

τ2opt

Gc
τ2opt

(u)du

)

≥ f(τ 2
opt)− f(τ) + c2

h

(∫ T

τ

Gc
τ (u)du−

∫ T

τ2opt

Gc
τ2opt

(u)du

)
= Jτ2opt(c

2
h)− Jτ (c2

h)≥ 0,

where the first inequality follows from Lemma EC.1 (c) and the fact that c1
h ≤ c2

h, and the second inequality follows

from the optimality of the threshold τ 2
opt. �

LEMMA EC.4 (Monotonicity in cI). Under Assumption 1, the effective threshold τopt is monotone decreasing in

cI . As the cost of hospitalization after infection, cI , increases, the patient will be sent home earlier so as to reduce the

probability of developing an infection.

PROOF: Once more, recall the expression for the expected reward function in (2)

Jτ (cI) = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

= f(τ) + (1 + cI)G
c
τ (T ),

where we explicitly write the dependence of J on the parameter cI , and f(·) is a function of τ but not of cI . Let

c1
I < c2

I , and let τ 1
opt and τ 2

opt be the optimal thresholds associated with c1
I and c2

I , respectively. We wish to show that

τ 1
opt ≥ τ 2

opt.

Let τ > τ 1
opt, then it is sufficient to show that Jτ (c2

I) ≤ Jτ1opt(c
2
I) because this would imply that τ cannot be the

optimal threshold with respect to c2
I . The latter indeed holds since

Jτ1opt(c
2
I)− Jτ (c2

I) = f(τ 1
opt)− f(τ) + (1 + c2

I)
(
Gc
τ1opt

(T )−Gc
τ (T )

)
≥ f(τ 1

opt)− f(τ) + (1 + c1
I)
(
Gc
τ1opt

(T )−Gc
τ (T )

)
= Jτ1opt(c

1
I)− Jτ (c1

I)≥ 0,

where the first inequality follows from Lemma EC.1 (a) and the fact that c1
I ≤ c2

I , and the second inequality follows

from the optimality of the threshold τ 1
opt. �

LEMMA EC.5 (Monotonicity in ph). Under Assumption 1, the effective threshold is monotone decreasing in ph.

As the survival probability in case of infection at home, ph, increases, the threshold will be lower; hence, the patient

will be sent home earlier.

PROOF: Once more, recall the expression for the expected reward function in (2)

Jτ (ph) = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

= f(τ) + ph(Gτ (T )−Gτ (τ)),
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where we explicitly write the dependence of J on the parameter ph, and f(·) is a function of τ but not of ph. Let

p1
h < p2

h, and let τ 1
opt and τ 2

opt be the optimal thresholds associated with p1
h and p2

h, respectively. We wish to show that

τ 1
opt ≥ τ 2

opt.

Let τ > τ 1
opt, then it is sufficient to show that Jτ (p2

h) ≤ Jτ1opt(p
2
h), because this would imply that τ cannot be the

optimal threshold with respect to p2
h. The latter indeed holds since

Jτ1opt(p
2
h)− Jτ (p2

h) = f(τ 1
opt)− f(τ) + p2

h

(
Gτ1opt

(T )−Gτ1opt
(τ 1
opt)− (Gτ (T )−Gτ (τ))

)
≥ f(τ 1

opt)− f(τ) + p1
h

(
Gτ1opt

(T )−Gτ1opt
(τ 1
opt)− (Gτ (T )−Gτ (τ))

)
= Jτ1opt(p

1
h)− Jτ (p1

h)≥ 0,

where the first inequality follow from EC.1 (d) and the second inequality follows from the optimality of τ 1
opt with

respect to p1
h. �

LEMMA EC.6 (Monotonicity in pw). Under Assumption 1, the effective threshold is monotone increasing in pw.

As the survival probability in case of infection at the hospital, pw, increases, the threshold will be higher; hence, the

patient will be sent home later.

PROOF: Once more, recall the expression for the expected reward function in (2)

Jτ (pw) = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

= f(τ) + pw(Gτ (τ)),

where we explicitly write the dependence of J on the parameter pw, and f(·) is a function of τ but not of pw. Let

p1
w < p

2
w, and let τ 1

opt and τ 2
opt be the optimal thresholds associated with p1

w and p2
w, respectively. We wish to show that

τ 1
opt ≤ τ 2

opt.

