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Abstract

We develop a data-based modelling framework that supports analysis and optimization of

large and complex, congestion-prone service-operations. Drawing from many-server asymptotic

regimes, all finite-capacity participants in the service process (e.g. customers, servers) are equally

considered resources that are either busy or await each others’ availability. Models are then

activity-oriented, where each activity (e.g. exam in a hospital) first consumes a subset of the

resources (e.g. patient, doctor, exam-room) at specific states (e.g. waiting patient, available

doctor, idle exam-room); and then, upon activity completion, produces possibly other resources

at other states (e.g. served patient, available doctor, exam-room that requires cleaning). We

hence refer to our models as Resource-Driven Activity Networks, or RANs for short.

The RAN language is that of Linear Input-Output Economics, hence the RAN framework is

parsimonious yet rich. Practically, it covers features such as multiple resource types, complex

interactions among resources, highly variable and long processes, exchangeable fork-join con-

structs, all within time-varying environments. Theoretically, RANs cover dynamic- and static-

models, closed- and open-networks, and both many- and single-server asymptotic regimes.
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This first RAN paper is at the fluid (average, macroscopic) level. Our fluid RANs are thus

deterministic models, yet they are also stochastic-aware in that activity durations are not neg-

ligible (as in conventional fluid models) – in fact, the distributions of these durations are model

primitives. Fluid RANs could also enjoy an intrinsic modeling value, by directly approximating

large complex operations (rather than indirectly, by approximating stochastic models of these

operations). Notably, already the fluid level gives rise to ample research challenges that are

either novel or originate from classical models when viewed through a RAN-lens.
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1. Introduction

Service systems (e.g. telecommunication, healthcare, transportation), while prevalent in our

lives, have become large, complex and congestion-prone as demand for their offering has pro-

liferated. Service engineers thus face the challenge of designing operations with many resources

(e.g. many servers and customers) that interact through complex processes. In turn, managers

actualize these designs, while seeking to match their system capacity with its demand; indeed, a

mismatch would result in excessive waiting of resources for each other (e.g. long waiting time of

customers for servers – low quality, or long waiting time of servers for customers – low efficiency).

Consider, for example, emergency departments (EDs) or outpatient clinics. Such systems

involve multiple resource types (physicians, nurses, technicians, etc.) and multiple patient types

(differentiated by severity and medical speciality), all adhering to highly variable and complex

processes that evolve within a queueing-rich time-varying environment (Armony et al. 2015).

Moreover, due to technological advances (e.g., Real-Time Location Systems (RTLS), see Fig-

ure 1), one can mine features and processes of such systems from their data – data that have

become accessible in a previously-unparalleled quantity, resolution and quality. This prompts

the additional challenge of managing and modelling operational big-data.

The above challenges — design, management, data — call for modelling support that, tra-

ditionally, has been provided by queueing networks, e.g. Chen and Yao (2013): here networks

depict complex multi-activity processes while queues capture contention for scarce resources. Yet

queueing networks often suffer from the “curse of dimensionality” in their analytical scale (being

intractable), or “curse of simplicity” in their modelling scope (unable to accommodate complex

features). The scale-shortcoming has given rise to a flourishing research area: approximations of

queueing networks that arise from their fluid and diffusion asymptotics. The scope-shortcoming,

however, is still a persisting challenge, and a main goal of our research is to alleviate it to some

extent. To this end, we borrow strength from many-server asymptotic regimes while following

the seminal research path of Harrison (1988, 2002, 2003) (that, unlike here, was conceived in

single-server or conventional heavy-traffic.)

More concretely, we develop a mathematical framework for operational models of service sys-

tems, which we refer to as Resource-Driven-Activity-Networks (RANs). RANs offer a symmetric

viewpoint under which all scarce service-constituents (e.g., servers and customers (Newell 1973))

are equally considered as resources. Furthermore, RANs accommodate complex features (e.g.

time-dependence, randomness), multiple operational-regimes (e.g. many-server or conventional

heavy- or light-traffic) and elaborate interactions between resources, all via an inequality (3)

that mathematically articulates a set of feasible “plans”; and much like Input-Output models
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of economic systems (Leontief 1986, Koopmans 1951), RANs offer a unifying umbrella for mod-

els that are dynamic or static, closed or open, and that enjoy simultaneous consumption and

production by and of multiple resources. The present paper is a first step at the fluid (laws of

large numbers) level; hence Fluid RANs are deterministic models. Yet they are also stochastic-

aware in that model-primitives for activity durations are their cumulative distribution functions

(cdf’s): if G is the cdf of a specific activity duration, and this activity started at time u, then

RAN’s articulation of its completion-time is G(t−u) (1), that is the probability that the activity

completed by time t, for all t≥ u (Krichagina and Puhalskii 1997, Reed 2009, Liu and Whitt

2012).

The case for a new framework better be well-justified. The rest of the Introduction is hence

our attempt to motivate this case, both practically and theoretically, as it arises from data-based

exploration of real-life service systems.

1.1. Practical Motivation: Complexity, Size; Resource-View, Long Services

We start with introducing RAN’s view of scarce service-constituents: all play an equal role of

a resource that dynamically changes its state. (The simple setting of two resources – customers

and servers – was captured by the Erlang-S model, “S” for “Servers”, in Azriel et al. (2019).)

Then, we contrast service systems in heavy-traffic via their capacities, more precisely few- vs.

many-servers, which reveals an essential comparative characteristic: long service duration in the

latter (long relative to queueing and idling time) vs. short in the former.

1.1.1. Symmetric Resource-View of Complex Systems (Scope). We now demon-

strate the complexity of service operations, and our symmetric resource-view of them. To this

end, consider Figure 1: it is based on data from our data-partner, the Dana-Farber Cancer

Institute (DFCI), which is a large outpatient oncology center in Boston MA, USA. On average,

1000 patients visit DFCI every day, and they are catered to or receive treatment by 300–400

staff members. Each patient, staff member and equipment at DFCI is equipped with a badge

that broadcasts badge locations almost continuously. These locations, in turn, are captured and

archived by RTLS, which is the main source of our data. In addition, we also have the data

of all planned itineraries at DFCI. Combining RTLS (the actual) and itineraries (the planned)

enables the creation of a complete vast-quantity, high-quality transaction-level data, as depicted

in our Figures.

To elaborate, Figure 1a presents a (time) snapshot of activity networks of the following

resources at DFCI: patients, physicians, nurses, exam rooms, infusion beds/chairs and elevators.

(Elevators are the only resource that has no itinerary). Our data is dynamically depicted in
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(a) Activity networks of 6 resources in DFCI: patients, physicians, infusion nurses, exam rooms, infusion

chairs/rooms, elevators. Data-animation is accessible at the following LINK1. In each network, the colored discs

represent individual resources, while the animation recreates their flow through activities within the network,

during a single day. Blue rectangles represent activities that involve more than one resource (for example: the

activity exam involves a patient, a physician, and an exam room); Orange rectangles correspond to delays

(either idling or queueing); Purple rectangles are activities that involve only a single resource.

system_resource (DayHospital_v12)
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(b) Integrative RAN-view of the above 6 Activity networks, with data-animation accessible at LINK2. Resources

dynamically change their state, which is animated by their flow through activities. Activities, in turn, con-

sume resources and, after an “activity-duration,” produce resources that possibly support future activities. For

example, activity exam, that consumes a waiting patient, idle doctor and available exam room, produces, for

example, an idle doctor, a patient moving on to infusion, and a room that is to be cleaned.

Figure 1 Two views of a service network: (a) Activity networks of individual resources (in DFCI: patients,

physicians, infusion nurses, exam rooms, infusion chairs/rooms, elevators); vs. (b) Integrative

dynamic RAN view, where resources interact as they are consumed and produced by activities.

https://youtu.be/HR8BtsABTfs 
https://youtu.be/ew1h6unqdj0
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LINK1, which is data-animation that vividly demonstrates the richness and high-resolution of

our data. The animation also illustrates the complexity of DFCI service processes, complexity

that is common to many service systems and healthcare in particular. Such operations require

coordination and synchronization of ample resources that hence dynamically change their state

over time.

Figure 1b combines, under a single RAN-roof, the constituents of 1a, thus depicting our

symmetric resource-view (data-animation is accessible in LINK2). Indeed, all resources are inte-

grated into a RAN, that models interactions and flows of resources, as activities consume and

produce them. For example, patients’ rides in elevators are activities that require a synchroniza-

tion of two resources—riders (patients, visitors, ...) and an available elevator, all simultaneously

present on the same floor. (In fact, since the start of Covid, DFCI has imposed restrictions on

the number of people who can share an elevator; hence elevators became a scarce resource for

which people wait non-negligible times.)

1.1.2. Large Systems with “Long” Service Durations (Scale). An alternative char-

acterization of few-server (conventional) heavy-traffic asymptotics versus many-server heavy

traffic is in terms of relatively short (negligible) service durations (few-servers) vs. long (non-

negligible) service durations (many-servers). Here short or long is relative to queueing time

(alternatively sojourn time). This implies that, for queueing networks in conventional heavy

traffic, customers’ sojourn time within a station is essentially their queueing time (service dura-

tion negligible relatively to queueing). In contrast, for many-server queueing networks in heavy

traffic, both queueing and service durations could be non-negligible; however, in a station that is

critically loaded (demand is well-balanced against capacity), sojourn time is essentially service

duration (queueing time negligible relative to service).

The above is captured by Figure 2, that focuses on the infusion process in a single dis-

ease center at DFCI: it presents cumulative arrivals, cumulative departures from queue (service

initiations), and cumulative departures from service. Note that, although our dynamic fluid

model arises from realizations (individual days) of a large system, it does also cover an average

day (“average Wednesday” in our case), the shape of which resembles individual days. Assum-

ing first-come-first-served (FCFS) policy, the horizontal difference (in Figure 2a) between the

cumulative arrivals (in blue) and the cumulative departures from queue (in red) corresponds

to customers’ waiting time; the horizontal difference between the cumulative departures from

queue and the cumulative departures from service (in green) corresponds to service durations

(Hall 1991, Ch. 6). Thus, it is observed that service durations are much longer than waiting

durations, in every individual Wednesday, and on average.

https://youtu.be/HR8BtsABTfs 
https://youtu.be/ew1h6unqdj0
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(a) Cumulative arrivals, departures from queue, and

departures from service. Average over 53 Wednesdays,

02/2019 – 02/2020.

(b) Cumulatives, normalized w.r.t. daily totals: indi-

vidual Wednesdays, 07/2019 – 09/2019, and average

over all 53 Wednesdays 02/2019 – 02/2020.

Figure 2 Cumulative arrivals, service initiations, and departures from service at an infusion unit in DFCI.

Service Processes vs. Merely their Duration. Duration is but one feature of what is typically

an elaborate service process. It does suffice in conventional heavy-traffic, where fluid-service

“is” in fact its service-rate. However, models with “long” services are required to capture fea-

tures beyond duration. Examples include Mandelbaum and Reiman (1998) (pooling networked

servers into a single universal server); Carmeli (2015) (design of self-services, e.g. in answering

machines); and Carmeli (2020) (multi-featured load-balancing, e.g. striving for “fair” allocation

of workload).

1.2. Theoretical Motivation: Generalizing SPNs, Operational-Regimes, Taxonomies

In Section 3.2.5, we formally explain how our RANs generalize SPNs (Stochastic Processing

Networks), the latter being a state-of-art modeling framework for complex operations (Harrison

1988, 2000, 2002, 2003). A comprehensive treatment of SPNs is provided in the recent Dai

and Harrison (2020) where, following Dai (1995), fluid SPNs are used as tools for establishing

stability of their originating Stochastic SPNs: fluid stability (fluid levels vanish within a finite

time) implies stochastic stability (positive recurrence). Consequently, the simpler the fluid model

the better (easier to prove stability), and it turns out that piecewise-linear fluid dynamics

suffices. Fluid RANs, in contrast, serve as standalone models of complex realities, hence the

broader their modelling scope the better, in particular RAN dynamics is time-varying.

Both SPNs and RANs accommodate complexity via the input-output view of activity analysis

(Koopmans 1951). However, SPNs constitute resources (e.g. servers), materials (e.g., customers),

activities (e.g., services), and then protocols for their interactions. RANs, on the other hand,

acknowledge only resource and activities (e.g. customers and serves are both resources), which

is a main enabler of their modelling parsimony.
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1.2.1. Mixed Heavy-Traffic Regimes: Single-Resourcing. The RAN framework is

motivated by many-server asymptotic regimes, and the SPN framework (Dai and Harrison

(2020)) by conventional (single-server) heavy-traffic. Often enough, however, both regimes hap-

pen to coexist within a single system. For example, a typical patient-flow at DFCI (Figure 1b)

starts with blood-test (single service-station with many-servers = nurses), continues with a med-

ical exam (many service stations, each with a single-server = physician) and ends with infusion

(single station many-servers = beds). Another example is vehicle rental systems, where vehicles

can be rented from various locations. Such systems, when analyzed from the vehicle perspective,

are closed systems with both single-server queues and infinite-server queues (George and Xia

2011, Benjaafar et al. 2022, Braverman et al. 2019); see §4.4.

In Section 3.2 we show that the RAN modeling framework also accommodates mixed heavy-

traffic regimes. This is motivated via an asymptotic procedure, under which any resource in the

system can become a “single-server” resource that operates in conventional heavy-traffic; we

call this procedure single-resourcing. In the resulting mixed RAN, resources can thus operate

in conventional heavy-traffic or in the many-server heavy-traffic regime, and any combination

of single- or few-, many- or infinite-resources is allowed. The above implies that SPNs are

special cases of RANs: both practically (SPNs are approximately RANs with very-short activity

durations), as well as theoretically (Fluid SPNs are special cases of our RANs with only single-

resources §3.2.5).

1.2.2. Taxonomy of Systems: Open, Closed and Time-Varying. In the queueing

theory literature, the terms open network and closed network usually refer to the customer

population. Specifically, a service system is open if customers arrive to it from the “outside

world”, where there is effectively an infinite customer population; they receive service within

the system from servers awaiting them; and after completing their sojourn they leave (return

to the “outside world”). While such systems are called “open”, from the server perspective

they are in fact closed since there is a constant population of servers that is an endogenous

part of the system. Most queueing networks are therefore mixed, having “open”-customer and

“closed”-server populations.

As already noted by Newell (Figure 1 in Newell (1973), the labels of “customers” and ”servers”

are often interchangeable. To elaborate, a service system is commonly called closed if, similarly

to the servers above, customers also constitute a finite population, which circulates perpetu-

ally within the system while obtaining services. Classical models of such systems are machine-

repairmen (Momčilović and Motaei 2018), and closed Jackson networks (Prisgrove 1987, Chen

and Mandelbaum 1991c). But there are service systems in which, naturally, both customers and
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servers are “open”, e.g., ride hailing systems such as Uber or Lyft (Afeche et al. 2018, Özkan and

Ward 2020, Aveklouris et al. 2021); or where customers are “closed” while servers are “open”

(e.g., tele-medicine services provided to prison inmates (Schooley et al. 2019)).

The distinction between who-are-customers and who-are-servers thus reduces to merely a

modelling terminology, while formally they play the symmetric role of resources. Then the RAN

notion §2.2.6 of closed vs. open is associated with an individual resource (rather then a system),

while addressing ambiguities that arise in time-varying systems (Massey 1985, Whitt 2018). For

example, in a Gt/GI/st RAN, the server-population constitutes a closed resource, even though

servers need not stay in the system perpetually – st can both increase and decrease – which

could model servers entering and leaving the system according to their shifts.

1.3. Contributions

In this paper, we propose a framework for modeling service operations: model-features arise from

data (e.g. Figure 1), and large-scale asymptotics provides the theoretical foundation (Halfin

and Whitt 1981, Garnett et al. 2002, Van Leeuwaarden et al. 2017). As a first step, we focus

on fluid scaling, and similarly to Harrison (1988) “we do not attempt a rigorous convergence

proof to justify the proposed approximation, but the argument given in support of the approxi-

mation amounts to a broad outline for such a proof”. Our outline is given in Section 2.3, but our

main rigor-lack justification stems from how useful RANs are, even under the present macro-

scopic (fluid) view: they provide a platform for theoretical and practical modeling, analysis, and

optimization of numerous queueing networks, and beyond.

Operations research of fluid approximations and models has been proliferating. For example,

Zychlinski (2022) lists about 150 applications of fluid models (which excludes theoretical research

such as single- and many-server FSLLNs, measure-valued models and piecewise-linear limits of

stochastic GJNs and SPNs). Our humble view is that RANs add a timely useful step to the

evolution of this ”fluid-research”: we support it in Appendix A, by cherry-picking (necessarily

biased) steps in that evolution.

The value of a fluid model increases with the complexity of the features and processes of its

origin, which is a stochastic model – as in Dai and Harrison (2020), or a real system – as in the

present paper (e.g. DFCI in Figure 1, and the data-based example in §4.6). In the former case,

the fluid model is a means for establishing stability of their originating stochastic model. In

contrast, our fluid models capture the operational dynamics of their originating systems, they

are hence bona fide models with a stand-alone value, as we now describe:
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• The RAN framework provides a unifying umbrella for capacity-constrained models that are

dynamic or static, closed or open; and they operate simultaneously in conventional and many-

server heavy-traffic, while possibly alternating among operational regimes (e.g. under-, over- or

critically-loaded). More concretely, we show in Section 4 that RANs capture a wide variety of

queueing models, for example the Gt/GI/st queue (Puhalskii and Reed 2010, Liu and Whitt

2012), open and closed generalized Jackson networks (Kaspi and Mandelbaum 1992, Chen and

Mandelbaum 1994, Prisgrove 1987), parallel-server networks (Williams 2000), machine-repair

systems (Momčilović and Motaei 2018), and re-balancing networks (Braverman et al. 2019).

• In contrast with earlier studies that focus on specific control policies or families of policies,

our framework is based on a characterization of feasible plans under all potential control policies:

this is the elegant and parsimonious RANMaster Inequality (RMI) (3), that charts the landscape

of asymptotically feasible plans. Once desirable operating points are identified, one could employ

more refined methods to evaluate or optimize their performance.

• RMI (3) expresses non-linear richness that far exceeds piecewise-linear dynamics, as in the

fluid Equations (6.1)-(6.5) of Dai and Harrison (2020). In fact, the RAN framework is rich

enough to model systems with complexity far beyond parallel-servers with skills-based-routing

of customers (Atar, 2005, Mandelbaum and Stolyar, 2004, Chen et al., 2020), namely one-to-one

matching between a waiting customer and an idle server. Specifically, activities could engage a

set of resources, or resources could be simultaneously engaged in a set of multiple activities, and

those sets or activity-resource correspondence could vary in time; this requires a collaboration of

resources (Gurvich and van Mieghem 2015, 2018) as well as continuous dynamic synchronization.

• The RAN framework gives rise to novel approaches, insights and generalizations to classical

concepts, with many driven by RANs symmetric resource-view (Figure 1). Examples include

fluid models with activity durations that are characterized by cumulative distribution functions,

and which can be “long” relative to idle times (Figure 2); time-varying sets of bottleneck associ-

ated with activities §3.3.2; offered plans §3.3.1, that generalize offered-loads or offered-capacities

in the case of customers or servers, respectively; plans that are non-idling (work-conserving)

or maximal (21); and specific designs (e.g. fork-join §5.2), controls (e.g. join-the-shortest-queue

§4.5), and behaviors (e.g. abandonment §5.3). RANs are also flexible enough to accommo-

date mathematical extensions such as the following: single-resources §3.2, hence SPNs are spe-

cial cases of RANs; long-run (steady-state) dynamics §5.1; measure-valued dynamics §2.2.4;

resources (rather than networks) that are open or closed §2.2.6; and a wide variety, including

some new, Skorohod problems §4.2.2, or more generally complementarity problems §3.4.
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1.4. Organization

The rest of the paper is organized as follows. We start, in Section 2, by introducing the RAN

framework, its building blocks, the RAN Master Inequality (RMI) (3), various basic RAN prop-

erties, and a description of pre-limits stochastic RANs. Then, in Section 3, we present additional

analyses that can be carried out within the RAN framework, in particular static plans, single-

resources (as in SPNs), bottlenecks and non-idleness. In Section 4, we introduce, as illustrative

examples, RAN models of some classical and modern queueing networks; then, to appreciated

RANs data-based potential, we describe how RAN has supported the management of online

order-fulfillment by hundreds of robots §4.6. Directions for extending the basic RAN model are

outlined in Section 5, which include Fork-Join constructs and abandonments. Future research is

described in Section 6. Finally, the paper concludes with appendices, notably Appendix A that

summarizes the historical evolution of relevant fluid research, and Appendix C that expands on

how the parsimonious RMI in fact implies a measure-valued state-descriptor of a RAN.