Let τ > τ 2
opt, then it is sufficient to show that Jτ (p1

w) ≤ Jτ2opt(p
1
w), because this would imply that τ cannot be the

optimal threshold with respect to p1
w. The latter indeed holds since

Jτ2opt(p
1
w)− Jτ (p1

w) = f(τ 2
opt)− f(τ) + p1

w

(
Gτ2opt

(τ 2
opt)−Gτ (τ)

)
≥ f(τ 2

opt)− f(τ) + p2
w

(
Gτ2opt

(τ 2
opt)−Gτ (τ)

)
= Jτ2opt(p

2
w)− Jτ (p2

w)≥ 0,

where the first inequality follows from Lemma EC.1 (e) and the fact that p1
w ≤ p2

w, and the second inequality follows

from the optimality of the threshold τ 2
opt. �

LEMMA EC.7 (Monotonicity in rh). Under Assumption 1 and assuming that ch = 0, the effective threshold is

monotone increasing in rh. As the risk of getting infection at home care, rh, increases, the threshold will be higher;

hence, the patient will be sent home later.

PROOF: Once more, recall the expression for the expected reward function in (2):

Jτ (rh) = pwGτ (τ) + ph (Gτ (T )−Gτ (τ))− cw
∫ τ

0

Gc
τ (u)du− ch

∫ T

τ

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

ch=0
= pwGτ (τ) + ph(1−Gc

τ (T ))− phGτ (τ)− cw
∫ τ

0

Gc
τ (u)du+ (1 + cI)G

c
τ (T )

= f(τ) + (1 + cI − ph)Gc
τ (T )

= f(τ) + (1 + cI − ph)e−(
∫ τ
0
rw(x)dx+

∫ T
τ
rh(x)dx),
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where we explicitly write the dependence of J on the parameter rh, and f(·) is a function of τ but not of rh. Let

r1
h ≤ r2

h, and let τ 1
opt and τ 2

opt be the optimal thresholds associated with r1
h and r2

h, respectively. We wish to show that

τ 1
opt ≤ τ 2

opt.

Let τ > τ 2
opt, then it is sufficient to show that Jτ (r1

h) ≤ Jτ2opt(r
1
h), because this would imply that τ cannot be the

optimal threshold with respect to r1
h. Assuming ch = 0, the latter indeed holds since

Jτ2opt(r
1
h)− Jτ (r1

h)

= f(τ 2
opt) + (1 + cI − ph)e−

∫ τ2opt
0 rw(x)dxe

−
∫ T
τ2opt

r1h(x)dx

− f(τ)− (1 + cI − ph)e−
∫ τ
0
rw(x)dxe−

∫ T
τ
r1h(x)dx

= f(τ 2
opt)− f(τ) + (1 + cI − ph)e−

∫ τ2opt
0 rw(x)dx

(
e
−

∫ T
τ2opt

r1h(x)dx

− e
−

∫ τ
τ2opt

rw(x)dx

e−
∫ T
τ
r1h(x)dx

)
= f(τ 2

opt)− f(τ) + (1 + cI − ph)e−
∫ τ2opt
0 rw(x)dxe−

∫ T
τ
r1h(x)dx

(
e
−

∫ τ
τ2opt

r1h(x)dx

− e
−

∫ τ
τ2opt

rw(x)dx
)

≥ f(τ 2
opt)− f(τ) + (1 + cI − ph)e−

∫ τ2opt
0 rw(x)dxe−

∫ T
τ
r2h(x)dx

(
e
−

∫ τ
τ2opt

r2h(x)dx

− e
−

∫ τ
τ2opt

rw(x)dx
)

= Jτ2opt(r
2
h)− Jτ (r2

h)≥ 0,

where the first inequality follows from Assumption 1 and our assumption that r1
h < r2

h by which e−r
1
h(x) > e−r

2
h(x) ≥

e−rw(x). The second inequality follows from the optimality of the threshold τ 2
opt. �

�

We next provide an example that shows that the optimal threshold is not necessarily monotone in rw. This is illus-

trated by the discrete-time counter-example shown in Table EC.1. This table compares two scenarios, 1 and 2: in

Scenario 1 the patient has a lower risk of infection at the hospital, rw, compared to Scenario 2. At the same time,

it is optimal for the patient to be sent home sooner under Scenario 1. The example demonstrates that if the survival

probability from an infection at the hospital, pw, is large enough compared to the utility of sending a patient home,

then as the infection risk at the hospital, rw, increases, the overall survival rate at the hospital increases and, therefore,

keeping the patient longer at the hospital could be advantageous.

Table EC.1 An Example of Non-Monotonicity in the Hospital Infection Probability (rw)

Scenario 1 Scenario 2

Day (t) rw(t) Decision rw(t) Decision

1 0.38 home 0.48 ward
2 0.37 home 0.47 ward
3 0.36 home 0.46 home
4 0.35 home 0.45 home
5 0.34 home 0.44 home
6 home home
Note. T = 6, cw = 0.2, ch = 0, cI = 0.1, ph = 0.1,
pw = 0.7, rh = 0.28.