1.5. Common Notation

Denote by Dm the space of all Rm-valued functions on [0,∞) that are right-continuous with

left limits (RCLL); for x∈Dm, let ∆x(t) := x(t)−x(t−) be its jump-size at time t. Define two

subsets of Dm: Dm
+ = {x ∈Dm : xi ≥ 0} is the space of such functions that are non-negative,

and D̄m
∞ = {x ∈Dm

↑ : limt→∞
1
t
x(t) exists} consists of functions that are asymptoticlaly linear

“around infinity”. For two functions x, y ∈D1, let x⪰ y indicate that (x−y) is a non-decreasing

function in D1. Then Dm
↑ = {x∈Dm

+ : xi ⪰ 0} are functions in Dm
+ , the m coordinates of which

are one-dimensional non-decreasing non-negative functions. For x, y ∈ Dm, let x ∗ y = {(x ∗

y)(t), t ≥ 0} := (x1 ∗ y1, . . . , xm ∗ ym)T ∈Dm be the multi-dimensional convolution operator, in

which

(xi ∗ yi)(t) =
∫
[0,t]

xi(t−u)dyi(u), i= 1, . . . ,m;

note that
∫
[0,t]

dy(u) = y(t), since the integral covers also t = 0. For a cumulative distribution

function (cdf) G, let Ḡ := 1 − G ∈ D1 be its survival function. We then denote by Gm
∗ the

operator of m-fold convolution, which could be defined recursively: Gm
∗ ∗A :=Gm−1

∗ ∗ (G ∗A),

with G0 being the identity operator. The matrix IK×K is the K ×K identity matrix (we omit

K when dimension is clear by context). Finally, for a set S, denote by |S| its cardinality; and

by 1{S} its indicator function: 1{S}(u) = 1 if u∈ S, and 1{S}(u) = 0 if u /∈ S.
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2. RAN Model

In this section, we introduce the RAN framework and its building blocks. In parallel, we make it

all concrete via a model of an Emergency Department (ED), which is a complex service-system

that has been operationally (and compromisingly) modelled as a queueing-network.

2.1. Building Blocks: Resources, Sub-Resources, Activities

A RAN model comprises K different resource pools and J different types of activities; resource

units are dynamically engaged in activities, and the RAN is a dynamic model of these engage-

ment processes (recall Figure 1). For example, in an ED, patients, nurses, doctors, X-ray

machines and technicians, beds and rooms are all considered resource units. All ED nurses in

a given shift constitute a resource pool, while the ED doctors during that shift could form

another resource pool. Administrative reception, doctor exam, X-ray test, etc., are all consid-

ered activities. An ED RAN could then model patient flows, nurse workflows during a shift,

etc.

2.1.1. Resources and Sub-Resources. A unit of resource can be in several states (one

at a time). The sub-pool of units, of a specific resource at a specific state, or the pair resource-

state, is formalized through the notion of a sub-resource. Any two units in a specific resource

pool (similarly in a specific sub-resource pool) are interchangeable; and one unit of resource

corresponds to, or is involved in exactly one unit of sub-resource at a time (this will be relaxed

in Section 5.2).

Terminology-wise, a unit from “resource pool k” (“sub-resource pool l”) will be mostly referred

to as a unit of “resource k” (unit of “sub-resource l”). Then, a resource is involved in its sub-

resources or, equivalently, a sub-resource involves its resource; similarly, a resource is engaged

in activities or, equivalently, an activity engages resources.

Note that, in our formal RAN model, the notion of state was left vague; this is intentional as it

allows a flexible verbal state-description. Instead, a matrix R will be introduced (momentarily),

that articulates mathematically the relationships between resources and sub-resources. Sub-

resources hence capture, through their state, the flow of resources through activities in the

system. In addition to their internal flow within the system, sub-resources can enter and leave

the system spontaneously, e.g., due to some external reason, regardless of system dynamics.

Formally, let L be the number of sub-resource pools in the system; L is at most the product of

the number of resources by the number of states (not all resources can be in all states), which is

assumed finite. Then R is a K×L matrix with values in {0,1}: Rk,l = 1 whenever sub-resource l
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involves resource k, otherwise Rk,l = 0. We assume that each resource is involved in at least one

sub-resource, and that each sub-resource involves exactly one resource:
∑

lRk,l ≥ 1, for all k,

and
∑

kRk,l = 1, for all l. Note that the assumptions on R imply that K ≤L, and that IK×K is

a sub-matrix of R.

It is useful to define a map r : {1, . . . ,L} → {1, . . . ,K}, such that r(l) is the resource that

involves sub-resource l, that is, Rr(l),l = 1. Then r has an inverse r−1, where r−1(k) is the set of

all sub-resources involved in resource k.

Let Λ = {Λ(t), t≥ 0} be an L-dimensional function: each coordinate Λl = {Λl(t), t≥ 0} is a

function of bounded variation over finite intervals, which has the form Λl(t) = Λ+
l (t)−Λ−

l (t),

t≥ 0. Here Λ+
l = {Λ+

l (t), t≥ 0} and Λ−
l = {Λ−

l (t), t≥ 0} are both in D1
↑, and they capture the

cumulative processes of sub-resources (and hence also resources) that arrive to and depart from

the system, respectively. Note that, as a difference between two flows, Λ is considered a quantity

(negative values could be interpreted as backlogs); however, if this difference is monotone, it

can also be considered as a flow : inflow if increasing or outflow if decreasing.

For example, in an ED, a patient is considered a unit of resource from the resource pool

“patients”; and during a visit in an ED, patients may reside in different states that depend on

their ED journey. Concretely, a “patient after triage”, thought of as a resource-state pair, is

a sub-resource; one particular patient after triage is a unit from that sub-resource pool; and

there could be several such units: their corresponding patients, constituting a sub-pool of the

resource pool “patients”, are all patients right after triage. Similarly, we have units of sub-

resources “patient before reception”, “patient after blood-test”, and so on. In analogy to patients,

ED doctors may also be in different states. Therefore, there may be several sub-resources that

involve the resource “doctors”, and there are units of these sub-resources, namely specific doctors

that are at the corresponding states: e.g., “available doctor”, “doctor occupied in interpreting

patients’ imaging results”, “doctor in hospital wards”, etc. Let the resource “doctor” be denoted

by k, and let the sub-resource “available doctor” be denoted by l; then Rk,l = 1. Doctors enter

and leave the ED according to their shifts. Their entrance and departure processes are thus

given by Λ+
l and Λ−

l , respectively: Λ
+
l (t) is the total number of doctors that entered the ED

and started their shift during [0, t], and Λ−
l (t) is the total number of doctors that ended their

shift and left the ED during that time.

2.1.2. Activities. Every activity requires at least one sub-resource in order to take place;

and, once completed, it releases (one or more) sub-resources (which may be different from

the input sub-resources). We thus say that activities consume and produce sub-resources, and

formalize it via a consumption matrix C and a production matrix P . The defining characteristic
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of an activity is that the resources engaged in it are unavailable for other activities, until the

activity is completed. Activities are hence considered actions that occupy sub-resource units,

and hence indirectly resource units, for some non-negative duration – these activity durations

are characterized by proper cumulative distribution functions (cdf’s).

Formally, let G= {G(t), t≥ 0} be a J-dimensional function, with coordinates indexed by j:

Gj = {Gj(t), t≥ 0} is the cdf of type j activity duration (non-negative). Denote by σj a generic

random variable representing the duration of activity j, and let Ḡj := 1−Gj be the corresponding

survival function.

Let C be an L×J non-negative consumption (input) matrix: the element Cl,j is the amount of

sub-resource l consumed by (required for) a single type j activity; Cl,j ≥ 0. In the same manner,

let P be an L× J non-negative production (output) matrix: the element Pl,j is the amount of

sub-resource l produced upon completion of a single type j activity, and that remains in the

system (immediately routed back); Pl,j ≥ 0.

Canonical forms for C,P,R: It is sometimes useful to renumber resources and sub-resources

so that R is a block-diagonal matrix, with the following structure: in row k= 1, the first r−1(1)

elements are 1 and the rest are 0; in row 2, the first r−1(1) elements are 0, the next r−1(2)

elements are 1, and the rest are 0; etc. Such an arrangement of resources and sub-resources

endows C and P with a column-block structure: their top block, of order r−1(1) × J , has

consumption (production) amounts associated with resource k= 1; the block below it, of order

r−1(2)×J , is associated with k= 2, etc.

2.1.3. Relating Activities and Resources via Sub-Resources. Every unit of activ-

ity j consumes (produces) an amount [RC]k,j ([RP ]k,j) of resource k. Activities could naturally

create resources: for example, a fork-join activity can produce several “copies” of the same

resource (see Section 5.2). However, in most RAN applications, activities conserve resources, at

the activity-resource level, in that the amount of resource produced and routed back to the net-

work is no more than the amount of resource consumed. Therefore, such resource-conservation

will form a standing assumption in what follows (with its exceptions noted explicitly). Formally:

Assumption 1. Activities do not create resources: RC ≥RP.

One can equivalently assume that activities only change states of resources. Formally, there

exists a non-negative L × J-matrix P− such that RC = R[P + P−]. The element P−
l,j is the

amount of sub-resource l that leaves the system, once produced by (per) one unit of activity j.

(IK×K is a sub-matrix of R hence the equivalence.) ▲
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For example, in an ED, the activity doctor exam (denoted by j) consumes one unit of sub-

resource from type “available doctor” (denoted by l1) and one unit of sub-resource from type

“patient after nurse admission” (denoted by l2). Assuming it requires no additional resources:

Cl1,j = 1 and Cl2,j = 1, while the rest of the entries in C’s jth column are 0. Once completed,

activity j produces one unit of sub-resource from type “available doctor” that remains in the

system, namely becomes available for the next patient; hence Pl1,j = 1. It also produces sub-

resources involving the resource “patient”, specifically fractions of a patient-unit that are routing

proportions, after the exam, to various additional activities within the ED; these form the jth

column of P , so that
∑L

l=1Pl,j ≤ 1; with 1−
∑L

l=1Pl,j being the fraction of patients leaving the

ED after the exam, e.g. hospitalized or released. Going beyond classical queueing networks, the

activity X-ray exam would require (consume) one sub-resource “patient with X-ray order”, one

“available X-ray machine” and one “available X-ray technician”.

2.2. Feasible Plans: The RAN Master Inequality (RMI)

A plan X = (Xj) ∈DJ
↑ models a policy/scheme for operating RAN’s originating system: it is a

J-dimensional function of which Xj(t), its jth coordinate at time t, represents the total amount

(number) of activity j that started during the time interval [0, t]. (We shall sometimes emphasize

that X is a dynamic plan, mainly to distinguish it from static plans that will be introduced

later.) By definition, Xj is non-decreasing and right-continuous-with-left-limits (RCLL); it is

convenient to assume X(t) = 0, for t < 0, noting that positive jumps of Xj’s at t= 0 are allowed.

Indeed, we use cumulative number of started activities, rather than the (prevalent) instantaneous

rate at which activities start, in order to accommodate discontinuous X: for activity j, a positive

jump at t means that Xj(t)−Xj(t−)> 0 activities j started at time t.

Remark 1 (On activities that started before t= 0). A plan X starts counting activity

initiations from and including time 0. It turns out useful to allow activities that are already

in-progress at time 0, which means that, in fact, they started before time 0. One must then

account for these activities when describing the system-state at time 0. However, to facilitate

model assimilation, we shall first assume that there are no activities in-progress at time 0; we

shall later remove this assumption in Section 5.1. ▲

If Xj(t) activities started during the time interval [0, t], t≥ 0, then (G∗X)j(t) of them ended

by time t, where

(G ∗X)j(t) :=

∫
[0,t]

Xj(t−u) dGj(u) =

∫
[0,t]

Gj(t−u) dXj(u), t≥ 0, (1)
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is convolution in terms of Lebesque-Stieltjes integrals. (Note that
∫
[0,t]

dXj(u) =X(t)−X(0−) =

X(t), t≥ 0.) Now, X ∈DJ
↑ implies X ≥G ∗X = {G ∗X(t), t≥ 0} ∈DJ

↑ , as should be. It follows

that the total amount of activities in progress (ongoing) at time t is the vector (Ḡ ∗X)(t); or,

as a process: Ḡ ∗X = {Ḡ ∗X(t), t≥ 0} ∈DJ
+ (more on that momentarily).

2.2.1. RAN Master Inequality (RMI). A plan X ∈DJ
↑ is feasible on [0, T ] if

J∑
j=1

Cl,jXj(t)≤
J∑

j=1

Pl,j (Gj ∗Xj) (t)+Λl(t), (2)

for all sub-resources l= 1, ...,L, and at all times t∈ [0, T ]; in matrix form:

RMI: CX ≤ P G ∗X +Λ. (3)

Remark 2 (On RMI notation). The operation ∗ should be applied first, resulting in the

column vector G ∗X := (G1 ∗X1, . . . ,GJ ∗XJ)
⊤, which is then multiplied from the left by the

matrix P . One could also interpret G as the matrix diag(G1, ...,GJ), which results in the same

PG ∗X, also if PG is performed first. ▲

We emphasize that RMI is at the sub-resources level (L inequalities between processes),

and recall that sub-resources represent resources at specific states. RMI inequalities (2) can be

interpreted both as flow- and count-inequalities. Starting with flow, RMI inequalities constrain

the flow of resources through activities at all states: the left-hand side of (2) represents the

cumulative amount of sub-resource l consumed by activities during [0, t], which should not

exceed the right-hand side, namely the amount of available sub-resource l. The latter constitutes

the sum of two elements: first, the cumulative amount of sub-resource l that is endogenously

produced by plan X during [0, t], formally [P (G ∗X)]l(t); plus the net amount of sub-resource l

within the system that is due to exogenous supply during [0, t], namely Λl(t) = Λ+
l (t)−Λ−

l (t)

— see Figure 3. (Recall that Λ+
l (t) stands for the cumulative number of exogenous arrivals of

sub-resource l, while Λ−
l (t) is the cumulative number of sub-resource l that spontaneously exits

the system (not due to endogenous dynamics), both during [0, t].)

However, RMI can be also interpreted as count inequalities since RMI slacks, namely the dif-

ference between the right- and left-hand sides of (2), represents the amount of sub-resources that

are available to be engaged in activities. Thus, interpreted as either flow- or count-inequalities,

RMI ensures that an activity can start only if there is a sufficient amount of all the sub-resources

that it must consume.
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Λ+
l

Λ−
l

all activities all activities

∑
j Pl,j(Gj ∗Xj)

∑
j Cl,jXj

activity j (Gj)

l1

l2

l3

l1

l4, r(l2) = r(l4)

Pl3,j = 0

Figure 3 An example of the flow of sub-resources: exogenously, in-between activities and within activities.

Remark 3 (Linear parsimonious structure). It is significant that RMI is, in fact, a parsi-

monious system of linear constraints in X, with the additional conic constraint X ∈DJ
↑ . This

renders feasible – modelling-wise, computationally and statistically – the process of starting with

data from a complex system, then estimating appropriate C, P , Λ to create a computationally-

tractable model, and ultimately applying the model in various manners. The linear structure

will be further pursued in Section 3.3. ▲

Remark 4 (Finite time-horizon). Note that RMI is formulated over finite horizons [0, T ],

while plans are defined over [0,∞). Requiring feasibility over a finite horizon could be for

practical reasons – e.g. only single-day modelling is relevant – in which case plans can be made

flat beyond the horizon; it could be also for a mathematical reason, because the set of plans

might become trivial (constituting onlyX ≡ 0) when requiring feasibility over [0,∞). (In general,

the set of feasible plans is non-increasing in the length of the interval T .)

For an example, consider the following single-activity, single-resource RAN: C = P =R= 1;

Λ(t) = e−2t, G(t) = 1− e−t, for t≥ 0. Then, for a fixed horizon T , RMI amounts to Ḡ ∗X(t) =

e−t
∫ t

0
eu dX(u)≤ e−2t, over t∈ [0, T ]; and non-zero feasible plans X clearly exist. However, RMI

over [0,∞) yields e−2t ≥ e−tX(t); hence limt→∞X(t) = 0, implying that X ≡ 0 since X ∈DJ
↑ .

In words, RMI over [0,∞) requires completion of all activities ever initiated, which is infeasible

since resource capacity depletes too fast (in the sense that the right tail of Λ decreases faster

than that of G). ▲

The parsimonious RMI, jointly with its plan X, in fact characterize RAN dynamics at rela-

tively high resolutions. This will be now demonstrated by first introducing RMI slacks in §2.2.2

– §2.2.3, and then using these slacks to develop refined measure-valued RAN dynamics in §2.2.4.
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2.2.2. Busy Process: Ongoing vs. Completed Activities. Fix a plan X ⪰ 0. Let B(t)

be the J-vector recording the amounts of busy (ongoing) activities at time t≥ 0. Then

B :=X −G ∗X = Ḡ ∗X = [I −G] ∗X, (4)

which is to be interpreted coordinate-wise: for example, Bj(t) = Ḡj ∗Xj(t) =Xj(t)−Gj ∗Xj(t),

where Gj ∗Xj(t) is the cumulative amount of completed activities j during [0, t] (1); and [I −

G]j = I −Gj is coordinate j of the operator I −G :DJ →DJ .

Exhaustive Busy Processes. Implicit in X and G ∗X is the fact that an activity that started

must be carried out to completion, without interruption. From this emerges the converse ques-

tion that will arise again in the sequel (e.g. staffing Gt/G/st, in Appendix D): characterize the

processes B ∈ DJ
+ that embody only complete uninterrupted activities (Liu and Whitt 2012,

Ingolfsson et al. 2007). We now demonstrate that the natural mathematical environment for

casting this question is Renewal Theory (e.g. Serfozo (2009), §2.4–2.7).

View X =B +G ∗X as the renewal equation with data B and unknown X. Its solution is

X = [I−G]−1 ∗B, again interpreted coordinate-wise, where [I−G]−1
j := [I−Gj]

−1 is the renewal

function, or operator, corresponding to cdf Gj. We call B ≥ 0 exhaustive if [I−Gj]
−1 ∗Bj ⪰ 0, for

all activities j; then Bj = [I −Gj] ∗Aj =Aj −Gj ∗Aj, for a uniquely determined Aj ⪰ 0, which

reveals two facts: Aj(t) is the cumulative number of j-activities embodied in B that started

by time t; and Gj ∗Aj counts activity completions, which occur “exactly Gj” after starting.

It follows that the renewal operator [I −Gj]
−1, when applied to exhaustive Bj, is extracting

exactly the starts of activities embodied in Bj, namely Aj (or Xj for RANs).

More on Renewal Operators. The renewal operator can be represented as an infinite “geo-

metric” sum [I −G]−1 = I +G+G2
∗ +G3

∗ + . . ., which adds the following intuition to the above

(subscript j is omitted for simplicity):

(I +G+G2
∗ + . . .+Gn

∗ ) ∗B =
n∑

m=0

[Gm
∗ ∗A−G ∗ (Gm

∗ ∗A)] =A−Gn+1
∗ ∗A.

In the last sum, each Gm
∗ ∗A−G ∗ (Gm

∗ ∗A) =Gm
∗ ∗B is exhaustive since Gm

∗ ∗A⪰ 0; in fact, it

constitutes a right-shift of B by m iid activity durations. This is also the case for the left-hand

and right-hand sides: the left is derived from B via operations that are exhaustive-preserving

(sums, time-shifts by activity duration); and the right equals a sum in which activity completions

telescope with successive activity starts. Observe that both the left- and right-hand sides are

monotonic in n, and that Gn+1
∗ ∗A→ 0, as n ↑∞, due to G(0)< 1 and the SLLN. Letting n ↑∞

on both sides yields [I −G]−1 ∗B =A, i.e., the renewal operator indeed extracts activity starts

from busy processes. Exhaustive B ≥ 0 are precisely the functions that the renewal operator
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maps to non-decreasing functions. These include B ⪰ 0 since then Gn
∗ ∗B ⪰ 0, and [I −G]−1 =

I +G+G2
∗ +G3

∗ + . . .. However, exhaustive B’s can have points of decrease. For example, if

G is exponential with rate µ, then [I − G]−1 ∗ B(t) = B(t) + µ
∫ t

0
B(u) du, corresponding to

the renewal function 1 + µt, t ≥ 0; then [I −G]−1 ∗B ⪰ 0 if and only if eµtB(t), t ≥ 0, is non-

decreasing. (Dermitzakis and Politis (2022) develops sufficient conditions for monotonicity, if B

is differentiable.) Explicitly characterizing the exhaustive B’s, for a given cdf G, poses an open

problem.

2.2.3. Slacks: Idling vs. Active Resources, Decoupled vs. Coupled Flows. Under

a concrete plan and at any time, some units of a specific sub-resource could be idle; by this we

mean that these units are engaged in no activities; hence the involved resource is not utilized

to its capacity. (Amounts of sub-resource idleness are quantified by RMI slacks, as will be

formalized momentarily.) In that vein, an activity is idle if all the sub-resources that it consumes

are idle; and a plan is idle if at least one activity is idle.

Consider, for example, servers and customers in a specific station of a queueing-network:

some “servers” could be idle (waiting for a customer); and for “customers”, being idle means

that they are queueing, or waiting, for a server (either by plan, or by necessity due to scarce

resources). Thus, symmetrically, both customers and servers can be involved in sub-resources

that are idle, namely engaged in no activities.

To be formal, let Q(t) be an L-vector representing the amounts of idle sub-resources (not

engaged in ongoing activities) at time t. Then, at all t≥ 0, Q(t) = (Λ+P G ∗X −CX) (t), and

in compact vector form:

Q := Λ+P G ∗X −CX, (5)

where individual coordinates of Q are one-dimensional functions: jointly, they form a RAN

state-description that is determined by X (as in Reed (2009), Puhalskii and Reed (2010)).

The slack process Q, counting the total number of idle sub-resources, is the difference between

two flow processes: (Λ+P G ∗X), namely the accumulated amounts of sub-resources produced

or turning idle; and CX, the accumulated amounts consumed or becoming ‘busy’. Analogously,

B in (4), that counts the number of busy activities, is the difference between flow X (cumulative

number of started activities) and flow G ∗X (completed activities).

Both process Q and B are netflow processes, in the sense that they are differences between

an inflow and an outflow process (recall Figure 2). They are non-negative for different reasons

(B ≥ 0 hold mathematically for all plans X ⪰ 0, while Q≥ 0 is a constraint on X, namely RMI).

Their non-negativity, however, models (mathematically articulates) the same netflow-physics,

which we now explain in a broader context.
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Remark 5 (On slacks and elapsed time between inflows and outflows). Introduce

two partial orders between functions A,E ∈D1
↑: A≥E iff A−E ≥ 0, and A⪰E iff A−E ⪰ 0.

Now view A as inflow to and E as outflow from some buffer (A − E is netflow, or buffer-

contents). Then A ≥ E means that an outflow/increase in E at time t can be supported by

inflow/increases in A at times prior to t: E is decoupled from A; hence slack A− E can be

stored for a later use. (e.g. in B above, activity-completions follow their starts, after durations

that are G-distributed; and Q≥ 0 ensures consumption of only the earlier-produced.)

On the other hand, A⪰E couples change in E with those of A: outflow E at time t must be

supported by inflow A at the same time t; hence slack A−E can be viewed as production lost

(perished) unless consumed immediately upon becoming available (positive). This interpretation

becomes obvious when A and E have derivatives Ȧ and Ė; then A ⪰ E iff Ȧ ≥ Ė, namely A

and E are coupled via Ȧ(t)≥ Ė(t), at all t≥ 0. (The partial order ⪰, which is stronger than

≥, will arise naturally in Section 3.2 – see Remark 9 – in a context related to conventional

heavy-traffic and SPNs; there units of potential service-time are lost due to idling servers). As

a final observation, allowing A−E to become negative reflects backlog. ▲

Remark 6 (Refining protocols of resource engagement). In anticipation of the next

subsection, we note that Q counts idleness at an aggregated level which, for some purposes,

must be refined. We shall do that by specifying some order in resource engagement, an example

of which is the following Longest-Idle-First (LIF) policy: a starting activity will consume the

sub-resources, from each required type, that have been idle for the longest time (within their

type). Departures due to Λ− could also occur based on the LIF policy. For example, if resources

becoming idle are customers joining a queue then LIF is FCFS; and if they are servers becoming

idle, it is longest-idle-first-serve. ▲

2.2.4. Measure-Valued (2D) RAN Dynamics. Both B and Q record, at each time

t ≥ 0, the total number of entities (activities and sub-resources, respectively) that ‘started’ a

phase but have not yet ‘completed’ it. Of interest are also refined counts that correspond to the

duration that activities have already been ongoing (e.g. time in service); or that sub-resources

have been or will remain idle (e.g. servers). Such refinements, which we now derive, constitute

2-dimensional, or equivalently measure-valued, descriptions of RAN dynamics (in analogy to

G/GI/s+GI, as modeled in Liu and Whitt (2012), Zhang (2013), Kang and Pang (2013), Kaspi

and Ramanan (2011).

We start with pointing to a fundamental difference between B and Q. Specifically, dura-

tion of activities in B are ‘known’, albeit statistically, in that B averages out the fact that
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‘activity starts’ (determined by X) trigger corresponding ‘activity completions’ (G ∗X) after a

G-distributed duration. With Q, on the other hand, counting is too aggregated to determine,

for specific sub-resources, how long these have been or will be idle (disengaged from activities).

For example, Figure 2 is insufficient to disclose, as is, the duration between arrivals-to and

departures-from queue (waiting time). Thus refinements are required to specify a correspon-

dence between ‘starts’ and their ‘completions’, say via some policy that specifies an order-of-

engagement of sub-resources in activities (e.g. LIF mentioned above, which is FCFS in the case

of Figure 2).

Our first example of a measure-valued (or 2-dimensional) RAN process is B�
t (≤ u), t≥ 0: it

stands for the number of ongoing activities at time t≥ 0, whose activity duration thus far is no

more than u≥ 0. Its 2-dimensional representation is given by

B�
t (≤ u) =

∫
[t−u,t]

Ḡ(t− v) dX(v),

since, considering an ongoing activity at time t, in order for its duration thus far to not exceed

u, it should have started at time v ∈ [t−u, t].

Now consider the processQ�
t (≤ u), t≥ 0, which stands for the number of delayed sub-resources

at time t ≥ 0, out of Q(t), that have been engaged in no activity for u ≥ 0 time-units or less

(and similarly Q�
t (> u)). The function Q�

t (≤ ·) determines a measure on [0,∞), at each t≥ 0,

with total mass Q(t) = limu→∞Q�
t (≤ u). Hence Q�

· is a measure-valued (fluid) process; and for

its complete characterization, one must specify a priority or a scheduling policy under which

sub-resources are being consumed. (This is in contrast to B�
· , for which X and G suffice.)

Assuming LIF, namely that sub-resources are consumed by activities according to their order

of “arrival to delay”, the 2-dimensional representations of Q�
t (≤ u) and Q�

t (>u) are given by

Q�
t (≤ u) =A(t)−A(t−u)∨D(t) and Q�

t (>u) = [A(t−u)−D(t)]+,

where A := Λ+ +PG ∗X and D := Λ− +CX. In particular, Q�
t (≥ 0)l =Qt, and Q

�
t (≥ u) = 0,

for u > t. Figure 4 is a depiction of these 2D-representations. In words, if Dl(t) < Al(t − u)

then Al(t)−Al(t−u) are waiting less than or exactly u, and Al(t−u)−Dl(t) are waiting more

than u. If Dl(t)≥Al(t−u) then no one waits more than u.

All in all, there are eight measure-valued processes associated with B and Q: B�
t (≤ u), B�

t (>

u); Q�
t (≤ u), and Q�

t (>u) (out of which three were explained above); and B�
t (≤ u), B�

t (>u);

Q�
t (≤ u), and Q�

t (> u). For example, B�
t (≤ u) is the number of ongoing activities at time t,

whose residual activity duration (after t, hence �) is no more than u; and Q�
t (≤ u) is the

number of delayed sub-resources at time t, out of Q(t), whose residual time-in-delay is no more
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Q�
t (≤ u) Q(t)

t−u t t−u t

Figure 4 2-dimensional description of Q (for a single sub-resource l); A := Λ+PG ∗X.

than u. A complete characterization of these eight measure-valued (2D) state-descriptors, of

a fluid RAN, is given in Appendix C. Importantly, they are made possible by having cdf’s of

activity durations as RAN primitives: distributions as inputs enable distributions/measures as

output.

2.2.5. Snapshot Inequality. This inequality is an aggregated consequence of RMI at the

resource level. Nevertheless, it can contribute new information when RMI is taken to its extreme,

as will be elaborated on below.

Multiplying by R≥ 0 both sides of RMI, then recalling Assumption 1, we get that

RCḠ ∗X =RCX −RCG ∗X ≤RΛ− (RC −RP )G ∗X =RΛ+− [RΛ− +RP−G ∗X], (6)

at all t ≥ 0. These are K inequalities at the resource level. In the kth one, the left-hand side

represents the amount of resource k that is being used by ongoing activities at time t; the

right-hand is the total amount of resource k within the system at time t: cumulative inflow of

resource k during [0, t], (RΛ+)k(t), minus cumulative outflow during this interval, either due to

plan X, that is [RP−G ∗X]k(t), or spontaneously, (RΛ−)k(t). For later application, a weaker

version of (6) suffices, which is implied by its left- and right-hand sides: at all t∈ [0, T ],

Snapshot: RC Ḡ ∗X ≤RΛ. (7)

Both inequalities (6)–(7) constrain the amount of resources that are being used at any given

time t; hence they will be referred to as Snapshot Inequalities. They are at the resource level

(K inequalities), which is coarser than the sub-resource level (L, L≥K) of RMI. For systems

over finite time intervals in the many-server regime, the snapshot inequality does not contain

additional information compared to RMI. However, when considering limiting behavior of RANs
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(either in the long-run §3.1, or by operating some resources in single-server regimes §3.2), it

turns out that information can be lost by RMI while still being recoverable from the Snapshot

Inequalities.

2.2.6. Closed Resources. Recall that [RC]kj ([RP ]kj) is the amount of resource k that

is consumed (produced) by a single unit of activity j. We call resource k closed if
∑

j[RC]kj =∑
j[RP ]kj. By Assumption 1, this is the same as [RP−]kj = 0, for all activities j. In words,

resource k is closed if it does not leave the system through activities. Note that a closed resource

k can both arrive or leave the system spontaneously, that is, [RΛ]k(t) can either increase or

decrease (respectively d[RΛ+]k(t)> 0 or d[RΛ−]k(t)> 0, at some t≥ 0).

Resource k is open if it is not closed: [RP−]kj > 0, for some j. For example, customers in

conventional open queueing networks constitute an open resource: after service, some, but not

necessarily all, leave the system. On the other hand, each server-pool is a closed resource: after

service, servers remain within the system until their next service; still, their amount can change

in time to reflect time-varying staffing – see Section 4.3 for additional details.

2.3. The Universe of Pre-Limits

Fluid RANs, it was argued, have an intrinsic value as direct models of their originating realities.

More traditionally, however, fluid models merely approximate stochastic models of these reali-

ties, rather than the realities themselves. The originating stochastic models are then pre-limits,

since fluid models arise as their first-order functional strong limits. We now outline a possible

universe of pre-limits for fluid RANs. It will enhance understanding of RANs’ modeling role

while, at the same time, revealing that a novel asymptotic/mathematical framework is required

to accommodate convergence of pre-limit RANs – specifically, random sets of feasible plans

converging to the RMI (3).

Recall that the primitives of a fluid RAN are (C,P,R;G,Λ), and feasible plans are RCLL non-

decreasing functions X that adhere to RMI (3). Its pre-limit stochastic RAN will have random

consumption (production) with averages C (P ), random activity durations with cdf’s G; R

playing the same role; and a random Λη, where η ↑∞ drives the pre-limit to a many-“resource”

asymptotic regime. Finally, feasible plans constitute a set of stochastic processes, as will be

articulated below.

A Fluid RAN arises from a sequence of systems, indexed by η ↑ ∞: P , C, R and G do not

change with η, while Λη is such that η−1Λη→ Λ ∈DL a.s., as η ↑∞; here, each Λη is random,

but the limit Λ must be deterministic. (Our description of a fluid RAN will be informal in that

we avoid rigorous specifications of convergence modes and measurability constraints – more
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on that below.) A plan X = {X(t) : t ≥ 0} is a stochastic process with sample paths in DJ
↑ ,

measurable and adapted appropriately. Let τj,n ≡ τj,n(X) = inf{t ≥ 0 : Xj(t) ≥ n} and σj,n be

the start-time and the duration of the nth activity of type j, respectively. The nth activity of

type j, “consumes” ψl,j,n units of sub-resource l and “produces” φl,j,n units of sub-resource l

that remains in the network. It is assumed that {ψl,j,n}n and {φl,j,n}n are sequences of non-

negative random-variables that are iid, with expectations Cl,j and Pl,j respectively. Let ψ
n and

φn be L×J-matrices with elements {ψl,j,n} and {φl,j,n}l,j, respectively; then a pre-limit version

of Assumption 1 relates those matrices: Rψn ≤Rφn element-wise, for all n.

Example 1 (Consumption and Production Models). Different (joint) distributions of

{ψl,j,n, φl,j,n}l,j (for fixed n) correspond to different models. For example, suppose that

sub-resources 1,2, . . . ,5 correspond to the same resource and that [2 1 0 0 0 . . .]⊤ and

[0 0 0.4 0.6 2 0 . . .]⊤ are the jth columns of C and P , respectively (jth activity). In a system

with P[ψ1,j,n = 2] = P[ψ2,j,n = 1] = P[φ5,j,n = 2] = 1, P[φ3,j,n = 1] = 0.4 and P[φ4,j,n = 1] = 0.6

with φ3,j,n,φ4,j,n ∈ {0,1} and φ3,j,n+φ4,j,n = 1, two units of sub-resource 1 and one unit of sub-

resource 2 are consumed in a single j activity; every activity completion produces two units of

sub-resource 5, and either a unit of sub-resource 3 or a unit of sub-resource 4, with probabilities

0.4 and 0.6, respectively. Alternatively, if P[ψ1,j,n = 2] = P[ψ2,j,n = 1] = 1, P[φ3,j,n = 3] = 2/15,

P[φ4,j,n = 3] = 1/5 and P[φ5,j,n = 3] = 2/3 with φ3,j,n,φ4,j,n,φ5,j,n ∈ {0,3} and φ3,j,n + φ4,j,n +

φ5,j,n = 3, then the consumption is as before, but each activity completion produces 3 units –

of either sub-resource 3, 4 or 5, with probabilities 2/15, 1/5 and 2/3, respectively. ▲

For system η and horizon T , the set of feasible plans over [0, T ] consists of stochastic pro-

cesses X such that

Sη
T :=

X ∈DJ
↑ [0, T ] :

J∑
j=1

⌊Xj(·)⌋∑
n=1

ψl,j,n ≤
J∑

j=1

⌊Xj(·)⌋∑
n=1

1{σj,n + τj,n ≤ ·}φl,j,n +Λη
l (·), l= 1, . . . ,L

 ;

that is, under X ∈ Sη
T , what can be consumed must not exceed what is available, at any time

t∈ [0, T ]. The set Sη
T is random as it is created from realizations of {σj,n, ψl,j,n, φl,j,n}. Straight-

forward algebra yields

Sη
T =

{
X ∈DJ

↑ [0, T ] : CX ≤ P (G ∗X)+ η−1Λη +∆η(X)
}
,

where

∆η
l (X) :=

J∑
j=1

CljXj − η−1

⌊ηXj(·)⌋∑
n=1

ψl,j,n

− J∑
j=1

Plj(G ∗X)j − η−1

⌊ηXj(·)⌋∑
n=1

1{σj,n + τj,n ≤ ·}φl,j,n
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and τn,j = inf{t≥ 0 : ηXj(t)≥ n}. Note that, for a fixed X ∈DJ
↑ , the following representation

implies that ∆η(X) vanishes, as η ↑∞:

⌊ηXj(·)⌋∑
n=1

1{σj,n + τj,n ≤ ·}φl,j,n =

⌊ηXj(·)⌋∑
n=1

1{σj,n + τj,n ≤ ·}(φl,j,n−Pl,j)

+Pl,j

⌊ηXj(·)⌋∑
n=1

(1{σj,n + τj,n ≤ ·}−Gj(· − τj,n))

+Pl,j

∫ ·

0

Gj(· −u) d⌊ηXj(u)⌋;

the first two sums on the right-hand side are sums of zero-mean random variables, and the last

term converges to Pl,j(G∗X)j (after dividing by η, and recalling that τj,n’s are the “jump”-times

of ηXj). Now the road to pre-limit convergence is clear: fix T > 0, and apply an appropriate

continuous-mapping theorem to the mapping

H(Λ) :=
{
X ∈DJ

↑ [0, T ] : CX ≤ P (G ∗X)+Λ
}
,

where H maps elements Λ ∈ DJ [0, T ] to subsets of DJ
↑ [0, T ] (feasible sets). More precisely,

defining

∆η
+ := sup

X∈DJ
↑ [0,T ]

∆η(X) and ∆η
− := inf

X∈DJ
↑ [0,T ]

∆η(X),

and noting that H is monotone, yields H(η−1Λη +∆η
−) =: Sη

T− ⊆ S
η
T ⊆ S

η
T+ :=H(η−1Λη +∆η

+).

This establishes strong convergence of our pre-limit, as η ↑∞:

Sη
T =H(η−1Λη +∆η

±)→H(Λ) =: ST , a.s.,

in which the latter deterministic limit is the feasible set of the limiting Fluid RAN (RMI (3)).

Remark 7 (Measure-valued representations). Given {σj,n, ψl,j,n, φl,j,n}, a feasible (pre-

limit) plan X suffices to characterize all two-dimensional functions in Section 2.2.4 (again, in

terms of appropriate continuous mappings). For example, a feasible X defines activity start

times {τj,n} which, in turn, defines quantities such as the number of ongoing activities that

started at least a specific number of time units ago. ▲

The above outline, for establishing a.s. convergence of pre-limits to Fluid-RANs, lacks a rigor-

ous framework and some accompanying technicalities. Completing these mathematical details,

which is beyond our present scope, will entail two main steps (not unlike Inclusion Theory, e.g.

Aubin and Cellina (1984)): first, identifying an appropriate metric for convergence of point-to-

set mappings (e.g. Hausdorff metric); then generalizing this deterministic framework to random

mappings (e.g. via measurable selections).
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3. RAN Analyses

Having established the foundations for the RAN framework, we now turn to some analysis that

it enables: introducing static RANs, allowing single-resources, and viewing RANs as linear or

complementarity programs in function spaces.

3.1. Static Plans: Long-Run Limits, RMI, Snapshot

A RAN model is characterized by its RMI, which is a mathematical articulation of its dynamics

via feasible plans. It is natural, and often useful (e.g. in analyzing long-run trends, specifically

stability of the pre-limit, as in Dai et al. (2014)), to associate a feasible static plan with a RAN

dynamic plan. This can be done in two ways: having the static be a steady-state (stationary

version) of the dynamic plan, which we do in Section 5.1; or, letting the static arise as a long-run

limit of the dynamic, which we do now. The RAN “language” is that of cumulative amounts,

while the natural “language” of static models is rates. To this end, we consider now plans in

D̄J
∞, namely plans X for which limt→∞

1
t
X(t) = x ∈ RJ

+ exists. (x = Ẋ(∞), when the latter

limiting derivative exists.) We also assume finiteness of all aj, the first moments of Gj, and let

A := diag(a1, ..., aJ) denote their corresponding diagonal matrix.

3.1.1. Little’s Law, Flow Conservation. Let Xj ∈ D̄1
∞ as above. Then the following

long-run version of Little’s Law prevails, for all activities j: (Ḡj ∗Xj)(t)→ ajxj, as t ↑∞ which,

in matrix-form, is

Little’s Law: lim
t→∞

(Ḡ ∗X)(t) =Ax. (8)

This law directly implies that

lim
t→∞

1

t
(G ∗X)(t) = x= lim

t→∞

1

t
X(t), (9)

namely, for every activity j, xj is both its long-run start-rate and completion-rate.

To justify (8), define X̃j = {X̃j(t) =Xj(t)− xjt, t≥ 0}, and note that, for ε > 0, there exists

Tε such that

|X̃j(t)| ≤

{
εt, t≥ Tε,

(ε+xj)Tε, t≤ Tε.

This inequality yields the following bound:

|(Ḡj ∗Xj)(t)− ajxj|=
∣∣∣∣∫ t

0

Ḡj(t−u) dX̃j(u)−xj

∫ ∞

t

Ḡj(u) du

∣∣∣∣
=

∣∣∣∣∣
∫ (1−ε)t

0

X̃j(t−u) dḠj(u)

∣∣∣∣∣+
∣∣∣∣∫ t

(1−ε)t

X̃j(t−u) dḠj(u)

∣∣∣∣+xj

∫ ∞

t

Ḡj(u) du

≤ εaj +(ε+xj)εtP[σj ≥ (1− ε)t] +xj

∫ ∞

t

Ḡj(u) du,



29

where σj is distributed according to Gj. Using Markov’s inequality, letting first t→∞ and then

ε→ 0, results in (8).