Appendix B: Proofs for Section 4

PROOF OF LEMMA 2: Suppose that the system is overloaded under the threshold τopt and consider an optimal solution

(K,~λ,~τ) to (7). Suppose that
∑K+1

k=1
λ̄kmτk < 1. Then, by the overload assumption, there is at least one class k0

such that τk0 < τopt. Recall that τK+1 := τopt. Clearly, mk0 < mK+1, and, by the optimality of τopt, we have that

Jτopt ≥ Jτk0 . We now construct a modified solution (K, λ̃, τ̃) as follows:
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• τ̃k = τk, for all k.

• λ̃k = λ̄k, for all k 6= k0 and k 6=K + 1.

• For 0< ε≤ λ̄k0 , set λ̃k0 = λ̄k0 − ε and λ̃K+1 = λ̄K+1 + ε.

Then as long as ε is small enough we have that for the new solution the two constraints of (7) are still satisfied and the

objective function is not smaller than in the original solution. Repeat this process until
∑K+1

k=1
λ̄kmτk = 1. �

PROOF OF PROPOSITION 4: The proof follows a straightforward approach relying on first-order necessary con-

ditions for optimality. First note that the Lagrangian corresponding to the optimal solution to problem (9) (which is

equivalent to (11)) is

L(τl, τh, λ̄l) =−λ̄lJτl − (λ̄− λ̄l)Jτh +α
(
λ̄lmτl + (λ̄− λ̄l)mτh − 1

)
−βτl

+ δ(τh− τopt) + ε(τl− τh)− γlλ̄l + γu(λ̄l− λ̄). (EC.1)

By the KKT conditions, the following must hold at a (local) maximum.

• Stationarity:

∂L

∂τl
=−λ̄lJ ′τl +αλ̄l(1−GT (τl))−β+ ε= 0, (EC.2)

∂L

∂τh
=−(λ̄− λ̄l)J ′τh +α(λ̄− λ̄l)(1−GT (τh)) + δ− ε= 0, (EC.3)

∂L

∂λ̄l
=−Jτl + Jτh +α (mτl −mτh)− γl + γu = 0, (EC.4)

• Primal Feasibility:

λ̄lmτl + (λ̄− λ̄l)mτh = 1,

0≤ τl ≤ τh ≤ τopt,

0≤ λ̄l ≤ λ̄.

• Dual Feasibility:

β,γl, γh, δ, ε≥ 0.

• Complimentary Slackness:

−βτl + δ(τh− τopt) + ε(τl− τh)− γlλ̄l + γu(λ̄l− λ̄) = 0.

Focusing on solutions where 0 < λ̄l < λ̄ and where τl < τh, we can immediately conclude by complimentary

slackness that ε= γl = γu = 0. Now considering the four cases described in the statement of the lemma we have that

(a) If 0< τl < τh < τopt, then by complimentary slackness we have that β = δ = 0. Thus, by (EC.2), we get

α=
J ′τl

1−GT (τl)
.

Further, by (EC.3), we get

α=
J ′τh

1−GT (τh)
.

Finally, by (EC.4), we get

α=
Jτh − Jτl
mτh −mτl

.

Thus, item (a) in the lemma follows.
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(b) Similarly, if τl = 0 and τh < τopt, we have that, by complimentary slackness, δ = 0. Thus, by (EC.2), we get

α≥ J ′0
1−GT (0)

= J ′0.

Further, by (EC.3), we get

α=
J ′τh

1−GT (τh)
.

Finally, by (EC.4), we get

α=
Jτh − J0

mτh

.

Thus, item (b) in the lemma follows.

(c) Analogously, if τl > 0 and τh = τopt, we have that, by complimentary slackness, β = 0. Thus, by (EC.2), we get

α=
J ′τl

1−GT (τl)
.

Further, by (EC.3), we get

α≤
J ′τopt

1−GT (τopt)
.

Finally, by (EC.4), we get

α=
Jτopt − Jτl
mτopt −mτl

.

Thus, item (c) in the lemma follows.

(d) Finally, if τl = 0 and τh = τopt, by (EC.2), we get

α≥ J ′0
1−GT (0)

.

Further, by (EC.3), we get

α≤
J ′τopt

1−GT (τopt)
.

Finally, by (EC.4), we get

α=
Jτopt − J0

mτopt

.

Thus, item (d) in the lemma follows.