3.1.2. Static RMI and Snapshot Inequalities. Towards the static RMI, consider RANs

with the following limit: 1
t
Λ(t)→ λ ∈RL, as t ↑∞. For their feasible plans X ∈ D̄J

∞, with long-

run limits x∈RJ
+, divide both sides of RMI (3) by t, let t ↑∞, and apply (9) to get

Static RMI: Cx≤ Px+λ, x∈RJ
+. (10)

These are L rate-constraints on x∈RJ
+, at the sub-resource level.

Towards the static Snapshot, consider RANs with the following limit: Λ(t)→Λ(∞), as t ↑∞.

For X ∈ D̄J
∞ as above, and recalling Assumption 1 and Little’s Law (8), t ↑∞ in the dynamic

Snapshot (7) yields the inequality

Static Snapshot: RCAx≤RΛ(∞), x∈RJ
+. (11)

These are K quantity-constraints on x ∈ RJ
+, at the resource level. Note that Assumption 1

implies RΛ(·)≥ 0, hence also Rλ≥ 0.

3.1.3. Static Plans, as Long-Run Limits. Feasible static plans, unlike dynamic plans,

sometimes require both the Static RMI and Snapshot inequalities for their characterization. This

happens when the Snapshot contributes binding constraints beyond RMI, as we now explain.

Assume all that is required for Static RMI and Static Snapshot to prevail (existence of λ and

Λ(∞), for which RΛ(∞)≥ 0 and Rλ≥ 0 must hold). To facilitate exposition, and without much

loss, assume that in fact λ≥ 0 (no long-run backlog).

Now focus the discussion on a resource k. If (Rλ)k > 0 then (RΛ)k(∞) =∞, hence the kth

Static Snapshot inquality is redundant. This is also the case when (Rλ)k = 0 and (RΛ)k(∞) =∞.

One is left with (RΛ)k(∞)<∞, and (Rλ)k = 0: the former statement renders the kth static

Snapshot (11) relevant, potentially binding; the latter is the same as λl = 0, for all l such that

r(l) = k (since λ≥ 0) which, we now prove, changes the corresponding static RMI (10) into the

equalities (Cx)l = (Px)l. Denote v= (Cx)− (Px), then the Static RMI implies vl ≤ 0, for l with

r(l) = k, while (Rv)k ≥ 0 by Assumption 1, hence vl vanishes if r(l) = k.

Special Cases: The static RAN, corresponding to a closed dynamic RAN (all resources closed),

has RC =RP . When λ= 0, it follows that feasible plans require both static RMI and Snapshot

for their characterization:

Static closed RAN with λ= 0: Cx= Px, RCAx≤RΛ(∞).
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On the other hand, for a RAN with λ> 0 (which is referred to in the literature as open – it is in

fact open on entry), all static Snapshot inequalities are redundant and, hence, it is characterized

by only static RMI. Concrete examples of such RANs are Generalized Jackson Networks (GJN),

as introduced in Section 4.3. Their static RMI+Snapshot have maximal elements that are, in

fact, solutions of their Traffic Equations (Chen and Mandelbaum 1991a).

3.2. Single-Resources in RANs, or Mixed RANs

The discussion and examples in §1.2.1 motivate an extension of RANs that accommodates also

single-server “pools”. Such RANs, that generalize SPNs, will be called mixed RANs, or simply

RANs with single-resources. Their dynamics, it turns out, must be characterized by both RMI

and Snapshop – with the latter applied to only closed single-resources. Hence denote by H∪M the

single-resources, in which resources are closed in H and open in M: formally
∑

j(RC−RP )kj = 0,

for all k ∈ H or, equivalently by Assumption 1, (RC)kj = (RP )kj, for all k ∈ H, and all j; and∑
j(RC −RP )kj > 0, for all k ∈ M (where M is analogous to Materials in SPNs – see §3.2.5).

The building blocks of mixed RANs are (C,P,R,G,Λ), as in our regular RAN; plus one

additional primitive: Λ̂ ∈ D|H|, with coordinates Λ̂k ∈ D1 that are indexed by k ∈ H; plus two

additional structural constraints:

Gj = 1{· ≥ 0}, if [RC]kj > 0, for some k ∈ H∪ M; and Λl = 0, for all l ∈ r−1(H). (12)

Thus activities that consume single-resources (indicator Gj’s) are instantaneous (of zero-

duration). Furthermore, amounts of H resources are and must be zero; indeed, Λl ̸= 0, if r(l) =

k ∈ H, endows k with infinite processing capacity (it can support an unbounded number of activ-

ity starts within any finite time interval) and hence can be eliminated from the RAN. It follows

that negligible amounts of closed single-resources have non-negligible “processing” power (due

to the vanishing activity times). This is captured by Λ̂k (k ∈ H is a closed single-resource), which

can be interpreted as cumulative “capacity” of resource k; for example, suppose that activity

duration are in seconds; then Λ̂k(t) is the number of seconds that one unit of resource k is

capable of “processing” during [0, t] (which could also decrease in t).

The mixed RAN is then characterized first by RMI: CX ≤ PG ∗X +Λ, that is identical to

(3), as well as by

Snapshot for closed single-resources: (RCAX)k ⪯ Λ̂k, k ∈ H. (13)
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It will also follow that, since G and Λ adhere to (12), the single-resourced part of RMI in fact

becomes:

(CX)l ≤ (PX)l +Λl, r(l)∈ M, (14)

(CX)l = (PX)l, r(l)∈ H. (15)

The dynamics of mixed RANs will be now derived via a procedure referred to as single-

resourcing: its starting point is the usual many-resource RAN, in which we drive, asymptotically,

the RAN resource in H∪M to conventional heavy-traffic. The outcome of single-resourcing is the

above mixed-RAN model.

3.2.1. Single-Resourcing: RMI. We start with a base-case RAN (C,P,R, G̃, Λ̃), in which

“tilde” is appended to the primitives that play a role in single-resourcing. Given any resource k ∈

H ∪ M, we “single-resource” it by decreasing its amount in the system while simultaneously

decreasing duration of all activities that involve it; and we do this via scaling that preserves

“processing capacity”, as will become clear momentarily. Denote by ξ ↑∞ the parameter of this

(conventional heavy-traffic) scaling. The scaling of single-resourcing is then

Gξ
j(·) =

{
G̃j(ξ·), j : [RC]kj > 0, for some k ∈ H∪ M,
G̃j(·), otherwise,

and Λξ
l =

{
ξ−1Λ̃l, r(l)∈ H,
Λ̃l, otherwise.

(16)

Letting ξ ↑ ∞ in RMI (3), with the latter Gξ and Λξ are used, yields in the limit CX ≤

PG ∗X +Λ, in which G and Λ have the structural properties of a mixed RAN:

Gj =

{
1{· ≥ 0}, j : [RC]kj > 0, for some k ∈ H∪ M;
G̃j, otherwise;

and Λl =

{
0, r(l)∈ H;
Λ̃l, otherwise.

Remark 8 (Scaling intuition). Gξ-scaling is dividing service duration by ξ ↑ ∞. For open

resources k ∈ M and a given plan, this suffices to decrease the total amount of k, engaged in

activities and averaged over time, by order ξ. However, the amounts of k ∈ H, being resources

that are closed, are completely determined by their Λ̃ (they are unaffected by durations) which,

hence, must be reduced directly: we divide these Λ̃ by ξ, in order to preserve processing capac-

ity (amount divided by average duration). For more concrete intuition, assume existence of

Ẋj(t), then ξ[Xj(t)−Gξ
j ∗Xj(t)]→ ajẊj(t), as ξ ↑∞; or Bξ

j (t)≈
aj
ξ
Ẋj(t), in terms of ongoing

activities (5); here aj is the mean duration of activity j (having cdf G̃j). This reveals that

rates-of-change in planning provide the natural language of constraints involving instantaneous

activities, which in fact we integrate (recall ⪰ in Remark 5) to relax differentiability; and Snap-

shot will turn out the natural supporting tool, which will culminate in (13) above. ▲
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Returning to RMI, it is unchanged for sub-resources that are not consumed by activities-

consuming-single-resources. For resources k ∈ M ∪ H, however, the related activities become

instantaneous (Gj ∗Xj ≡Xj); and Λl = 0, for all l ∈ r−1(H). The single-resourced part of RMI

then becomes (14) and (15) above: the latter equality follows from (CX)l ≤ (PX)l, l ∈ r−1(H)

(by taking ξ ↑ ∞ in (RPGξ ∗X + RΛξ)k ≥ (RCX)k = (RPX)k, k ∈ H; the former inequality

suggests that the scaled dynamics of closed resources nullifies their associated RMI constraints:

a refined additional version of RMI is hence required to enforce plan-feasibility, which is where

Snapshot comes to the rescue.

3.2.2. Single-Resourcing: Snapshot a Must for Closed Resources. Write the pre-

limit version of (15) as a Snapshot slack (RΛξ −RCḠξ ∗X)k ≥ 0, which (in the ξth system) is

the amount of resource k that idles at time t: indeed, (RΛξ)k(t) is the total amount of resource k

at time t in the system (being closed), while (RCḠξ ∗X)k(t) represents the total amount of

resource k that is being engaged (by any activity) at time t. Now the amount of that idling slack

is order 1
ξ
(e.g. when Ẋ(t) exists: ξ(RΛξ(t)−RCḠξ ∗X(t))k→ (RΛ(t)−RCAẊ(t))k, as ξ ↑∞).

This explains both how RMI trivializes on H while, at the same time, also offers its refinement.

We start with an integrated form of Snapshot slacks:{∫ t

0

(RξΛξ(u)−RCξ(Ḡξ ∗X)(u))k du, t≥ 0

}
⪰ 0, k ∈ H.

Next, for activity j that consumes resource k ∈ H, the scaling of Gξ
j yields, for a fixed t≥ 0, as

ξ ↑∞,

ξ

∫ t

0

(Ḡξ ∗X)j(u) du= ξ

∫ t

0

∫ t

z

Ḡξ
j(u− z) du dXj(z)

=

∫ t

0

∫ ξ(t−z)

0

Ḡj(u) du dXj(z)→ ajXj(t).

Therefore, for single-resources that are closed, one supplements (15) with (13), in which

Λ̂k =

{∫ t

0

(RΛ̃)k(u) du, t≥ 0

}
, k ∈ H.

The functions Λ̂k need be defined only for k ∈ H, in which case Λ̃l ∈ D1 implies that Λ̂k are

continuous. This continuity, however, is not assumed in (13), as it can be relaxed by replacing

Λξ
l in (16), for r(l)∈ H, with{∫ t

0

(RξΛξ)k(u) du, t≥ 0

}
→ Λ̂k ∈D1,

as ξ ↑∞, which directly allows Λ̂k ∈D1.
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3.2.3. Mixed RANs and their Slacks. To summarize, activities involved in single-

resources are instantaneous (G̃j ∗Xj ≡Xj). This implies that mixed RANs must be characterized

by both RMI (with the special structure (14)-(15)) as well as by Snapshot (applied only to closed

single-resources). Snapshot is necessary since, without it, there would exist plans that violate

constraints on the amounts of single-resources used, while these constraints must prevail since

they can be interpreted as limits of RMI constraints that must prevail.

Remark 9 (Slacks with single resources – continuing Remark 5). Slacks for RANs

with single resources are of two types: idling sub-resources awaiting processing, that are quan-

tified by non-negative functions (analogues of Q’s in (5)); and lost processing capacities of

resources that are closed – these are non-decreasing functions, for which the ground was already

prepared in Remark 5. Formally:

Q := PG ∗X +Λ−CX ≥ 0, (17)

Yk := Λ̂k− (RCAX)k ⪰ 0, k ∈ H. (18)

Note that, in view of (15), implicit in (17) is that Ql ≡ 0, for r(l) ∈ H; and since activities

involving single resources are instantaneous, their amounts (B’s in (5)) trivially vanish at all

times. Moreover, “transformations” between sub-resources involving closed resources are instan-

taneous, hence these sub-resources are tightly coupled. It follows that resource level is the right

level to “express” slacks (as in (18)), and slack Yk quantifies lost processing capacity of resource k

(relative to planning), in units of (integrated) rates-of-loss (recall Remark 8). ▲

3.2.4. Static Mixed RANs. Corresponding to our RAN that also has single resources

k ∈ M∪ H, and assuming existence of λ as in (10), and limt↑∞
1
t
Λ̂(t) =: λ̂, there is a static RAN

that is characterized by its RMI and Snapshot as follows: for x∈RJ
+, one has

• Static RMI with single resources: Cx≤ Px+λ ; for the single resources, this RMI takes the

form: (Cx)l ≤ (Px)l +λl , for r(l) ̸∈ H; and (Cx)l = (Px)l , for r(l)∈ H.

• Static Snapshot for closed many-resources: (RCAx)k ≤RΛ(∞)k , for k /∈ H, k closed.

• Static Snapshot for closed single-resources: (RCAx)k ≤ λ̂k , for k ∈ H.

Static RANs are thus characterized by flow constraints (RMI) and capacity constraints (Snap-

shot) which, in fact, jointly create the feasibility set of a standard Linear Program.

3.2.5. RANs generalizing SPNs via single-resourcing. SPNs consist of “resources”

and “materials” that together engage in performing activities. Arising from conventional heavy

traffic, they can be viewed as RANs having only single-resources, namely M∪ H= {1,2, . . . ,K},

where the closed RAN resources H correspond to SPN resources, and the open RAN Resources M
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correspond to SPN Materials (hence the M). In fact, SPNs are only special cases of such RANs,

which turns out easiest to explain by comparing against Harrison (2002), specifically static

against (2.1) and dynamic against (4.8) (where, for simplicity, we let Harrison’s S be the non-

negative orthant). Note that we have been using SPNs to encompass Stochastic Processing

Networks but also their static and dynamic fluid models – the latter two will be now compared

to our RANs.

Starting dynamic, inequalities (14) and (13) correspond to (4.8) in Harrison (2002), specifically

to material flow constraints (Q(t)≥ 0) and resources capacity-constraints (integrated version of

Ax(t)≤ b). However, equalities (15), which can be viewed as resources’ “itineraries”, have no

SPN analogues: indeed, resources have no itineraries in SPNs as only materials can change their

state in the system. Therefore, already (single-resourced) RANs enrich the modeling scope of

SPNs. For example, a Round-Robin policy can be easily modeled by a RAN but not by an SPN

(without additional constraints).

Similarly for static, the first and second bullet in the above §3.2.4 (static RMI and Snapshot)

correspond to (2.1) in Harrison (2002), respectively to Ax= λ (relaxed to less-equal) and Rx≤ b.

Thus, Harrison’s R corresponds to our RCA, his A to our C − P , and his b is our λ̂. Finally

recall that Harrison’s units are rates and RANs use counts (our x is rates but Ax is counts).

3.3. RANs as Continuous Linear Programs (CLPs)

Static RMIs (10) are feasibility sets of Linear Programs (LPs) §3.2.4. Analogously, RMIs (3) can

be viewed as feasibility-sets of Continuous LPs (CLPs), which are LPs in infinite-dimensions

(continuous-time function spaces). CLPs originated in Bellman (1953), which was motivated

by “bottleneck problems”: §1.2.1 of Anderson and Nash (1987) explains why; Anderson and

Philpott (1994) adds analysis; and recent research appears in Shindin and Weiss (2015, 2020),

Shindin et al. (2021) and references therein. A CLP-view of RANs is useful. We now make

this concrete via two examples: first offered-plans §3.3.1 and then bottlenecks §3.3.2. Further

advantages will be discussed in §3.3.3, after RANs will be formulated as CLPs.

3.3.1. Offered-Plans (rather than Offered-Loads). Roughly speaking, the offered-

load to a service station is the least number of servers that suffices to have all customers be

served without wait; less servers will result in queueing/delays, more servers would create idle-

ness. Offered-loads can be calculated as averages in steady-state (then they are scalars), or over

time (deterministic functions). One can also define them sample-paths-wise, in which case they

are stochastic processes (Reich 2012). In any case, traditional offered-loads are one-dimensional,
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yet applications beg for a multi-dimensional notion (e.g. Carmeli (2020)). We now introduce

such a notion for RANs, which is natural in view of the symmetry among resources.

For a subset of sub-resources S ⊆ {l : r(l) ̸∈ H} ∪ {r−1(k) : k ∈ H}, consider all feasible plans

under the assumption that the amounts of sub-resources not in S are unbounded, i.e., there are

no capacity constraints on sub-resources outside S. Formally, the offered-plans associated with

sub-resources S, which we also call S-feasible, constitute the following set of dynamic plans:

CX ≤ PG ∗X +ΛS ,

(RCAX)k ⪯ Λ̂S
k , k ∈ H,

where

ΛS
l =

{
Λl, l ∈ S ∪ r−1(H),

∞, otherwise;
and Λ̂S

k =

{
Λ̂k, r−1(k)∈ S,
∞, otherwise;

here r−1(H) := {l : r(l) ∈ H}. The offered-load corresponding to a specific offered-plan is the set

of minimal {ΛS
l , l ̸∈ S ∪ r−1(H)} and {Λ̂S

k , r
−1(k) ̸∈ S}, that leave this offered-plan S-feasible;

in fact, these minimal ΛS
l ’s and Λ̂S

k ’s are given by ΛS
l = (CX − PG ∗X)l, l ̸∈ S ∪ r−1(H), and

Λ̂S
k = (RCAX)k, r

−1(k) ̸∈ S, respectively. (Note that letting either ΛS
l =∞, for all l such that

r(l) = k, or Λ̂S
k =∞ for single-resources, effectively creates a RAN without resource k – indeed,

a resource must have finite capacity.)

Example 2 (Offered-load and offered-capacity). The conventional offered-load to a

Gt/G/st queue, as in Eick et al. (1993) and Whitt (2018), is the average number of busy

servers in a corresponding Gt/G/∞. It equals Ḡ∗A, with A(·) denoting the function of average

cumulative arrivals to the latter two queues; and it plays a central role in applications as the

skeleton of time-varying staffing, given arrivals (Whitt 2013). The function Ḡ ∗A is also the

above offered-load in the At/G/st RAN (Appendix D): it corresponds to plan A, which is the

maximum when S consists of servers only. On the other hand, when S is only arriving customers,

one obtains what can be naturally called offered-capacity: it could serve as the skeleton for

time-varying appointments, given staffing (see Appendix D for details). ▲

Static offered-loads can be defined in a similar fashion. To this end, consider a static mixed-

RAN as in §3.2.4. Then, the static offered-plans, associated with sub-resources S, constitute the

following set of static S-feasible plans x∈RJ
+:

Cx≤ Px+λS ,

(RCAx)k ≤ λ̂S
k , k ∈ H,
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where

λS
l =

{
λl, l ∈ S ∪ r−1(H),

∞, otherwise;
and λ̂S

k =

{
λ̂k, r−1(k)∈ S,
∞, otherwise.

The static offered-load corresponding to a specific static offered-plan is the set of minimal

{λS
l , l ̸∈ S ∪ r−1(H)} and {λ̂S

k , r
−1(k) ̸∈ S}, that leave this offered-plan S-feasible; in fact, these

λS
l ’s and λ̂S

k ’s are given by λS
l = (Cx− Px)l, l ̸∈ S ∪ r−1(H), and λ̂S

k = (RCAx)k, r−1(k) ̸∈ S,

respectively.

3.3.2. Bottleneck Sets. Analysis of bottlenecks has a long and rich history, with the con-

cept being typically associated with obstacles for improving performance. In particular, fluid

models determine bottlenecks and operational regimes in their originating pre-limit stochastic

systems (Chen and Mandelbaum 1991c, Mandelbaum and Massey 1995). We now offer a par-

ticular definition for RANs, in which improving performance means increasing X; it will imply

that if Xj can not be increased then a set of sub-resource, consumed by j, must have zero-slack.

Formally, a set of sub-resources B(t)⊆ {1,2, . . . ,L} is a bottleneck, of activity j at time t if

B(t)⊆ {l : Cl,j > 0, r(l) /∈ H}∪ {r−1(k) : [RC]k,j > 0, k ∈ H},

and for the slacks Ql and Yk in (17)–(18) we have

Ql(t) = 0, l ∈B(t) and Ql(t)> 0, l /∈B(t) if Cl,j > 0, r(l) ̸∈ H;

dYk(t) = 0, r−1(k)∈B(t) and dYk(t)> 0, r−1(k) ̸∈ B(t) if (RC)k,j > 0, k ∈ H.