�

PROOF OF COROLLARY 2: Recall the definition of τopt as the minimal threshold that maximizes Jτ . Suppose that

0 < τopt < T . In that case, necessarily, J ′τopt = 0, and Jτopt > Jτ , for all τ < τopt. In particular, ξ(τopt) = 0 and

(Jτopt − Jτ )/(mτopt −mτ ) > 0 for all τ < τopt. Thus inequalities (14) and (15) cannot be satisfied, and hence the

policies Sp-FS and Bl-FS cannot be optimal. �

PROOF OF PROPOSITION 6: Consider the family of policies with up to two thresholds per customer type {τ i, i=

1, ..., I} with 0 ≤ τ il ≤ τ ih ≤ τ iopt as in the problem formulation (18). The proof follows a straightforward approach

relying on first-order necessary conditions for optimality. First note that the Lagrangian corresponding to the optimal

solution to problem (18) is

L(~τl,~τh,
~̄λl) =−

I∑
i=1

(
λ̄ilJ

i
τi
l

+ (λ̄i− λ̄il)J iτi
h

)
+α

(
I∑
i=1

(
λ̄ilm

i
τi
l

+ (λ̄i− λ̄il)mi
τi
h

)
− 1

)

+

I∑
i=1

(
−βiτ il + δi(τ ih− τ iopt) + εi(τ il − τ ih)− γil λ̄il + γiu(λ̄il − λ̄i)

)
.

By the KKT conditions, the following must hold at a (local) maximum.
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• Stationarity:

∂L

∂τ il
=−λ̄ilJ i

′

τi
l

+αλ̄il(1−Gi
T (τ il ))−βi + εi = 0, i= 1, ..., I,

∂L

∂τ ih
=−(λ̄− λ̄il)J i

′

τi
h

+α(λ̄− λ̄il)(1−Gi
T (τ ih)) + δi− εi = 0, i= 1, ..., I,

∂L

∂λ̄il
=−J iτi

l
+ J iτi

h
+α

(
mi
τi
l
−mi

τi
h

)
− γil + γiu = 0, i= 1, ..., I.

• Primal Feasibility:
I∑
i=1

(
λ̄ilm

i
τi
l

+ (λ̄i− λ̄il)mi
τi
h

)
= 1,

0≤ τ il ≤ τ ih ≤ τ iopt, i= 1, ..., I,

0≤ λ̄il ≤ λ̄i, i= 1, ..., I.

• Dual Feasibility:

βi, γil , γ
i
h, δ

i, εi ≥ 0, i= 1, ..., I.

• Complimentary Slackness:
I∑
i=1

(
−βiτ il + δi(τ ih− τ iopt) + εi(τ il − τ ih)− γil λ̄il + γiu(λ̄il − λ̄i)

)
= 0.

We first establish the following convention: Without loss of generality, if λ̄il = 0 for some i, then τ il = 0, and if

λ̄il = λ̄i for some i, then τ ih = τ iopt. Also, if for some i we have that 0< λ̄il < λ̄
i, and τ il = τ ih, then we can equivalently

consider a solution where λ̄il = λ̄i and τ ih = τ iopt. This convention guarantees that for all i, τ il < τ
i
h unless τ il = τ ih = τ iopt.

Consider an optimal solution to (18) with i such that τ il < τ
i
h, then by complimentary slackness we have that εi = 0.

Thus, if τ il > 0, α = J i
′

τi
l
/(1−Gi

T (τ il )). Similarly, if τ ih < τ iopt, α = J i
′

τi
h
/(1−Gi

T (τ ih)). Additionally, if τ il = 0, then

α≥ J i′
τi
l
/(1−Gi

T (τ il )), and if τ ih = τ iopt, then α≤ J i′
τi
h
/(1−Gi

T (τ ih)). This completes the proof of the proposition. �

PROOF OF COROLLARY 3: Recall the definition of τ iopt as the minimal threshold that maximizes J iτ . Suppose that,

for some customer type i, 0< τ iopt <T . In that case, necessarily, J i
′

τiopt
= 0, and thus ξi(τ iopt) = 0. If, by contradiction,

τ iopt is an optimal threshold for some patients of type i, then by (21), we have that necessarily,

0 = ξi(τ iopt)≥ ξj(τ j)≥ 0,

where j is a customer type whose one of its optimal thresholds is τ j . Thus, τ j must be equal to τ jopt for all j. But from

the overloaded assumption, we know that such a solution is not feasible. Thus, we reach a contradiction. �

Appendix C: Sufficient Conditions for Capacitated Case

While Proposition 4 outlines necessary conditions for the optimality of the 2×Sp, Bl-Sp, Sp-FS, and Bl-FS policies, it

does not cover the “boundary” policy of 1×Sp. We are especially interested in characterizing conditions under which

this simplest and most equitable policy that uses the same speedup threshold for all patients (1×Sp) is optimal. In the

next lemma we will provide sufficient conditions for the optimality of this boundary policy, as well as that of Bl-Sp

and Bl-FS, under the assumption that the function J is increasing up to the optimal threshold τopt. In our empirically

based numerical analysis in Section 5, we observe that virtually all the cases we encounter in our data indeed satisfy

this assumption. However, they do not satisfy the assumption that ξ(·) is an increasing function. Thus we suspect that

the practical value of Lemma EC.8 is limited.



ec10 e-companion to Armony and Yom-Tov: Hospital versus Home Care

LEMMA EC.8 (Sufficient conditions for optimality). Assume that the function Jτ is differentiable as a function

of τ and that J ′τ > 0 for all 0 ≤ τ ≤ τopt. Define ξ(τ) :=
J′
τ

1−GT (τ)
. Then ξ(τ) > 0. In addition, assume that ξ(τ) is

strictly increasing. Then,

(a) The policies 2×Sp, Bl-Sp, and Sp-FS are not optimal.

(b) If Jτ−J0
mτ

< ξ(τ) for all τspd ≤ τ ≤ τopt then the Bl-FS policy is optimal.

(c) If Jτ−J0
mτ

> ξ(τ) for all τspd ≤ τ ≤ τopt then the policy 1×Sp is optimal.

PROOF OF LEMMA EC.8:

(a) Suppose that ξ(τ) is strictly increasing; then, if τl < τh we have that

J ′τl
1−GT (τl)

≡ ξ(τl)< ξ(τh)≡
J ′τh

1−GT (τh)

which is in contradiction to we Equation (12). Thus, the policy 2×Sp cannot be optimal.

Now consider (13). If ξ(τ) is strictly increasing then

Jτh − J0

mτh

=
Jτh − J0

mτh −m0

=

∫ τh
0
J ′τdτ∫ τh

0
m′τdτ

=

∫ τh
0
ξ(τ)m′τdτ∫ τh

0
m′τdτ

<

∫ τh
0
ξ(τh)m′τdτ∫ τh
0
m′τdτ

= ξ(τh)

which is a contradiction to (13). Thus, the policy Bl-Sp cannot be optimal.

Finally consider (14). If ξ(τ) is strictly increasing then

Jτopt − Jτl
mτopt −mτl

=

∫ τopt
τl

J ′τdτ∫ τopt
τl

m′τdτ
=

∫ τopt
τl

ξ(τ)m′τdτ∫ τopt
τl

m′τdτ
>

∫ τopt
τl

ξ(τl)m
′
τdτ∫ τopt

τl
m′τdτ

= ξ(τl).

Explanations: The equalities hold because the expressions are negative so when we increase the numerator the expres-

sions decrease. The resulting inequality is in contradiction to (14), which implies that the policy Sp-FS cannot be

optimal.

(b) We start by observing that by Corollary 1 an optimal solution to (11) exists and it belongs to one of the five

cases outlined in the corollary. In the case of the current lemma, since the policies 2×Sp, Bl-Sp, and Sp-FS have been

eliminated in part (a), the only viable options are policies of type 1×Sp and Bl-FS.

Suppose that Jτ−J0
mτ

< ξ(τ) for all τspd ≤ τ ≤ τopt and consider τ such that τspd < τ < τopt. Then, we have that
Jτ−J0
µτ

< ξ(τ) if and only if

m′τ (Jτ − J0)− J ′τµτ < 0. (EC.5)

Now note that for policies of type Bl-Sp, 1×Sp, and Bl-FS, the objective function of (11) at a speedup threshold of τ

is equal to

Vcap(τ) := λl(τ)J0 + (λ̄−λl(τ))Jτ ,

where λl(τ) = λ̄−µτ and, in particular, λl = 0 in 1×Sp (because then λ̄= µτ ). Then, the derivative of Vcap(τ) is

V
′

cap(τ) = λ
′

l(τ)J0 + λ̄J
′

τ −λ
′

l(τ)Jτ −λl(τ)J
′

τ = (λ̄−λl(τ))J
′

τ +λ
′

l(τ)(J0− Jτ ) =

µτJ
′

τ +λ
′

l(τ)(J0− Jτ ) =
J ′τ
mτ

− m′τ
m2
τ

(Jτ − J0) =
1

m2
τ

(J ′τmτ −m′τ (Jτ − J0)) .

Consider an arbitrary threshold τ and let ∆> 0. Then,

Vcap(τ + ∆)−Vcap(τ) = λl(τ + ∆)J0 + (λ̄−λl(τ + ∆))Jτ+∆− (λl(τ)J0 + (λ̄−λl(τ))Jτ ),
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which, since λl(τ) = λ̄−µτ , is equal to

(λ̄−µτ+∆)J0 + (µτ+∆)Jτ+∆− ((λ̄−µτ )J0 + (µτ )Jτ )

=−µτ+∆J0 +µτ+∆Jτ+∆ +µτJ0−µτJτ+µτJτ+∆−µτJτ+∆

= (µτ+∆−µτ )(Jτ+∆− J0) +µτ (Jτ+∆− Jτ ),

where the latter is positive for ∆ small enough, by (EC.5). where the latter is positive if and only if (EC.5) holds.

Therefore, the τ that maximize Vcap(τ) is the largest threshold possible in the range [τspd, τopt], i.e., τopt, which implies

that the Bl-FS policy is optimal here.

(c) The proof is entirely analogous to the proof of (b), expect for the reverse inequality of Eq. (EC.5) which implies

that Vcap(τ) is decreasing in τ .

�

Appendix D: Case Study - Supplemental Results

D.1. Optimal Policy as a Function of Patient Characteristics - Further Details for Section 5.1

As explained in Section 5.1, we investigate how various factors affect the optimal observational hospital LOS for

hematology patients in the presence of ample capacity. Figure EC.1 shows how the optimal effective threshold changes

as a function of patient characteristics such as type (disease, age), current medical state (treatment protocol, WBC

(white blood cell count) at the end of the protocol treatment), and medical history (number of past infections). We

observe that, in general, as age increases, it is optimal for the patient to stay longer in the HW (Figure 1(a)). When

examining the influence of the length of protocol on the length of hospital observation (Figure 1(b)), we notice that

patients with a medium-length protocol (6–8 days), that are the most aggressive treatment protocols, should stay longer

in the ward than patients with short- or long-length protocol. The state of the patient at the end of treatment is an

important factor too, as observed in Figure 1(c): high-risk patients whose WBC at the end of their treatment is low need

a much longer in-hospital observation period. Finally, patient history also impacts risk and the optimal observation

time, as we observe in Figure 1(d). The non-monotonicity around the low number of past infections likely follows

from the fact that the first couple of treatment cycles have a higher infection risk than later cycles (see Table 2 in

Carmen et al. 2019).

D.2. Sensitivity to the Infection Survival Probability

An important aspect of our model and analysis is its potential to serve as a decision-support tool for hospitals, helping

them assess how changes in patient management protocols impact individual treatment recommendations and out-

comes. For example, a hospital may implement improved home-care procedures to reduce the probability of infection-

related mortality at home, bringing it closer to the mortality level observed at the hospital. Even a simple post-discharge

follow-up can effectively lower mortality risks (Leschke et al. 2012), and recent studies show that, for some patient

types, telemedicine follow-ups via mobile-app can be as effective as in-person follow-ups (Marquez-Algaba et al.

2022). Evidence from Carmen et al. (2019) highlights the potential for such improvements: while infection-related

mortality risk at home is reported to be 11%–15%, the corresponding mortality risk for infections acquired at the
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(a) Policy as a function of disease and age (b) Policy as a function of disease and treat-

ment protocol length

(c) Policy as a function of disease and WBC

count at the end of treatment
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Figure EC.1 Optimal Effective Threshold (Based on Infection and Mortality Risks Given in Carmen et al.

2019)

hospital is much lower, at 4%–6% — an average difference of 9%. This discrepancy is partly attributed to delays in rec-

ognizing and treating infections among home-care patients. Hospitals could mitigate this gap by (a) improving infec-

tion identification time and (b) reducing the infection-to-antibiotic treatment time through better access-to-treatment

process once patients return to the hospital.

To quantify the impact of reducing the mortality gap between home-care and hospital observation, we conduct a

counterfactual numerical experiment. Our data exhibits an average of 9% difference in infection mortality risk between

home care and hospital (pdiff = (1− ph)− (1− pw)). In our experiment, we progressively reduce this gap from 9%
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Figure EC.2 Capacity Requirements and Performance as a Function of pdiff
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to 0% in jumps of 1%, by keeping pw fixed while changing ph accordingly. Figure EC.2 illustrates the implications of

this reduction. As the difference diminishes, hospital observation becomes redundant for most patients: the proportion

of patients requiring hospitalization decreases (Figure EC.2(a), ’% Hospital Observations’), and the optimal hospital

observation time, τopt, also decreases (Figure EC.2(b)). As a result, the occupancy needed to treat these patients

reduces (Figure EC.2(a), ’Avg. # of Occupied Beds’). Furthermore, Figure EC.2(c) shows how overall the mortality

rate evolves as a function of bed capacity for different pdiff values under the ISP algorithm. If the mortality risk

at home and at the hospital were equal, the mortality rate would drop to 1.75%, and all patients would be sent to

home care right away. Notably, our experiment shows that using ISP with ample capacity achieves the same mortality

reduction as lowering pdiff to 5.5% in a zero-capacity scenario—both yielding a mortality rate of 3.2%. This suggests

two primary levers to improve patient health: (1) expanding hospital bed capacity for observation to align with the

τopt policy and (2) reducing the excess mortality risk associated with home care. Our findings indicate that the second

lever—improving home-care outcomes—has the greater potential to reduce mortality.