Observe that for each closed single-resource k ∈ H, all or none of its sub-resources r−1(k) are in

the bottleneck B(t). This definition, of B(t) being a bottleneck of activity j at time t, renders

an increase in Xj(t) feasible if and only if one increases all Λ’s and Λ̂’s corresponding to sub-

resources in B(t). Let B(t)⊆ 2{1,...,L} denote the set of bottlenecks at time t (set of sets).

Example 3 (Tandem network with flexible servers). Consider a two-station tandem

network. The corresponding RAN consists of two activities {1,2} (services at the two stations),

four resources (customers {1}; two dedicated server pools {2,3} that engage in the two activities,

respectively; and one flexible pool {4} that can be engaged in either of the activities), and

five sub-resources (two sub-resources {1,2} involve customers at the two stations; and similarly

{3,4,5} involve servers). Dynamics is such that, initially, there are customers only at the first
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station, with no further external arrivals; and service activity at either station requires 3 sub-

resources: one customer plus one dedicated server (e.g. sub-resource 3 for activity 1) plus one

flexible server (sub-resource 5). Formally, the model primitives are

C =


1 0
0 1
1 0
0 1
1 1

 , P =


0 0
1 0
1 0
0 1
1 1

 , R=

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , Λ=


4
0
2
1
2

 , G(t) =

[
1{t≥ 1}
1− e−t

]
.

The following plan is feasible (and also maximal):

X(t) =

[
2+1{t≥ 1}+1{t≥ 2}

min{1{t≥ 1}+(t− 1)+,4}

]
.

Under this plan, all servers corresponding to sub-resources 3 and 5 are busy at the first station for

the first time-unit. After that, the flexible servers (sub-resource 5) are divided equally between

the two stations. For this particular plan X, we have B(t) = {{3,5},{2,5}} for t∈ [0,1), B(t) =

{{5},{4,5}} for t ∈ [1,2), B(t) = {{1,5},{4,5}} for t ∈ [2,3), B(t) = {{1},{4}} for for t ∈ [3,4),

and B(t) = {{1},{2}} for t≥ 4.

When the three server pools are single resources, the following plan is feasible (and also

maximal):

X(t) =

[
min{t,4}
min{t,4}

]
.

In this case, B(t) = {{3,5},{2,4,5}} for t∈ [0,4) and B(t) = {{1},{2}} for t≥ 4.

The present example, both with and without single resources, enjoys two features that are

not in concert with prevalent views. First, customers as well as servers could be bottlenecks.

Second, bottlenecks do constitute sets of multiple sub-resources, which is here due to having

flexible servers; with only dedicated servers, however, the bottlenecks would all be singletons. ▲

Remark 10 (Bottleneck sub-network). In SPNs, operating under a maximal plan, one can

restrict attention to the so-called bottleneck sub-network of servers/activities (e.g. §1.7 in Chen

and Mandelbaum (1991a)); note that customers are the bottlenecks in the eliminated part of

the considered SPN. A similar sub-network exists in the case of RANs, which we now describe.

Suppose RMI has a unique maximal plan Xm. Then, in general, there exists a simpler RMI

(RAN) (in the sense that some resources are eliminated from the original model) such that its

maximal feasible plan is also Xm (on some time interval). Specifically, as far as Xm is concerned,

RMI inequalities are either binding or non-binding (at a given t). If, for non-binding inequalities,

the corresponding Λl(t)’s or Λ̂k(t)’s are set to infinity, the maximal feasible plan does not change.

Hence, if all RMI inequalities corresponding to a resource are non-binding, then this resource
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can be “eliminated” from consideration (at that specific t in a given time interval, if true for

all time instances within that interval). Equivalently, a resource can be eliminated if none of its

sub-resources are part of a bottleneck.

In addition to resources, some activities can be eliminated as well. In general, activities with

non-zero duration cannot be eliminated. Among zero-duration activities, one can eliminate an

activity iff it consumes only sub-resources in the bottleneck associated with that activity. Such

activities become merely flow-routers: they instantaneously transform consumed sub-resources

into produced ones. When eliminating these activities, the same procedure (re-calculation of

model parameters) used in Queueing Networks should be followed (e.g. §1.7 in Chen and Man-

delbaum (1991a)). ▲

We end this “bottleneck section” with a discussion of static bottlenecks. Unlike queueing

networks, however, where traffic equations determine static bottlenecks (since only servers are

treated as bottlenecks), static general RANs present challenges that render our discussion incom-

plete, as an example will momentarily show.

To start, and for a given feasible static plan, one can attempt defining static bottlenecks

(sets of sub-resources and single-resources) by the same logic used earlier for the dynamic case.

However, two challenges arise. First, in static RANs, there is a fundamental difference between

closed and open resources, which are described by counts and rates, respectively. Indeed, for

closed resources, the λl’s in static RMI (10) vanish, and Static Snapshot must hence be used to

determine whether slacks are zero for such resources; in contrast, static RMI suffices for open

resources. Second, zero slack of a sub-resource does not necessarily indicate that increasing the

amount of the corresponding closed resource would lead to higher activity rates. To be concrete,

consider a two-activity (exponential unit durations) RAN with three closed resources:

R=

1 0 0 0
0 1 0 0
0 0 1 1

 , C =

1 0
0 1
1 0
0 1

 , P =

1 0
0 1
0 1
1 0

 , Λ=

 bb0
3b

 .
In this example, increasing Λ1 without increasing Λ2 does not yield an increase in the maximum

static plan. Similarly, increasing Λ4 does not result in a higher maximum static plan even when

both slacks at activity 1 vanish.

3.3.3. Continuous Linear Programs (CLPs). As mentioned, RMIs are feasibility-sets

of CLPs (LPs in spaces of continuous-time functions). More accurately, RMIs conform to existing

CLP formulations only under additional assumptions (e.g. existence of some derivatives). Yet

relaxing these assumptions, which are apparently technical, reaches beyond our present scope.
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(Theories of infinite-dimensional spaces are typically sensitive to such “technicalities,” that are

in fact mathematically fundamental.) Nevertheless, we do outline here two CLP views of RANs,

and we do so for reasons to be elaborated on after the CLPs.

CLP 1: Ẋ ≥ 0 (dX ≥ 0). RMI (3) is the feasibility set of a (generalized) CLP, namely all

X ∈DJ
↑ that satisfy ∫

[0,t]

K(t−u) dX(u)≤ b(t), t≥ 0; (19)

here b(t) = Λ(t), and K is a convolution kernel of dimension L× J , with components given by

Kl,j(t− u) = Cl,j − Pl,jGj(t− u); or, in matrix form, K = C − P × diag(G). To conform to a

classical CLP (hence the “generalized”), one restricts attention to plans X(·) with derivative

Ẋ(·) almost everywhere. Then (19) becomes a CLP in Ẋ ≥ 0:
∫
[0,t]

K(t−u)Ẋ(u) du≤ b(t). ▲

CLP 2: X ∈DJ
↑ . Assume that the cdf’s of activity durations,Gj’s, are absolutely continuous

with densities gj’s. Then RMI (3) is the feasibility set of a (conic) CLP, namely all X ∈DJ
↑ that

satisfy

B(t)X(t)+

∫
[0,t]

K(t, u)X(u) du≤ b(t), t≥ 0. (20)

Here B(t)≡C, b(t) = Λ(t); and K is a convolution kernel of dimension L×J , with components

kl,j(t, u) =−Pl,jgj(t−u), that arises after integration-by-parts. The constraint X ∈DJ
↑ renders

(20) a conic CLP, that distinguishes it from classical CLPs in which X ≥ 0. ▲

Despite the fact that, as is, neither CLPs fits the general model of a RAN, we included them

for three reasons: exploration, exploitation and conceptual. Starting with the latter reason, a

CLP view of RANs adds to RMI a natural optimization-view (seeking “optimal” plans), which

complements our earlier motivating discussions of offered-loads and bottlenecks, as well as later

discussion of non-idling and maximal plans §3.4. Next, it suggests exploring open research

questions and directions (e.g. extending existing CLP theories to cover RMIs). Finally, ready-

made research may turn out exploitable or extendable, for example Duality (Levinson 1966),

Conic CLPs (Shapiro 2001), and Linear Complementarity (references below, in Section 3.4).

Examples to explore and exploit are outlined in Appendix B.

Arguably, the two most important families of problems in optimization are Linear Program-

ming (Dantzig 1963) and Complementarity Problems (Cottle et al. 1968). We related RMIs to

the former, and we now continue to the latter (adding Snapshot due to adding single resources).

3.4. RANs as (Extended) Dynamic Complementarity Programs ((E)DCPs)

The CLP view of RANs opens up optimization paths, for example seeking feasible plans that

maximize a given utility. Digging deeper, experience with SPNs (arising from queueing models)
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suggests that in fact stronger versions of optimization can also prevail: specifically, there could

be maximal feasible plans or even a maximum (largest) one. Furthermore, it then turns out that

maximality could be equivalent to non-idleness of plans, often called work-conserving strategies

in queueing contexts: concrete examples are RANs (dynamic or static) associated with Gt/GI/st

(Section 4.1 and Appendix D), Machine-Repair models §4.2, Generalized-Jackson Networks

§4.3, and Parallel-Servers §4.5. In all these examples, one can view a non-idling activity as

having zero-slack in at least one of the sub-resources it consumes. This viewpoint enables one

to accommodate general RANs (unlike (Dai and Harrison 2020, §7.1), that rely on the special

structure of a queueing network).

For SPNs, or rather RANs with only single resources, a framework that accommodates the

above is Dynamic Complementarity Theory (DCP) (Mandelbaum 1989, Stewart 2009) of vari-

ous forms (Linear, Differential, ...), also referred to as Skorohod or Reflection Problems (Whitt

2002, §§14.2-4,14.9). RANs, however, require adding to DCP also Convolution Complemntarity

(Stewart (2006), to accommodate G-convolutions) and Extended Complementarity (De Schut-

ter and De Moor (1995, 1998), with its more general complementarity conditions). All these

complementarity theories clearly emerge from our definition of Non-idleness (Complementarity),

which we offer next for general RANs.

3.4.1. Non-Idling Plans. Striving for generality, we consider a RAN with single resources,

as in §3.2 (specifically RMI (3) with (12), plus (13)). Its plan X is non-idling at time t if

∑
j

∏
l:Cl,j>0, r(l)̸∈H

(PG ∗X +Λ−CX)l(t)
∏

k:Cl,j>0, r(l)=k∈H

d(Λ̂−RCAX)k(t) = 0; (21)

here H is the set of single-resources (if any) that are closed; Ql = (PG ∗ X + Λ − CX)l ≥ 0

are RMI (3) slacks of sub-resources; and Yk = (Λ̂−RCAX)k ⪰ 0 are Snapshot (13) slacks of

single-resources. Articulated succinctly with the non-negative slacks Ql, and the non-decreasing

slacks Yk: ∑
j

∏
l:Cl,j>0,r(l)̸∈H

Ql(t)
∏

k:Cl,j>0,r(l)=k∈H

dYk(t) = 0.

A corresponding static version (Cottle et al. 2009), arising from the Static RMI (10) (Cx ≤

Px+λ), is: λ= q+[C−P ]x, in which λ,C,P are given, and (x, q)≥ 0 is to be determined so that∑
j xj

∏
l:Clj>0 ql = 0; this is precisely an Extended Complementarity Problem, as mentioned

above.
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3.4.2. Three Forms of Complementarity. To simplify the discussion, assume that (21)

applies over all t≥ 0. Non-idling then gives rise to three forms of complementarity between the

slack functions Qs and Y s:

1. Q1 ·Q2 = 0, for Q1 ≥ 0, Q2 ≥ 0: there is no time t at which both Q1(t)> 0 and Q2(t)> 0.

This characterizes a non-idling (work-conserving) Gt/GI/s (Appendix D).

2. Q · dY = 0, for Q≥ 0, Y ⪰ 0: e.g. if Q(t)> 0 then Y does not increase at time t. This is

the Skorohod problem, which characterizes Gt/GI/1-SPN, or Gt/GI/s-RAN with servers

single-resourced (Appendix D).

3. dY1 · dY2 = 0, for Y1 ⪰ 0, Y2 ⪰ 0: there is no time at which Y1 and Y2 both increase.

This characterizes a machine-repair SPN model: single machine and single repairman, or

machine-repair RAN with its two resources single-resourced (end of Section 4.2).

Remark 11 (Vanishing slacks). Complementarity entails some vanishing slacks, which in

fact relates the concepts of offered-loads, non-idleness and bottlenecks. Indeed, the offered-load

associated with a set of sub-resources S induces zero-slacks for sub-resources not included in S.

An activity is non-idling if and only if at least one of the sub-resources it consumes has zero

slack. A bottleneck arises when a group of sub-resources, consumed by a given activity, all

have zero slacks. It thus follows that a feasible plan is non-idling if and only if a bottleneck is

associated with every activity. Going the reversed direction, let us start with a feasible non-idling

plan (21). Then the (sub)-resources that correspond to binding RMI constraints are elements

of bottlenecks, with one bottleneck per activity. Letting S be the set of all non-bottleneck (sub)-

resources, the offered-load of S then equals the amounts of bottleneck (sub)-resources (those not

in S). It will be instructive to (re)view the above via the lens of CLP duality (complementarity

slackness (36)), after the supporting theory will have been developed. ▲

3.4.3. Maximality, Complementarity, Non-Idleness. A plan that is idling at time t

has at least one activity j that is idle at t, which entails positive slacks of all the resources that

this j consumes: Ql(t)> 0 for the sub-resources l that are not closed, and dYk(t)> 0 for closed

resources k. Having these positive slacks suggests that an idling X can be increased through

some re-planning of consumption and production or, conversely, that a non-idling X is maximal:

there is no plan X̃ such that X(t) ≤ X̃(t), at all times t ≥ 0, and Xj(τ) < X̃j(τ), for some

activity j at some time τ . However, and despite the examples mentioned at the start of this

section (Gt/GI/st, Jackson Networks, ...), the relation between non-idleness and maximality

turns out subtle, which we demonstrate via examples below. These reveal that, for general

RANs, extant theories of CLP and Complementarity cover neither the concepts of, nor the
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relations among, offered plans, bottlenecks, maximality and non-idleness – indeed, a complete

understanding clearly lies beyond our present scope.

Example 4 (non-idling and not-maximal). Consider a single-activity RAN with two

resources: C = [1, 1]⊤, P = [1, 2]⊤, Λ = [1, 0]⊤, and G(t) = 1
2
1{t≥ 0}+ 1

2
1{t≥ 1}; note that

Assumption 1 does not hold in this case. This RAN has a maximum plan X̃, given by X̃(t) =

2(⌊t⌋+ 1), t ≥ 0. Hence the plan X(t) = ⌊t⌋+ 1, t ≥ 0, is not maximal, yet it is non-idling as

(PG ∗X +Λ−CX)(t) = [ 1
2
, 0]⊤, over t ∈ [0,1). The reason, in this specific example, combines

its two features: 0-activity duration with positive probability, and producing 2 units of resource

2 after consuming only 1 unit of it; this enables the production of any amount of resource 2 in

0-time, as long there is sufficient amount of resource 1. ▲

Example 5 (idling and maximal). Consider a single-activity RAN (G/M/st) with two

resources: C = [1, 1]⊤, P = [0, 1]⊤, Λ(t) = [2+ λt, (2−1{t≥ 1})]⊤, and G(t) = 1− e−µt, t≥ 0.

For the case µ <min{λ, ln 2}, the plan X̃(t) = eµ + µt1{t≥ 1} is maximal, yet it is idling for

t∈ [0,1). The idleness is due to the “sudden drop” in the amount of servers (the second resource)

at time t= 1: X̃ hence must idle during all t < 1, in order to not violate the (future) capacity

constraint at time t= 1. ▲

Despite the above two examples, it was demonstrated in some cases and conjectured in others

that RANs do sometimes exhibit relations, even equivalence, between non-idleness (21) and

maximality of plans. We already mentioned such RANs (Gt/GI/s in Appendix D, Machine

Repair in Section 4.2, GJNs in Section 4.3, Parallel Servers in Section 4.5), all being models

of queueing networks that enjoy special structure (e.g. every activity consumes exactly two

resources – one server and one customer; see also (Dai and Harrison 2020, §2.6)). Equivalence

when C and P are square matrices has been addressed in complementarity research: static by

the classical LCP (Cottle and Veinott 1972) and dynamic by DCP (Yang 1993, Mandelbaum

1989); and in both cases, equivalence holds iff (C −P ) is related to Leontief matrices. We are

unaware of static analogues for ELCPs, not to mention dynamic complementarity models that

would cover our RANs. By focusing on but one aspect out of many, our next example helps

appreciate the subtlety in relating non-idleness and maximality.

Example 6 (non-idling iff maximal). Reconsider Example 5, by replacing its Λ2(t) = 2−
1{t≥ 1} with any Λ2 for which {eµtΛ2(t), t ≥ 0} is a non-decreasing function. It can then be

shown that (21) is sufficient and necessary for maximality since there exists sufficient capacity to

avoid activity interruptions (recall the last part of §2.2.2). Indeed, no idling is required to support

future capacity constraints since the amount of on-going activities decreases exponentially, at

rate µ, when no new activities are initiated. ▲
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4. Illustrative Examples

In this section, we present several RAN examples that can be identified with known (queue-

ing) models. In most examples, the RAN goes beyond the existing: for example, it could be

time-varying while the standard is stationary, or its primitives need not be smooth while the

standard requires densities. Indeed, even in simple models, the RAN view is often instructive

and insightful.

4.1. Single-Activity RANs

Starting with the simplest, one-activity one-resource RANs cover the Gt/GI/∞ model (delay

station), with RMI: X ≤ A. If A ⪰ 0 then it models an arrival process, and the non-idling

maximum plan is trivially Xm =A, with its busy process B =A−A ∗G being the offered load

(Whitt 2013). Single-activity two-resources RANs include: (1) The Taxi model (resources depart

upon service completion: X ≤Λ1, X ≤Λ2), with the maximal plan Xm =Λ1 ∧Λ2, if the latter

is in D1
↑; and (2) A model where the activity requires two servers from two finite server-pools

(closed resources). In this case Xm = [I −G]−1(Λ1 ∧Λ2), assuming that Λ1 ∧Λ2 is exhaustive

(Section 2.2.2).

A last single-activity example is Gt/GI/st, with RMI: X ≤A, X ≤G ∗X + s; here A∈D1
↑ is

an arrival function, G is service cdf, and s∈D1
+ is a staffing function. Upon service completion,

customers depart (open resources), while servers turn ready for their next service (closed);

servers do still leave at times when s decreases. In Appendix D, we provide a systematic summary

of Gt/GI/st. Here we only demonstrate that, already for this classical simple model, the RAN

view uncovers some interesting facts and themes:

1. Gt/GI/st: Fixed-point characterization, exhaustive staffing. Introduce the operator

T :D1→D1 by

X 7→ T (X) :=A∧ (G ∗X + s). (22)

Then, due to RMI, T (X)−X = (A−X)∧ (s− Ḡ ∗X)≥ 0, for any feasible plan X. It follows

that a non-idling plan must be a fixed point of T , in which case it is also maximal: Xm =

A∧(G∗Xm+s); equivalentlyQ∧I ≡ 0, whereQ :=A−Xm and I := s−Ḡ∗Xm are, respectively,

queue-length and idleness. There is, however, a hidden subtlety here: one can show that, when

G(0)< 1, the transformation T always has a unique fixed point; however, this fixed-point is not

necessarily non-decreasing, which is inconsistent with the requirement X ⪰ 0 for feasible plans.

For example, if A ≡∞ then the fixed-point X ⪰ 0 iff the staffing function s is an exhaustive

busy process §2.2.2. A finite A does generalize and elevate the difficulty of the open problem
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to characterize exhaustive processes, which now reads: given A⪰ 0 and cdf G, characterize the

staffing functions s for which the unique fixed-point X = T (X) is in D1
↑ (Liu and Whitt (2012)

address this problem for differentiable A and G).

Example 7 (Exhaustive for A≡∞ but not for A finite). Let G(t) = 1{t≥ 1}, s(t) =

1{0≤ t < 1}, A(t) = 1{t≥ 1/2}; then X(t) = 1{1/2≤ t < 1} is the unique fixed point of T ,

because 1{t≥ 1/2} ∧ (1{3/2≤ t < 2} + 1{0≤ t < 1}) = 1{1/2≤ t < 1}; but X is not non-

decreasing; indeed, in this case there is no non-idling feasible plan. If, on the other hand, A≡∞

then X ≡ 1 is the unique fixed point, which is also a feasible plan. ▲

2. Limit interchange: From many- to single-server heavy-traffic. Let L be the amount

of customers in the Gt/GI/st RAN. Then L :=A−G ∗X = Ḡ ∗A+G ∗ (A−X); alternatively

L−s= (A−X)−(G∗X+s−X) =Q−I, and, for a non-idling planX, one has (L−s)+ =A−X

(and (L− s)− = I, thus L contains information about both slacks Q and I.) Therefore, in that

case, L= Ḡ∗A+G∗ (L−s)+, which is in agreement with the fluid results in Reed (2009); Ḡ∗A

is the corresponding Gt/GI/∞ process.

We now show that single-resourcing servers of the Gt/GI/st RAN leads to the Skorohod problem

of the corresponding single-server queue (Mandelbaum 1989, Williams 2017). Specifically, single-

resourcing “X ≤ G ∗X + s” leads to “X ⪯ ŝ”, where ŝ(t) = µ
∫ t

0
s(u) du. Then, in the single-

resource limit, the total number of customers in the system, L=A−G∗X =A−X−(G∗X−X),

converges to L = N + Y : here N = A − ŝ is a netput process, which is given; Y = ŝ −X is

lost potential, to be planned; and Y is Skorohod-feasible iff L ≥ 0 and Y ⪰ 0. Similarly, the

characterization of a non-idling X, namely (A−X) ∧ (s− Ḡ ∗X)≡ 0, converges to LdY ≡ 0.

One can then show that X∗ is a non-idling plan (for the single-resourced RAN) iff Y ∗ = ŝ−X∗ is

a solution of the Skorohod problem with data N . (It is perhaps surprising that X∗ = ŝ−Y ∗ ⪰ 0

follows from Y ∗ being a Skorohod solution with data N =A− ŝ.) To summarize, through single-

resourcing servers, one obtains heavy-traffic results for Gt/GI/1t from those of Gt/GI/st. ▲

4.2. Machine-Repair Model

The model consists of m machines and s repairmen; both m(·) ∈ D1
+ and s(·) ∈ D1

+ can be

time-varying. A machine is operational (working) for a random amount of time, distributed

according to F (with mean 1/λ), before it breaks down. A broken machine must be repaired.

A single repairman repairs one machine at a time, and repair times are distributed according

to G (with mean 1/µ). Once a machine is repaired it starts working, and the cycle repeats. All

repair and working durations are independent.
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Figure 5 Three activity-diagrams of RANs: machine-repair §4.2 (left), three-node GJN §4.3 (center), and

an N-model §4.5 (right). In the diagrams, nodes and arcs represent activities and sub-resources,

respectively. The arc-arrows indicate whether specific sub-resources are consumed (inward) and/or

produced (outward); for example, consider activity 1 (repair) in machine-repair: it both consumes

and produces sub-resource 1 (idle server), and it also consumes sub-resource 2 (broken machine) and

produces sub-resource 3 (working machine). One could also draw corresponding resource-diagrams,

for example depicting flow of “customers” through “resources” (e.g. architectures such as V , N , W ,

M and X (Garnett and Mandelbaum 2000)). Resource-diagrams are simpler, more prevalent but,

unlike activity-diagrams, resource roles are not symmetric .

The RAN of machine-repair has two activities (1: repairing, 2: working), two resources (1:

s repairmen, 2: m machines), and three sub-resources (1: idle repairman, 2: broken machine, 3:

repaired machine) – see Figure 5 (left). The corresponding RAN primitives are as follows:

R=

[
1 0 0
0 1 1

]
, A=

[
1/µ 0
0 1/λ

]
, C =

1 0
1 0
0 1

 , P =

1 0
0 1
1 0

 , Λ=

 s
m1

m2

 , b=

[
s
m

]
,

wherem1+m2 =m; herem1(0) andm2(0) are the amounts of machines that just started working

and just broke down at time t= 0, respectively. A plan X = (X1,X2)
⊤ determines cumulative

amounts of “repair-starts from broken” (X1) and of “work-starts from repaired” (X2). RMI is

then

X1 ≤G ∗X1 + s, X1 ≤ F ∗X2 +m1, X2 ≤G ∗X1 +m2.

Slacks in the three flow inequalities can be interpreted, respectively, as the amounts of idle

repairmen, of broken machines awaiting repair, and of repaired machines that are not (yet)

working. The corresponding snapshot inequalities are ḠX1 ≤ s and ḠX1 + F̄X2 ≤m.

When m2 ⪰ 0, finding a non-idling X can be done as follows. Monotonicity and the third

RMI inequality imply that the non-idling X satisfies X2 =G ∗X1 +m2. Utilizing this equality

in the other two yields that X1, corresponding to the non-idling X, is a solution of the following

fixed-point equation:

X1 = (G ∗X1 + s)∧ (F ∗G ∗X1 +F ∗m2 +m1). (23)

provided X1 ∈D1
↑. (Complete analysis of (23) is left for future research.) Note that the above

expression generalizes (22), that solves for the maximal throughput of Gt/G/st. Specifically,
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machine-repair reduces to Gt/G/st when working durations are infinite (F = 0); then m1 is

cumulative arrivals to the system, and (23) becomes X1 = (G ∗X1 + s)∧m1 (22).

4.2.1. Static Machine-Repair. Constraints on long-run rates can be obtained when

m(t)→m(∞) and s(t)→ s(∞), as t ↑∞. Indeed, for X ∈ D̄2
∞, namely t−1X(t)→ x, as t ↑∞,

(11) implies x1/µ ≤ s(∞) and x1/µ + x2/λ ≤ m(∞) – the former due to repairmen and the

latter to machines. Adding Cx= Px (10), which implies x1 = x2, identifies the components of

the maximal x to be

x1 = x2 = µs(∞)∧ λµ

λ+µ
m(∞).

4.2.2. Single-Resourcing Machine-Repair. There are three different ways to single-

resource the Machines Repairmen Model §3.2: single repairman, single machine, and both being

single. Each of the corresponding models, which we now describe, gives rise to either a new

insight or an open problem:

1. Single repairman: This RAN is a cyclic network with two stations, one single-server and the

other infinite-server. Its RMI is X1 ⪯ µŝ=: s̃, X1 ≤ F ∗X2 +m1, X2 ≤X1 +m2. For a maximal

plan, that is also non-idling, one clearly takes X2 :=X1 +m2. This leaves one with maximizing

X1, subject to X1 ⪯ s̃ and F̄ ∗X1 ≤m1+F ∗m2 =:m+. We now outline how this maximum can

be derived via solving a generalized version of the 1-dimensional Skorohod problem (Williams

2017).

Define Y := s̃−X1, Z :=m+− F̄ ∗X1, and N :=m+− F̄ ∗ s̃. Then the set of all Y ⪰ 0 such

that Z = N + [I − F ] ∗ Y ≥ 0, is the feasibility set of a generalized Skorohod problem (F ≡ 0

is the classical problem). This set has a least Y m (equivalently maximal Xm
1 ), which is also

characterized by the complementarity condition Z dY ≡ 0. One can in fact solve for the least

Y m by writing Z = [N −F ∗Y ]+Y , then deducing that Y (t) = sup0≤u≤t[F ∗Y (u)−N(u)], t≥ 0,

by the classical Skorohod problem: Y m is hence the unique fixed-point of a contraction. (For

F ≡ 0, Y is in fact explicitly given.) A final comment is that X1 := s̃− Y ∈D1
↑ must hold if

(X1,X2) is to be a plan; a sufficient condition is that m1 and m2 are both in D1
↑.

2. Single machine: This RAN is a cyclic network with two infinite-server stations and a

single machine (customer), where the capacity constraint is on the sum of the two processing

capacities. (With only a single machine, one can interpret both stations as single servers). RMI

takes the form 1
µ
X1 +

1
λ
X2 ⪯ m̂ := m̂1 + m̂2, and X1 =X2; equivalently X1 ⪯ λµ

λ+µ
m̂=: m̃, and

X2 =X1. Then, for t≥ 0, the maximal plan, which is also non-idling, is given by X1(t) =X2(t) =

infu≥t m̃(u), namely the largest non-decreasing function that is dominated by m̃. In particular,

if m̃⪰ 0 then X1 =X2 = m̃.
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3. Single machine and single repairman: This RAN is the same as in the second case but with

the additional constrain, as in the first case, on the processing capacity of the first station. RMI

yields X1 ⪯ s̃ and X1 ⪯ m̃. The maximal solution, which is also non-idling, is then X1 =X2 =

m̃⋏ s̃, where the minimum ⋏ is with respect to the partial order ⪯. One can in fact construct

this minimum as follows. Represent the bounded-variation function s̃ − m̃ as the difference

between its increasing and decreasing parts: s̃− m̃= a− b, where a, b⪰ 0, a(0) = b(0) = 0 and

da∧db= 0. The maximal solution is then given by X1 =X2 = s̃− a≡ m̃− b.

4.3. Generalized Jackson Network (GJN)

We now describe fluid RANs that arise from time-varying Generalized Jackson Networks (GJNs).

Specifically, we cover many-server (Liu and Whitt 2014), stationary and single-server (Chen

and Yao 2013, Ch. 7) GJNs, that are either open or closed. (The introductory footprints of

Gt/GI/st, in $4.1 and Appendix D, will be clearly recognized.)

GJN has J stations/nodes, such that each station j has an amount (possibly time-varying)

of sj ∈D1
+ servers, who provide iid services with cdf Gj; routing is Markovian, according to a

J × J sub-stochastic matrix Π (Π≥ 0 and Π · 1̄≤ 1̄): specifically, Πj1,j2 is the probability that

a customer, having completed a service at station j1, continues directly to station j2; hence

1−
∑

j Πj1,j is the probability of exiting the network after the j1-service. Finally, for each j,

let Ej ∈ D1
+ be (mean) cumulative amount of exogenous arrivals/departures (of customer) to

station j: arrivals prevail when Ej increases and departures when it decreases.

The GJN fluid RAN has J activities, J +1 resources, and 2J sub-resources. Activity j is a

service at station j, of one customer by one of the sj servers there. Resources 1, . . . , J corre-

spond to servers at the J stations, and resource J + 1 to customers. Sub-resource j = 1, . . . , J

corresponds to an idle server at station j; and sub-resource J+j ∈ {J+1, . . . ,2J}, is a customer

at station j, either queueing up or being served there (see Figure 5 (center) for an example of

a three-node GJN). It follows from the above that the RAN building blocks are

R=

[
IJ×J 0̄J×J

0̄1×J 1̄1×J

]
, C =

[
I
I

]
, P =

[
I
Π⊤

]
, Λ=

[
s
E

]
;

here IJ×J (or simply I) is the identity matrix, 0̄ is a matrix of all zeros, 1̄ is a (row) vector of

ones, E := (E1, . . . ,EJ)⊤, and s := (s1, . . . , sJ)
⊤ (with the latter two being both in DJ

+).

Every activity consumes two (input) sub-resources – one sub-resource that involves the

servers resource, and one that involves the customers resource. Activities may produce, however,

more than just two (output) sub-resources: first a single sub-resource that involves the servers

resource, but also one or several sub-resources that involve the customers resource (capturing
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routing after a service to subsequent stations). Note that Assumption 1 prevails: RC ≥ RP

since Π is sub-stochastic. The role of P− can be played by any P− :=
[
0̄J×J (Π̃−Π)

]⊤
, where

Π̃ is any stochastic J × J matrix Π̃ (Π̃≥ 0 and Π̃ · 1̄ = 1̄) such that Π̃≥Π element-wise. Then

RC =R[P +P−], since Π̃ is stochastic. In particular, if Π itself is stochastic then customers do

not leave the network.

RMI of GJN-RAN constitutes the following 2J inequalities:

X ≤G ∗X + s, X ≤Π⊤G ∗X + E , for plans X ∈DJ
↑ ; (24)

the first J inequalities are server constraints per station, and the other J are customer routing

constraints. Generalizing (22), RMI can be summarized into merely J inequalities, written

succinctly in terms of a (monotone) transformation T :DJ →DJ as follows:

X ≤ T (X), where T (X) := (G ∗X + s)∧ (Π⊤G ∗X + E). (25)

Non-idling Maximal Plans. The complementarity condition (21) reduces to J comple-

mentarities between RMI slacks (24) so that, at each station, there cannot be simultaneously

idle servers and waiting customers (often referred to as work-conservation). Formally:

(s− Ḡ ∗X)∧ (Π⊤G ∗X + E −X)≡ 0,

which is equivalent to T (X)≡X, namely X is a fixed-point of T . Since X ≤ T (X) for all plans,

a fixed-point X is plausibly the maximal plan if also X ∈DJ
↑ .

An analysis of the transformation T and its fixed points (re. existence, uniqueness, feasibility:

X ∈DJ
↑ ) is left for future research. It offers a significant generalization of (22) and (23)); and

it is a special case of the Dynamic Complementarity Problem (re. non-idling, maximality) in

§3.4.3. Note that a fixed point, if existing, is in DJ
↑ when both s∈DJ

↑ (e.g. constant) and E ∈DJ
↑

(e.g. cumulative arrivals). This happens in Static GJNs, which we turn to next.

Static GJN §3.1. Assume that s(∞) := limt↑∞ s(t), and E(t) := E(0) + λt, t ≥ 0, with

E(0), λ ∈RJ
+. For a plan X ∈ D̄m

∞, such that limt→∞
1
t
X(t) = x ∈RJ

+, divide either (24) or (25)

by t and let t ↑∞: we get x≤A−1s∧ (Π⊤x+λ), in view of (8) and (9), which combines Static

RMI (10) with Static Snapshot (11). We now show that this combination leads to the classical

traffic equations of GJNs. To this end, change variables from x to y = Π⊤x+ λ, which yields

y≤ λ+Π⊤(y∧A−1s). It can now be shown (Chen and Mandelbaum 1991a,c) that a maximal y

exists; it is in fact a maximal fixed-point of the traffic equation

y= λ+Π⊤(y ∧A−1s), (26)
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in whichA−1s is the vector of processing capacities and y is the inflow vector, hence y ∧A−1s

is throughput. Note that the mapping x 7→ y is not necessarily a bijection: there could be

multiple x’s that correspond to the same y. If y is a maximal fixed-point of (26), then all of the

corresponding x’s are maximal static plans.

The traffic equations can be also interpreted as a Linear Complementarity Problem (LCP),

that is analyzed in Chen and Mandelbaum (1991a) separately for open vs. closed GJNs. While

RANs offer a unified treatment, such a distinction does have its nuances, as we now outline.

Static Closed GJN. Our closed GJN has parameters Π stochastic and irreducible, s(t)≡

s(0)≥ 0 (per-station fixed amounts of servers), and E(t)≡E(0)≥ 0 (network-total fixed amounts

of customers); it follows that RΛ≡ [s(0),
∑J

j=1 Ej(0)]⊤. Static RMI (10) now implies x=Π⊤x,

hence y= x (inflow = ouflow = throughput, for a closed GJN); and Static Snapshot (11) yields

the following J +1 inequalities [
Ax
a⊤x

]
≤
[
s(0)

1̄⊤E(0)

]
,

in which A is the diagonal matrix of mean service durations, and 1̄ is a row vector of ones;

hidden in the above are the traffic equations x=Π⊤x≤A−1x (recalling x= y). By irreducibility

of Π, x is proportional to the unique stationary distribution π: x= cπ, for some scalar c > 0.

The maximal plan then corresponds to

c=
1̄⊤E(0)
a⊤π

J∧
j=1

sj(0)

ajπj

.

This last expression is the minimum of J + 1 elements, one for each of the J + 1 resources.

The elements achieving the minimum create a bottleneck set §3.3.2 and, in particular, resource

“customers” can be a bottleneck (in which case, all sub-resources corresponding to customers

are bottlenecks). In a balanced network, all J +1 resources are bottlenecks, which occurs when∑
j Ej(0) =

∑
j sj(0) and

s1(0)

a1π1

= · · ·= sJ(0)

aJπJ

=

∑
j Ej(0)
a⊤π

=
1̄⊤E(0)
a⊤π

.

Static Open GJN. Here E(t) = λt, with at least one λj > 0; and Π is sub-stochastic with

spectral radius less than 1, hence at least one row-sum is less than one. The traffic equations

now have a unique solution y (trivially maximal); and, contrary to the closed case, y ̸= x can

happen, namelyl yj > sj/aj for some j (strict bottleneck).
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Single-Resourcing GJN. We now show that single-resourcing all server-pools in GJN-

RAN gives rise to an SPN-RAN; then solving for a non-idling plan amounts to solving a Skoro-

hod (oblique reflection) problem; which, in the static case, again reduces to solving the traffic

equations.

Servers are closed resources. Hence, by (3) and (13), single-resourcing all server pools gives

rise to the following RMI, for X ∈DJ
↑ : X ⪯ ŝ, and (I−Π⊤)X ≤E , where ŝi(·) :=A−1

∫ ·
0
si(u) du.

A non-idling X is then determined by having at least one of the preceding two inequalities tight,

for each of the stations; formally, Q⊤ dY ≡ 0, where Q := E − [I −Π⊤]X, and Y := ŝ−X are

RMI slacks (21). Now solving for a non-idling plan is in fact solving a Skorohod problem, in

RJ
+ for open and on a J-dimensional simplex for closed GJNs. The data is N := E +Π⊤ŝ− ŝ

(netflow), and an oblique-reflection matrix [I −Π⊤]:

Q=N + [I −Π⊤]Y ≥ 0, QdY ≡ 0. (27)

For proofs of existence, uniqueness and minimality of Y , readers are referred to §14.2 in Whitt

(2002) for Π arising from open GJNs; and to Chen and Mandelbaum (1991a,b) for closed. Note

that Y is minimal iff X is maximal. There is however one point that we leave open: due to the

special structure of N , if Y is the maximal solution then X := ŝ−Y ∈DJ
↑ .

Finally, when ŝ(t) := µt, E(t) := E(0)+λt, and considering static plans, the non-idling condi-

tion simplifies to the traffic equations (26): (µ− x)⊤(λ− (I −Π⊤)x) = 0, or x= µ∧ (Π⊤x+ λ),

or y= λ+Π⊤y ∧µ (where y := λ+Π⊤x).

4.4. Re-Balancing Networks

A ridesharing system was modeled as a closed queueing network, in Benjaafar et al. (2022)

and Braverman et al. (2019). The model can be interpreted as a network consisting of N cir-

culating customers, r single-server queues, and 2r2 infinite-server queues. The customers model

cars in a ridesharing system, while single-server queues correspond to geographical regions. In

this subsection, we slightly deviate from the “standard” RAN notation in order to make the

model mode interpretable (e.g., we index activities with both single and double indices). Poten-

tial number of service completions in time interval [0, t] at single-server queue i is Λi(t)N –

these model passenger arrivals; a passenger that does not encounter an available car abandons

the system. A passenger matched with a car in region i has its destination in region j with

probability Ui,j; the duration of such a ride is Gi,j with mean ai,j (one of r
2 infinite-server queues

modeling full-car rides). Once a passenger completes its ride, the empty car is moved to region
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j with probability Qij, in order to pick up a next passenger (one of r2 infinite-server queues

modeling empty-car rides).

The system is in the large-demand regime N ↑ ∞, which corresponds to a fluid RAN. Let

Xi, Xi,j and Yi,j be, respectively, the number of passengers matched to cars in region i during

[0, t], the number of full-car rides from region i to region j that start in [0, t], and the number

of full-car rides from region i to region j that start in [0, t]. The corresponding RAN model is

then characterized by

Xi,j ≤Ui,jXi, (28)

Yi,j ≤Qi,j

r∑
k=1

Gk,i ∗Xk,i, (29)

Xi ≤
r∑

j=1

Gj,i ∗Yj,i +ni, (30)

(Λi−Xi)⪰ 0, i= 1, . . . , r; (31)

here we assume that ni (scaled) cars are awaiting passengers at time 0, and n= n1+ · · ·+nr = 1.

Constraints (30) and (31) are due to single-server queues §3.2. The goal is to design the re-

routing matrix Q such that the revenue by time t is maximized:

max
Q

max
X

r∑
i=1

Xi(t)
r∑

j=1

ci,jUi,j,

where cij is average revenue generated by a passenger travelling from region i to region j.

Substituting (29) in (30), then combining it with (28), results in

Xi ≤
r∑

j=1

Qj,iGj,i ∗
r∑

k=1

Gk,j ∗Xk,j +ni ≤
r∑

k=1

Xk ∗
r∑

j=1

(Gk,jUk,j ∗Gj,iQj,i)+ni;

note that (28) and (29) become equality for maximal plans. Summing up the preceding over all

indices yields
r∑

k=1

Xk ≤
r∑

k=1

Xk ∗
r∑

i,j=1

(Gk,jUk,j ∗Gj,iQj,i)+n,

which is a constraint that relates the total amount of matched passenger-car pairs in [0, t] (see

the objective function) with the number of cars in the system n. Then, the long-run average

version of the optimization problem is

max
Q

max
x

r∑
i=1

βixi,
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subject to
r∑

k=1

αkxk ≤ n,

xk ≤ λk, k= 1, . . . , r,

αk =
r∑

i,j=1

Uk,jQj,i (ak,j + aj,i) , k= 1, . . . , r,

βi =
r∑

j=1

ci,jUi,j, i= 1, . . . , r.