Appendix E: Discrete-time Formulation of the Uncapacitated Single Patient Problem

In Section 3, we discussed the problem of optimally determining the time to move a patient to home care after treat-

ment, in the lack of capacity constraints. That formulation assumed that a patient can be sent to home care at any

time along a continuum. In practice, discharges from the hospital tend to occur once a day, typically in the afternoon

(Armony et al. 2015). In such cases, a discrete-time problem formulation may be more appropriate. In this section, we

describe the discrete-time model that we formulate as a Markov-Decision Problem (MDP). We use this formulation in

our numerical examples throughout the paper.

E.1. MDP Formulation for a Single Patient

We propose a discrete-time MDP formulation in which the physician makes a decision every period (day) on whether

to keep the patient in the hospital or to discharge her to be cared for at home. Here too, we focus on the decision of

when to send a patient to home care after the treatment and prior to developing infection and within the 30-day cycle

time. If and when an infection occurs it is clear that the patient should be hospitalized. Thus, we refer to a state wherein

a patient has developed an infection as an absorbing state. We also make the realistic assumption that once a patient

has been sent to home care, she will not return to the hospital unless she has developed an infection. Thus, sending

a patient to home care will also result in a transition to an absorbing state. The states and transitions of the MDP are

defined as follows:

• Define S, the set of system states. We interpret the state s, for s ∈ S, s ∈ {1, ..., T}, as being at the beginning of

day s after completing s−1 hospitalization days. In addition, we have an absorbing state, ∆ (indicating that the patient

was either discharged or infected). Hence, S = {1, ..., T,∆}. The initial state is s= 1 and the final state is s= ∆.

• Define A as the set of admissible actions. In general, A= {w,h}, where w stands for ward (we use “ward” and

“hospital” interchangeably) and h for home. We denote by a(s) the action taken in state s. Hence, a(s) = w means

that the patient stays in the hospital ward in state s, and a(s) = h means that the patient is discharged at state s. It is

assumed that at the beginning of the horizon (time 0) the patient is at the hospital.

• Let t= 0, ..., T denote the time period. We use a subscript t to denote the state or action at time t.
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• Define P as the probability transition matrix. The entry P (s, s′, a) in the matrix P describes the probability of

moving from state s to s′ given choice of action a. Hence, P (s, s′, a) = Pr(st+1 = s′|st = s, at = a). If the patient is

discharged (i.e., a(s) = h), she moves from state s∈ {1, ..., T} to ∆. Hence, P (s,∆, h) = 1 for all s∈ {1, ..., T}.
If the patient stays at the hospital for observation for another day (i.e., a(s) =w) then she may move to state s+ 1 if

she develops no infection during that period, or move to ∆ if she does. Hence, P (s, s+ 1,w) and P (s,∆,w) for all

s∈ {1, ..., T} are determined by the hazard rate of developing an infection in state s at the hospital. We define by rw(s)

(by rh(s)) the risk function5 of developing an infection at time s given that the patient is in the ward (at home) at the

beginning of that period and has not developed an infection. Then, P (s,∆,w) = rw(s) and P (s, s+1,w) = 1−rw(s)

for all s∈ {1, ..., T − 1}. Formally, we assume that rw(T ) = rh(T ) = 0.

Once we get to state ∆, we stay there indefinitely. Hence, P (∆,∆, a) = 1 for all a ∈ {h,w}. At the end of the

horizon, T , any uninfected patient who is still at the hospital is sent home. Thus, formally, we have that P (T,∆,w) =

P (T,∆, h) = 1.

Note that the functions rw and rh are of general form, as is demonstrated in Figure 1(c).

It is important to note that we assume that the hazard-rate functions depend on the time that has elapsed since the

completion of the treatment and on the location of the patient at that time. Importantly, the infection hazard-rate

function does not depend on the time that the patient was placed in that location. Thus, for example, rh(t) is the risk

of developing an infection exactly t time units after treatment (provided that no infection has developed prior to that

time) given that the patient is at home at that time and independently of when the patient was sent home from the

hospital.