4.5. Controlled Matching Models

In this subsection, we illustrate how the RAN framework can accommodate specific control

strategies, here via two “matching” models: input-queues under static priorities, and output-

queues under join-the-shortest-queue.

Input Queues with Static Priorities. Following the parallel-server model presented

in Williams (2000), there are M customer classes that receive service from N server pools,

according to some pre-designed topology (see Figure 5 (right) for an example of the so-called N-

model withM = 2 and N = 2). In a RAN model of such a system, there are J ≤M×N activities,

where activity j = (m,n) corresponds to a service of a customer from class m by a server from

server pool n. Since in RANs, both customers and servers are resources, the model consists of

a total of K =M +N resources. Activity j = (m,n) consumes an arriving customer of class m

and an available server from pool n. Once completed, it produces an available server from pool n

and the customer leaves the system. Thus, there is a single sub-resource (a resource-state pair)

for every resource, implying that R := IK×K .

One can rearrange the matrices C, P and Λ such that their top part represents sub-resources

that involve customers and the bottom part represents sub-resources involving servers:

C =

[
CM

CN

]
, P =

[
0
CN

]
, Λ=

[
ΛM

ΛN

]
;

here CM
m,j = 1 if activity j engages a customer from class m, and 0 otherwise; and CN

n,j = 1 if

activity j engages a server from class n, and 0 otherwise. Class m customers arrive to the system

according to ΛM
m ∈D↑; the number of servers in each pool is given by the non-negative function

ΛN
n = sn. RMI then yields

CMX ≤ΛM , CNḠ ∗X ≤ΛN .

Note that Q := ΛM − CMX quantifies the amount of customers awaiting service, and I :=

ΛN −CNḠ∗X is the amount of idle servers. Additional constraints are needed to specify a par-

ticular policy. For example, consider the following (non-preemptive) priority policy: customers
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are routed to the lowest-index available servers, while idle servers are routed to the lowest-index

available customers. In that case, for every activity j = (m,n), we add

dXj

∑
l<m:CM

l,n
=1

Ql ≡ 0, dXj

∑
l<n:CN

m,l
=1

Il ≡ 0, (32)

where sums over empty sets are assumed zero.

Output Queues with Join-the-Shortest-Queue (JSQ). Customers arrive according

to Λ ∈D1
↑ and, immediately upon arrival, they are routed to one of J infinite-capacity queues,

indexed by j = 1, . . . , J ; there are also dedicated exogenous arrivals to queue j, according to

Λj ∈D1
↑; and each customer in queue j is served by one member of server-pool j, which consists

of sj homogeneous servers.

RAN has J core activities, so that activity j is a service by pool-j server. To model routing,

introduce J auxiliary activities, indexed by J +1, . . . ,2J , that have zero-duration. These activ-

ities “consume” arrivals, and activity J + j “produces” customers routed to pool j. RMI then

amounts to the following relations, which apply to an arbitrary routing policy:

J∑
j=1

XJ+j =Λ,

Xj ≤ (XJ+j +Λj)∧ (Gj ∗Xj + sj), j = 1, . . . , J.

The first equality indicates that, upon arrival, Λ-customers are routed to one of the queues. The

second inequality holds as equality for non-idling plans: these are characterized by a fixed-point

equation (compare with (25)), the analysis of which is an open problem. Finally, JSQ dynamics

is enforced by the additional constraint

J∑
j=1

1{Qj(t)>min
l
Ql(t)} dXJ+j(t)≡ 0, (33)

where Qj :=XJ+j +Λj −Xj ≥ 0.

4.6. Data-based Example: Robots Fulfilling Online Orders.

This example demonstrates the applicability of the RAN framework to modelling and analyzing

real complex systems. Specifically, we describe RAN models of a robotic system for online order-

fulfillment, which consists of anywhere between tens to few hundreds robots. (Another example

is an Executive Health Screening clinic, that operates as an appointment-based service-shop;

see §5.4 of Carmeli (2022) and Chen et al. (2022).)

In our order-fulfillment center, inventory is stowed in thousands of totes that are racked

in horizontal rows of many multiple levels (the more levels the less area). An arriving order
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typically requires items from multiple totes, which are transported by robots from the shelving

units to one of several stations on site. The stations are occupied by human operators or robotic

arms – these collect the items required for the order, after which the totes are shelved back by

robots.

The robotic system consists of two types of robots: ground robots that can move on the floor

in all four directions, and lift robots that can retrieve and insert totes from and to the tall

shelving units. The process of transporting a tote to a station starts with a lift robot retrieving

the tote from the shelving unit and bringing it to a meetup point on the floor. In parallel,

an empty ground robot is directed to that meetup point, where it fetches the tote and carries

it to the station. Additional fulfilment processes, such as decanting inventory into totes, are

performed similarly.

The system has been modeled as a complex RAN, with both closed resources (ground robots,

lift robots, stations, meetups) and open resources (orders, inventory); resources that operate

in the many-server regime (ground robots, lift robots, meetups, totes, empty cells within the

shelving units) or single-server resources (stations, operators). Since activities may be racking-

unit-dependent and station-dependent (e.g., transferring a tote from racking-unit 1 to station

A), a RAN model of such a system can quickly blow up to hundreds of activities and sub-

resources, depending on the application and hence the appropriate aggregation. (See Figure 7

in Appendix E for a simplified activity diagram of such a RAN.)

The RAN framework has played a key role in analyzing and optimizing robotic systems as

above. It has been used for dimensioning – how many ground robots, lift robots and stations are

required to achieve a desired throughput; to identify static and dynamic bottlenecks; evaluate

novel features and architectural changes (specifically, when such changes are time- or effort-

consuming to develop or implement or even simulate); and to determine how many ground and

lift robots should be dynamically allocated to specific missions, for example to collecting items

for newly arrived orders, decanting inventory into empty totes, dispatching full order totes, etc.

Appendix E adds details on the ground-robots allocation problem and its RAN-based solution.

5. Extensions

In the previous section, we enriched the core RAN model with control policies (static priorities,

JSQ). To further demonstrate RAN’s modeling strength, we now describe, at least partially,

three RAN generalizations: initiating activities prior to time zero, which enables steady-state

dynamics; Fork-Join of non-exchangeable entities; and abandonents while idling. Additional

generalization will be described in the next “Future Research” section.
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5.1. General Initial Conditions and Stationary Plans

A planX = {X(t), t≥ 0} starts counting activity initiations from and including time 0. However,

there could also be activities that are already in progress at time 0, which means that in fact

they started before time 0. One must then account for these activities when describing the

system state at time 0. We shall hereafter say that an activity is in progress at time 0 if it

started strictly prior to time 0.

Define V = {V (t), t ≥ 0} ∈ DJ
↑ , where V (t) represents the amount of activities that are in

progress (as opposed to starting) at time 0 and are completed by time t (before or at t); V (0) = 0

without loss of generality (which implies that V (∞) is the amount of activities in progress at

time t= 0). Then, with a general initial state, RMI and Snapshot become

RMI: CX ≤ P (G ∗X +V )+Λ,

Snapshot: RCḠX ≤R(PV +Λ).

Stationary plan. A feasible static plan can be related to a feasible dynamic plan by being

either the latter’s long-run limit or its steady-state (stationary) plan. The limit relation was

considered in Section 3.1. Going the other direction, we start with a static feasible plan x, and

we seek a dynamic plan X so that the static x is a steady-state of X. Formally, for a RAN with

Λ= {Λ(t) = λt, t≥ 0}, for some λ∈RL, one seeks a dynamic plan X and a process V such that,

at all times t≥ 0:

(G ∗X +V )j(t) = xjt and (Ḡ ∗X + V̄ )j(t) = ajxj; (34)

or, in matrix form: 1
t
(G ∗X + V )(t)≡ x, and (Ḡ ∗X + V̄ )(t)≡Ax; here V̄ = {V̄ (t) := V (∞)−

V (t), t≥ 0}, where V̄ (t) is the number of activities that were in progress at time 0 and are still in

progress at time t > 0. The two conditions (34) constitute a natural articulation of steady-state

since xj, being the jth component of the static feasible plan x, is the steady-state rate at which

activity j is performed; aj =Eσj, where σj is the (random) duration of activity j (with cdf Gj);

and hence ajxj is the (average) number of ongoing j-activities in steady-state.

Starting with a feasible plan x, namely x that satisfies (10), to specify a dynamic plan of

which x is steady-state, let

X(t) = xt and Vj(t) = xj

∫ t

0

Ḡj(u) du,

for all t ≥ 0; thus, there are V (∞) = Ax ongoing activities initially. Then we have

(G ∗X +V )j (t) =
(
X − Ḡ ∗X +V

)
j
(t) = xjt and(

Ḡ ∗X + V̄
)
j
(t) = xj

∫
[0,t]

Ḡ(t−u) du+Vj(∞)−Vj(t) = xj

∫ t

0

Ḡ(u) du+

∫ ∞

t

dVj(u) = ajxj.
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Observe that the chosen X and V satisfy RMI: Cxt ≤ Pxt + λt, since the corresponding x

adheres to static RMI. We refer to the pair X and V as a stationary plan, not only because

of (34), but also since the distribution of the remaining durations of on-going activities does

not vary with time. Indeed, the amount of fluid initially engaged in activity j, with remaining

activity duration more than u > 0 is V̄j(u) = ajxjP[σe
j > u], where σe

j is a random variable

distributed according to the residual distribution of Gj. This persists also at t > 0 since, for

u≥ 0, we have

V̄j(t+u)+

∫ t

0

Ḡj(t− z+u) dXj(z) = V̄j(t+u)+xj

∫ t+u

u

Ḡj(z) dz = V̄j(u).

Remark 12 (Stationarity). Note that we only consider stationary plans, not stationaty

RANs. For a RAN to be in stationarity, in addition to a plan X being stationary, one would

need to require (at least) that the slacks are constants (and specified). Hence, the notion of

stationarity does not exist for all RANs. For example, consider a single activity RAN with two

resources: C = [1 1]⊤, P = [0 0]⊤ and Λ = [Λ1 Λ2]
⊤, where Λ1(t) = λ1t and Λ2(t) = λ2t, t ≥ 0.

Unless λ1 = λ2, no stationary plan yields a stationary RAN. Moreover, for RANs that permit

stationarity, the stationary “state” of the system need not be unique. To illustrate this point,

let

C =

[
1 0
0 1

]
, P =

[
0 1
1 0

]
, A=

[
a 0
0 a

]
, R=

[
1 1

]
and RΛ= b∈ (0,∞).

Then, for a dynamic plan X defined by rate x< b/(2a), any initial values of slacks do not change

with time. ▲

5.2. Fork-Join (FJ) Constructs

A FJ network has of two (or more) activities that can be performed in parallel by different

resources, where both (or all) of these activities must be completed in order for the process to

continue. A refined machine-repair system can illustrate the concept: it caters tom iid machines,

each working for a random amount of time until breaking down; immediately when this happens,

the broken machine is disassembled into two parts, A and B; type A parts and type B parts are

repaired in parallel and then, two repaired parts are assembled back into one operating machine.

The parts are exchangeable in that any repaired A can be assembled with any repaired B. For

illustration purposes, it suffices to assume that every repair/assembly station operates as an

infinite-server queue (no queues). There are thus 4 activities, plus a single resource (machines)

and 5 sub-resources (all involve the same resource) – these are marked in the activity diagram

in Figure 6. The primitive matrices of the system are
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Figure 6 Activity diagram of a (refined) Machine-repair model, with a FJ (disassembly-assembly) structure.

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 and P =


0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .
Then RMI (3) can be written down in terms of C,P,G. Observe that the FJ construct is not

expressed by RMI. Note also that Assumption 1 is violated: specifically above, the activity

“working and disassembled” consumes a single unit of a resource (assembled machine) but

produces multiple units of the same resource (Parts A,B). Therefore, Snapshot (7) with R =

[1 1 1 1 1] is not enough to ensure that the amount of resource engaged in activities is at most

the amount of available resource.

Towards a Snapshot inequality that captures the FJ construct, introduce the following para-

metric family R of 1 × 5 matrices: R = {R : R = [1 α (1 − α) α (1 − α)], α ∈ [0,1]}. Such
an R encodes (i) sub-resources 2 and 3 are complementary parts of sub-resource 1, and (ii)

sub-resources 4 and 5 correspond to sub-resources 2 and 3, respectively (i.e., 4 and 5 are comple-

mentary parts of 1). Let {Rv} be the set of extreme points of R. Then, in order to ensures that

a plan X does not require more resources than are available, regardless of whether resources are

decomposed into parts, Snapshot (7) should be replaced by at least the following inequality:∧
v

(
RvΛ−RvCḠ ∗X

)
≥ 0, (35)

where ∧ indicates that inequalities hold for all v; in fact, the last inequality can be rewritten

as R̃CḠ ∗X ≤ R̃Λ, for some R̃, by eliminating redundant inequalities. In our Machine-Repair

example, R has two extreme points (corresponding to α = 0 and α = 1, which are the two

distinct paths of the FJ structure), and (35) reduces to

Ḡ1 ∗X1 + Ḡ2 ∗X2 + Ḡ4 ∗X4 ≤Λ1 +Λ2 +Λ4,

Ḡ1 ∗X1 + Ḡ3 ∗X3 + Ḡ4 ∗X4 ≤Λ1 +Λ3 +Λ5.
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The last two inequalities form the FJ snapshot for our example. In general, however, obtaining

RAN snapshot in the presence of FJ constructs, specifically characterizing the set R, requires

refined descriptions of activities (beyond C and P ). For example, consider an activity that con-

sumes two sub-resources and produces two sub-resources, with all four sub-resources involving

the same resource. If one of the two consumed sub-resources is a “part” of the resource (i.e.,

underwent a fork operation prior to arriving to the present activity), then an activity description

must specify whether one or both of the produced sub-resources are “parts” of the resource.

Finally, recall that our FJ constructs are exchangeable, which is natural for assembled parts.

In service systems, however (e.g. healthcare), FJ constructs are often non-exchangeable, as

“assembled parts” are usually entities belonging to the same customer (patient). A heuristic

for non-exchangeable static FJ is offered in (Carmeli 2020, §5.3.2); it is based on (Lu and Pang

2017, Corollary 3.1), and applied to analyzing patient-flow in an Emergency Department.

5.3. Abandonments: First Steps and Challenges

In this section, we outline challenges in modeling RANs with abandonment of idling resources.

Subtleties arise due to the RAN approach of characterizing all feasible plans, or all possible

control policies, rather than specific ones. Thus, given that a certain amount of sub-resources

should be engaged (X), and information available to the decision-maker, a control policy might

specify prioritization of idle sub-resources, and these are precisely the potential abandonments.

Different controls can thus lead to different system behavior, even under the same plan X. It

follows that, with abandonments, a set of feasible plans should be considered under a specific

prioritization policy.

To illustrate our point, it suffices to consider a RAN with a single activity and a single resource.

(We shall abuse terminology and refer to members of this resource’s pool also as resources.) One

is given a cdf G of activity duration and, in addition, cdf F of resource-patience. For simplicity,

let Λ ∈D↑, interpreting it as exogenous resource-arrivals to the system – otherwise one would

need to identify which specific resources should be removed from the system, hence decreases

in Λ must be consistent with F .

For the above RAN, a prioritization policy and a plan X give rise to a decomposition Λ =

X +W + Q, where plan X ∈ D↑ is as usual; W ∈ D↑ cumulatively counts arrivals that will

eventually abandon (F ∗W ∈D↑ is actual abandonments); and Q∈D+ counts arrivals that will

eventually be served. RMI is then simply X ≤Λ+W . (Note that Q+ F̄ ∗W cumulatively counts

arrivals that are yet to be served or abandon.) In particular, consider a policy under which

the resource either engages in the activity immediately upon arrival or, alternatively remains
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unengaged until abandonment. For such a policy, Q≡ 0 hence X ⪯Λ, which yields W =Λ−X.

In general, however, determining W for an arbitrary policy might be challenging.

To further amplify some challenges in modeling abandonment, consider the following plan

with two jumps, at times T1 and T2:

X(t) =


0, 0≤ t < T1

X(T1), T1 ≤ t < T2

X(T2), t≥ T2.

Prior to t = T1, no resources are engaged, and the amount of available resources during time

interval t ∈ [0, T1) is (F̄ ∗Λ)(t), since (F ∗Λ)(t) amount of resources abandon by time t. Thus,

a necessary condition for X to be feasible is X(T1) ≤ (F̄ ∗Λ)(T1). After t = T1, the evolution

depends on the control policy. To wit, introduce ΛT1
:= {ΛT1

(t) = Λ(t)1{t∈ [0, T1]}, t≥ 0} and

ΛT2
:= {ΛT2

(t) = Λ(t)1{t∈ (T1, T2]}, t≥ 0}. Then under the random-order policy, the amount of

available resources at time t∈ (T1, T2) is given by[
1− X(T1)

(F̄ ∗ΛT1
)(T1)

]
(F̄ ∗ΛT1

)(t)+ (F̄ ∗ΛT2
)(t),

which limits the magnitude of the second jump in the considered X:

(F̄ ∗Λ)(T2)−X(T1)
(F̄ ∗ΛT1

)(T2)

(F̄ ∗ΛT1
)(T1)

≥X(T2)−X(T1).

6. Future Research

We have developed a mathematical computation-friendly framework for modelling complex

large-scale operations. Research-wise, however, this is only the first step for the “rubber to hit

the road”; as suggested sporadically throughout the text, and will be now further outlined,

already this step offers uncharted territories, novel directions, open problems, and an inviting

horizon for applications.

• Stochastic RANs §2.3. Here activity durations are random, as are amounts of sub-

resources consumed and produced. A rigorous justification of set-valued fluid and diffusion limits

(including single-resourcing) is yet to be established. Such analyses would address multiple time-

scales (due to single-resourcing), and various generalized Skorokhod problems (e.g. §4.2.2, (27)),

that are special cases of Extended Dynamic Complementarity Problems §3.4.

• Fluid RANs in support of stochastic RANs. We envision fluid RANs becoming a

natural useful element of the fluid toolbox, both theoretically and practically. For example, in

relating fluid and stochastic RANs, operational regimes and bottlenecks of fluid RANs project

into the same at the stochastic level; and desirable controls of fluid RANs will approximate
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corresponding stochastic controls. Moreover, fluid RANs will provide meta-FSLLNs for the far-

reaching variety of stochastic RANs, with the caveat that additional constraints might be needed

(e.g. for non-idling controls, or specific policies such as static priorities (32) and JSQ (33)).

• Non-idling and/or maximal plans/policies. Maximal plans are often of interest in

practice, and so are policies that implement such plans. The class of non-idling policies is

appealing, but, as we argued, does not always correspond to maximal plans. On the other hand,

for systems like GJNs with non-decreasing amounts of resources, non-idling policies do result

in maximal plans. Characterizing RANs for which non-idling policies result in maximal plans

remains an open problem, which is in the domain of LCPs §3.3 and DCPs §3.4.3. The problem

is open even for basic cases such as Gt/GI/st §3.2 or Machine Repair §4.2.

• More on RANs as CLPs: Duality in finite- and infinite-dimension. Finite-

dimensional duality has often been found central in the analysis of SPNs (e.g. Harrison (2000),

Atar et al. (2022)). It is also useful for RANs by enabling the following necessary and sufficient

condition for RAN boundedness (see Appendix B for the proof): RMI is locally bounded iff

RAN’s primitives satisfy

{∆≥ 0, [C −P ]∆≤ 0}= {0};

in particular, maximizing over feasible X’s then makes sense. (The latter condition captures

“no arbitrage opportunities”, as in (70) of Harrison (2003)).

RANs also “beg” for infinite-dimensional duality theory. To wit, recall that RMI is the fea-

sibility set of CLP1 in §3.3.3. Now add to the formulation some utility function c(·) ≥ 0 to

maximize over. Then we have the following natural RAN-optimization problem as Primal, with

its corresponding Dual right below:

Primal: max
X∈DJ

↑

∫
[0,T ]

c(u) dX(u) s.t.

∫
[0,t]

K(t−u) dX(u) ≤ b(t), t∈ [0, T ];

Dual: min
Y ∈DJ

↑

∫
[0,T ]

b(v) dY (v) s.t.