• Define a reward matrixR. Its elementsR(s, s′, a) denote the reward gained from making the transition from state

s to state s′, given action a. To spell out the elements of the reward function we need to first define the specific gains

and costs realized by each action in every state.

We normalize the rewards such that the patient receives a reward of 1 if she survives a cycle and 0 otherwise. A

positive reward can be accumulated in one of two cases: either 1) the patient survived until state T without developing

an infection (recall the assumption that one cannot develop an infection in state T or thereafter, i.e., rw(T ) = rh(T ) =

0.); or 2) the patient developed an infection and survived. A patient who has developed an infection survives with

probability pw (or ph) if the infection developed while the patient was at the hospital (or home).

We also incur costs in each state. Denote by cw (ch) the hospitalization cost at the hospital (at home) per day for days

1, ..., T − 1. (Note that the patient does not incur a hospitalization cost on day T since in the last day discharge occurs

automatically if the patient has not developed an infection).

Denote by cI the cost of treating infections (I for infection). This infection treatment cost includes all hospitalization

costs incurred during the period that the patient is hospitalized from the beginning of the infection until recovery/death.

The infection treatment cost is assumed to be independent of the time or the location at which the infection started. In

the context of our formulation, the cost cI is incurred once we move to state ∆, unless an infection did not occur at all

up to time T . For convenience, we formulate this cost as a reward that is received if no infection occurred up to time

T . We assume that cI >> c. This is a reasonable assumption because, in expectation, treating an infection requires

more than one day of hospitalization.

5 We use risk function and hazard-rate function interchangeably.
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We next compute R(s,∆, h) for all s < T , which is the total expected reward to go when the patient is discharged in

state s. For ease of notation we denote this function by Rh(s) :=R(s,∆, h). This reward function takes into account

the probabilities of getting an infection and of recovering at or after time s until the end of the horizon. This reward

function can be computed by backward induction as follows:

Rh(T ) = 1 + cI

Rh(s) =−ch + rh(s)ph + (1− rh(s))Rh(s+ 1) ∀s∈ {1, ..., T − 1}. (EC.6)

To compute the reward gained from keeping a patient in the ward for an extra day, we need to consider two options:

a) the patient gets infected on that day, or b) the patient remains uninfected for another day. In the former case, the

expected reward is pw − cw: the system incurs a one-day hospitalization cost and receives a reward for the expected

patient survival. In particular, R(s,∆,w) = pw − cw for all s ∈ {1, ..., T − 1}. If the patient remains uninfected, the

system incurs only the daily hospitalization cost, cw. Thus, R(s, s+ 1,w) =−cw, ∀s < T . If the patient reaches state

T without getting an infection the reward is 1 + cI . Hence, R(T,∆,w) = 1 + cI .

In sum, the immediate reward function R for all s∈ {1, .., T,∆} is

R(s, s′, a) =


−cw, if s < T, s′ = s+ 1, a(s) =w;
pw− cw, if s < T, s′ = ∆, a(s) =w;
Rh(s), if s < T, s′ = ∆, a(s) = h;
1 + cI , if s= T, s′ = ∆, for all a;
0, if s= ∆, s′ = ∆, for all a.

(EC.7)

E.1.1. The MDP formulation. Define a policy π such that πt(s) is the action the physician takes at time t if the

state is s. Denote by VT (π) the expected reward over the finite horizon T if policy π is used. In particular,

VT (π) :=Eπ

[
T−1∑
t=1

R(st, st+1, at) +R(sT ,∆, aT )

]
.

Let vt(s) be the optimal reward-to-go function from time t onward, given that the state at time t is s. (Note that, by

definition, at time t, the state s can be either t or ∆.) By Equation (EC.7), since no reward is gained once state ∆ is

reached we have that

vt(∆) = 0, ∀t= 1, ..., T.

For all s 6= ∆, we have that

vT (s) = 1 + cI , s= T,

and for t= 1, ..., T − 1 and s= t, we have that

vt(s) = max

{
Rh(s), at = h;

pw · rw(t) + vt+1(s+ 1) · (1− rw(t))− cw, at =w.
(EC.8)

Let Rw(s) be the reward-to-go if the patient is kept at the hospital at time t= s, s 6= ∆, and the optimal action is

taken from time t+ 1 onward. Then,

Rw(s) = pw · rw(s) + vs+1(s+ 1) · (1− rw(s))− cw. (EC.9)

Now we can rewrite Equation (EC.8) more compactly as

vs(s) = max{Rh(s),Rw(s)}, s 6= ∆. (EC.10)

Note that the problem at hand is an unconstrained MDP with finite state and action spaces. Thus, we can conclude

that there exists an optimal policy that is non-randomized, using standard MDP theory.
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