∫
[t,T ]

dY (v)K(v− t) ≥ c(t), t∈ [0, T ].

We conjectured the latter Dual problem from existing infinite-dimensional Duality theory. The

conjecture is supported by the facts that the value of any primal-feasible X is upper-bounded by

the value of any dual-feasible Y (proved via Fubini’s theorem); it follows that if the two values

are equal than the corresponding X and Y are both optimal, with the following complementary-

slackness:

dY (t)> 0 ⇒
∫
[0,t]

K(t−u) dX(u) = b(t) & dX(t)> 0 ⇒
∫
[t,T ]

dY (v)K(v− t) = c(t), (36)
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for all t∈ [0, T ]. A complete duality theory, however, is yet to be developed, which should include

conditions for strong Duality as in Levinson (1966), Shindin and Weiss (2014). Note that X is

a maximum solution iff it is a solution of Primal, for all non-negative c’s in a sufficiently rich

family; and this has implications to Dual (as in Cottle and Veinott (1972)). Now note that the

dual at time t is “peaking” into the future [t, T ], which is in concert with Example 5. Duality

theory is hence potentially useful for understanding maximality of plans. It is also related to non-

idleness since having maximal elements is related to solvability of complementarity problems as

linear programs (Cottle and Pang 1978).

• RAN inference: On mining RANs. An ultimate goal of the RAN framework is the

automatic creation of a RAN model, directly from data-logs, with the least structure pre-

enforced. There are known techniques to automatically produce models that represent a given

system architecture and its dynamics directly from event logs. Perhaps the most common one

is process mining (Van Der Aalst 2012), which results in Petri nets (Haas 2006). We argue that

one could map some of the elements in a Petri net to the RAN matrices R, C, and P , and by

doing so, construct the RAN architecture from a Petri net that was automatically produced

using process mining. (For example, Petri net transitions could be mapped to RAN activities,

Petri net normal input places to RAN sub-resources, and Petri net colors to RAN resources.

Note that some Petri nets elements do not have (at least for now) a correspondence in RAN,

e.g., inhibitor input places.)

More details can be found in Senderovich et al. (2014, 2015). But regardless of which models

are mined from data, they are likely to be mathematically intractable. Hence an accompanying

computational framework will we required for generating useful insights.

It is noteworthy that, when fitting RANs to data, or vice versa, one need not worry about

which resources are single-resources; rather, one would simply estimate cdf’s (and if durations

are “short” then be it); similarly for amounts. The value of single-resourcing is most pronounced

in theoretical analysis.

• Beyond present RAN dynamics. The underlying assumption of the basic RAN is that

activities are not interrupted and their duration does not depend on the state of the system. That

excludes features such as abandonment, finite-buffers or processor-sharing service disciplines.

Some of these can be incorporated with additional constraints relatively easily; for example,

an upper bound on PG ∗X +Λ−CX in the case of finite buffers. Others might require that

specific operational policies are assumed (e.g. abandonment §5.3), while others still require

further research (e.g. processor sharing).
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Appendix A: Evolution of Research on Fluid Models/Approximations/Limits

1. 1960 – 70’s: Time-varying Engineering Models. Motivated by congestion problems in

traffic flow theory, and abstracting to general congested systems, Newell (1971, 1982) argued

that “complexity of the results in the existing literature is way out of proportion to its usefulness

(including my own research)”; hence he sought to “turn queueing theory around and point it

toward the real world”. This led Newell to focus on time-dependent behavior (e.g. rush-hour),

where congestion is most prominent (Newell 1968c,b,a, 1973).

2. 1980’s: GJNs in heavy-traffic, the Birth of SPNs. Piecewise-linear fluid approxima-

tions were established in Johnson (1983) in order to simplify proofs in Reiman (1984)’s pio-

neering heavy-traffic analysis of single-server open GJNs. In Chen and Mandelbaum (1991a,c),

such fluid models (for both open and closed GJNs) turned into a research focus: first as mod-

els in their own right; and second by identifying bottleneck stations, which affected diffusion

refinements. The 80’s is also when the roots of SPNs were planted in Harrison (1988), which

culminated in Dai and Harrison (2020).

3. Role of fluid models, so far: The fluid models of the 80’s arose as FSLLN limits of

processing networks (almost-sure convergence in conventional or single-server heavy-traffic),

with parameters that do not vary with time (e.g. in GJN: constant arrival and service rates,

as well as in SPNs: constant I/O matrices). The dynamics of such fluid limits is piecewise-

linear; in fact linear after some finite time, which we refer to as static fluid processes (Chen and

Mandelbaum 1991c, Harrison 2003).

Being FSLLN limits, static fluid processes capture first-order behavior (e.g. long-run average,

identifying bottlenecks) of their originating stochastic systems. Diffusion refinements, therefore,

arose via FCLT limits (weak convergence) that were centered around the static fluid processes;

and diffusion parameters were also static in time (e.g. drift, covariance matrix).

4. 1990’s: Stability vs. Time-varying Operational Regimes. Fluid research then diverged

into the following three main streams, all in a single-server setup:

(a) Static fluid models: Direct continuation of previous research on static fluid models.

They now arise from increasingly complex operations (beyond GJNs), as well as in control

applications, all in conventional heavy-traffic that, in fact, is characterized via fluid models (e.g.

Williams (1998)). Examples include parallel servers (Harrison and López 1999), Brownian net-

works / SPNs (Harrison and van Mieghem 1997) and asymptotically-optimal control (Harrison

and Wein 1990).

(b) Stability: Dai’s paper (Dai 1995) paved the way for using static fluid models in proving

stability of their stochastic origins: the stochastic model is stable (positive-recurrent) if its
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corresponding fluid model is stable (fluid empties, that is, fluid paths vanish, within a finite

time); note that the converse need not hold (Bramson 1999). The need for a new approach

to establish stability arose from the challenge of understanding unstable sub-critical queueing

networks (Rybko and Stolyar 1992, Bramson 1994); and this theory developed into Dai and

Harrison (2020), that covers stability of almost the full scope of SPNs.

(c) Time-varying dynamics: Fluid processes with time-varying parameters arose from

modeling service systems that inherently enjoy time-varying (transient) dynamics. They could

serve as stand-alone models of such systems, capturing predictable variability in their originat-

ing stochastic realities and, hence, determining time-periods when the system is over-, under-

or critically loaded (alternating operational regimes). Continuing and supplementing the engi-

neering approach of the 60-70’s, research became mathematical, following the path charted by

Massey (1985) but within the framework of strong-approximations (Mandelbaum and Massey

1995, Mandelbaum et al. 1998); here fluid limits arise via uniform-acceleration (Massey 2002),

in order to preserve time-varying dynamics in the limit (conventional scaling leads to static fluid

models).

5. 2000’s: Data-based many-server asymptotics/regimes. The emergence of large service

operations, notably telephone call centers with hundreds of agents (Gans et al. 2003, Aksin et al.

2007), and the availability of their data, in unprecedented quantity, quality and granularity

(Brown et al. 2005), gave rise to a flourishing research area: many-server asymptotics of the

relevant models, as first carried out in the forward-looking (Halfin and Whitt 1981).

Models were both static and time-varying (Feldman et al. 2008), in support of service operations-

management (e.g. staffing in the case of the latter paper). Fluid models revealed first-order

operational regimes (efficiency-, quality- and quality+efficiency-driven = QED), with their cor-

responding staffing-levels (Garnett et al. 2002); indeed, fluid models of infinite-server queues,

referred to as offered-loads (Whitt 2013), provided the first-order terms of staffing, which were

then refined to protect against stochastic variability (e.g. square-root safety staffing (Borst et al.

2004)). All the above many-server models had exponential service-durations; it took a break-

through to abstract to general service duration (Reed 2009, Whitt 2006). Such a generalization

was also data-driven since service-durations were often found to be log-normally distributed.

6. 2010 – 2022: Maturing theory and extensive applications.

Fluid models have now become central in the toolbox of an operations researcher – in both

theory and applications. Theory-wise, this is when the development of measure-valued fluid-

models accelerated: following the very early footsteps of Grishechkin (1994), Doytchinov et al.

(2001), Gromoll et al. (2002), it started with research such as (Kang and Ramanan 2010, Pang
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and Whitt 2010, Kaspi and Ramanan 2011, Liu and Whitt 2012), and its advanced state-of-the-

art comes out clearly by simply scholar-searching “queues fluid measure-valued 2022”. (Recall

that the measure-valued state in fact follows from our significantly simpler RMI (3).)

Application-wise, and again triggered by ample data, this is when healthcare operations started

to take center stage (Shi et al. 2014, Armony et al. 2015, Mandelbaum et al. 2019). While such

operations are typically not large in terms of their number of servers, many-server theory still

remained applicable (de Véricourt and Jennings 2011, Yom-Tov and Mandelbaum 2014), which

is due to the fast convergence-rate of many-server limits (Janssen et al. 2011).

Fluid applications have been taking a stronghold beyond healthcare, either breaking new ground

or refining views of previous research. Ample examples appear in Zychlinski (2022) and Dai

and Harrison (2020). Here are a few additional recent examples: to pool or not to pool (Cao

et al. 2021); staffing to stabilize time-varying performance (Liu 2018); algorithms to calculate

performance measures in a general time-varying fluid network (Liu and Whitt 2014) (e.g. general

service durations, time-varying Markovian routing); fluid limits of parallel many-server queues

with delayed information (Whitt 2021); Personalized queues (Mandelbaum and Momčilović

2017); metastability, that arises for example with service-slowdown or -speedup (Dong 2022);

and a robust fluid approach to controlling processing networks (Bertsimas et al. 2014), serving

later as a benchmark for controls via deep reinforcement learning (Dai and Gluzman 2022). The

depth and scope of this body of research emerge clearly from scholar-searching “fluid queues

2022”. ▲

This ends our brief historical survey. It helps put RAN in perspective by revealing that

RANs constitute a natural timely step in the evolution of fluid research; and by placing RAN

characteristics in their historical perspective. We now iterate some of these characteristics, for

amplification and completeness:

• RAN features are based on high-resolution data from service operations, for example ACD

(Automatic Call Distributor) in call centers (Brown et al. 2005) and RTLS (Real-Time Location

Systems) in hospitals (Mandelbaum et al. 2019)). In the latter case, the data also includes

appointment books.

• The core-RAN has time-varying dynamics; yet it accommodates also long-run and steady-

state evolutions §3.1.

• The core-RAN corresponds to the many-resource operational regime, with general activity-

durations; yet it accommodates also the single- or few-server regime (hence RANs generalize

SPNs) §3.2.
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• The core-RAN is governed by RMI (3), which is both parsimonious and rich-in-scope (e.g.

it implies measure-valued state descriptors); with single-resources, their RMI constraints take

the form (14) – (15); which is supplemented by Snapshot (13) in case there are single-resources

that are closed.

Appendix B: More on RANs as Linear Systems (CLPs)

We viewed RANs as CLPs in §3.3.3, with their Duals conjectured in the fourth bullet point of

§6. These discussions will be now supplemented with some observations and open questions:

• Feasibility: RANs with Λ ≥ 0 are trivially feasible: the plan X ≡ 0 satisfies RMI (3), for

all T ≥ 0. But is there also a non-trivial feasible plan? The conic constraint X ∈DJ
↑ renders

this question interesting, which becomes even more so when adding single-resources (RMI, with

(12), is then supplemented by (13)); and what if Λ can go negative (backlog)? Feasibility can

be also asked about non-idling (Mandelbaum 1989) or maximum plans (Yang 1993, Chen and

Mandelbaum 1991b), with the former raising also questions of solution-uniqueness (Stewart

2009).

• Static RANs (§3.1 and §3.2.4): The above existence and uniqueness problems have ana-

logues for static RANs, in which case the framework for analysis is classical finite-dimensional

Linear Programming and Complementarity. Here there is a large relevant body of research, for

both LP (e.g. duality) and LCP or ELCP (for example, concerning existence and uniqueness of

solutions (Habetler and Szanc 1995)).

• Static within Dynamic: Recall that the static model arose either as a limiting or as a

stationary RAN. A third way, of computational and practical importance §4.6, would be to

approximate a general RAN by a discrete-time RAN: it changes states at epochs {n∆, n =

1, ...}, for some ∆ > 0, so that state-changes are, in fact, static RANs (in the spirit of our

pre-limit RANs §2.3). For RANs arising from single-class queueing networks, this was done in

Mandelbaum (1989) and (Whitt 2002, §14.3) (the latter refers to static RANs as instantaneous

reflection maps).

• Redundancy: Are there redundant constraints? activities? Must all activities be used by

some feasible plan? What would be a canonical or minimal RAN representation? For example:

1. If Cl,j = 0 for every sub-resource l, then activity j does not consume anything. By Assump-

tion 1, it could not produce any resource either, meaning that also Pl,j = 0 for every l.

Activity j is therefore redundant and should be removed from the model.

2. If [RC]k,j = 0 for every activity j, then resource k is not consumed by any activity. By

Assumption 1, it could not be produced by any activity either. Therefore, resource k is

redundant and could be removed.



66

3. If Λl =∞ for all l such that r(l) = k, then resource k is, in fact, redundant. For example,

X ≤A is in itself the RMI for the G/G/∞ RAN, and for G/G/s with customers being a

single resource: in both RANs, servers are not a resource.

4. Activity j is redundant if Xj ≡ 0 for every feasible X. Assuming a static RAN with λ> 0,

this is equivalent to {xj : [C −P ]x≤ λ,x≥ 0}= {0}, which can be recast as an LP with a

useful dual. What would be the analogue for dynamic RANs?

• Bounded RMIs via Finite-dimensional duality: A physically plausible property of feasi-

ble plans is boundedness, and duality helps establish a bound. Start with observing that the

following three conditions (in the appropriate Euclidean spaces) are equivalent:

1. {∆ ≥ 0, [C − P ]∆ ≤ 0} = {0} (in the spirit of (70) in Harrison (2003), we refer to this

condition as “no arbitrage opportunities”);

2. {x≥ 0, [C −P ]x≤ λ} is bounded, for all λ≥ 0 (the bound depends on λ);

3. {y ≥ 0, y[C −P ]≥ e} ≠ ∅ (via LP Duality). Indeed, any of the latter y provides a bound of

the form x⊤e≤ y⊤λ, for any x in Item 2.

Now for X satisfying RMI (3): CX ≤ P ∗GX + Λ ≤ PX + Λ (since G ∗X ≤ X, for X non-

decreasing). We deduce that e⊤X(t) ≤ y⊤Λ+(t), for all t ≥ 0 (+ indicating positive part). It

follows that RMI is locally bounded if and only if the RAN admits no arbitrage opportunity;

in particular, maximizing over feasible X’s then makes sense.

Appendix C: 2-Dimensional/Measure-Valued State Description

In Section 2.2.3, it was shown that a plan X determines, jointly with the primitives, the pair

(B(t), Q(t)), for every t≥ 0: this constitute a 1-dimensional state description (Reed 2009, Puhal-

skii and Reed 2010). In Section 2.2.4, it was demonstrated that X in fact determines refined

2-dimensional, or measured-valued, descriptions (Kaspi and Ramanan 2011, Liu and Whitt

2012, Kang and Pang 2013, Zhang 2013). We now add the details of the descriptions that were

left out, while repeating, for completeness, some of $2.2.4

For any t≥ 0 and r≥ 0, let

Q�
t (≤ r) = number of delayed sub-resources at time t, out of Q(t),

whose time-in-delay (before t, hence ←) is no more than r time-units;

Q�
t (> r) = number of delayed sub-resources at time t, out of Q(t),

whose residual time-in-delay (after t, hence →) exceeds r;

B�
t (≤ r) = number of ongoing activities, at time t,

with activity duration that is thus far (before t, hence ←) no more than r.
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B�
t (> r) = number of ongoing activities at time t,

with residual activity duration (after t, hence →) that exceeds r.

Similarly, we also introduce Q�
t (> r), Q

�
t (≤ r), B�

t (≥ r), B�
t (≤ r).

Remark 13 (On the above – notation and choice). Left-arrows indicate events that

started prior to time t: e.g. in Q�
t , this event is the start-of-delay for sub-resources that are still

delayed (not engaged in activities) at t. Right-arrows indicate future events that end after t; e.g.

in Q�
t , this event is the end-of-delay for sub-resources already delayed at t. We listed above 8

performance measures in total: calculating the first 4 (individually displayed) suffices to reveal

the principles required for calculating all the others. ▲

Note that Q arises as a difference of flows: the total number of ‘arrivals to delay’ minus

the total number of ‘departures from delay’. This aggregated counting does not carry with it

information about specific delay times between a sub-resource ‘arrival’ and ‘departure’. The

latter can be determined by adding order-of-engagement policy for activities, which establishes

a bijection (1− 1 mapping) between ‘arrivals’ and ‘departures’ (recall Figure 2). For example,

consider a network with a single service activity that consumes two sub-resources: an “arriving

customer” and an “available server”. Unengaged sub-resources from the first type are customers

in queue, while unengaged sub-resources of the latter are idle servers. Clearly, a customer time-

in-queue depends on the priority policy (e.g., FCFS, LCFS), and similarly, a server idle time

depends on the scheduling policy (e.g., LISF, Round-Robin).

The process B can be considered as a difference of counts, which is determined by counting the

total number of activities that started and where not yet completed. It is fundamentally different

from Q in the sense that its corresponding activity durations are known albeit statistically:

indeed, its ‘activity initiations’ X determine its ‘activity completions’ G ∗X in a way that,

roughly speaking, averages out the fact that each arrival gives rise to a departure after a G-

distributed sojourn-time.

We shall now represent each of the above 2-dimensional (t, r)-measures in terms of X and

model primitives. For notational convenience, denote A := Λ++PG∗X and D := Λ−+CX. As

explained above, the refined description of Q requires refined information. Here we focus on the

following order-of-engagement policy: a starting activity will consume the sub-resources, from

each required type, that have been unengaged (delayed) for the longest time (among their type).

Moreover, the same criteria is applied to sub-resources that depart the system due to Λ−. We

thus call this policy Longest-Delayed-First (LDF). For example, considering again the above

network with a single service activity, the LDF policy states that a new service will consume
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the customer who has been waiting in queue for the longest time (FCFS), and the server who

has been idle for the longest time (LISF).

• Number of delayed sub-resources (delayed), under Longest-Delayed-First (LDF):

Q� : Q�
t (≥ r) = [A(t− r)−D(t)]+ , Q�

t (< r) =A(t)−A(t− r)∨D(t); (37)

in particular, Q�
t (≥ 0)l =Qt, and Q�

t (≥ r) = 0, for r > t.

Q� : Q�
t (> r) = [A(t)−D(t+ r)]+ , Q�

t (≤ r) =D(t+ r)∧A(t)−D(t); (38)

in particular, Q�
t (> 0) = Qt, Q�

t (≤ 0) = 0, and Q�
t (≤ r) = Qt, for r ≥ r(t); here r(t) is

an L-vector representing the delay time of sub-resources that started the delay at time

t: rl(t) is the largest r for which Dl(t+ r) = Al(t), which is the longest delay among all

sub-resources of type l that are not engaged by activities at time t (thus LDF).

Explanation for Q-calculations (see Figure 4 for a graphical demonstration), assuming

LDF, for every sub-resource l:

—If Dl(t)<Al(t− r): Al(t)−Al(t− r) are waiting less than r, ∆Al(t− r) are waiting r,

and Al(t− r)−Dl(t) are waiting r or more.

—If Dl(t) =Al(t− r): Al(t)−Al(t− r) are waiting less than r, no one waits r or more.

—If Dl(t)>Al(t− r): All of Ql(t) are waiting less than r, no one waits r or more.

(We elaborated on only Q� since Q� is handled similarly.)

• Number of ongoing activities:

B�
t (≤ r) =

∫
[t−r,t]

Ḡ(t−u) dX(u) ,

B�
t (> r) =

∫
[0,t]

Ḡ(r+ t−u) dX(u) , B�
t (> 0) =Bt.

It follows that

B�
t (> r) =

∫
[0,t−r)

Ḡ(t−u) dX(u) =

∫
[0,t−r]

Ḡ(t−u) dX(u)−∆X(t− r) Ḡ(r) ,

B�
t (≤ r) =

∫
[0,t]

G(r+ t−u) dX(u)− (G ∗X) (t) , B�
t (≤ 0) = 0 .

Explanation for B-calculations: first, why does B�
t (≤ 0) = 0? Ongoing activities with

residual duration 0 are counted in X and in G ∗X, thus their number cancels out in B =

Ḡ ∗X. To explain B�
t (≤ r) (other explanations are similar), consider an ongoing activity

at time t: in order for its duration thus far to not exceed r, it should have started at time

u∈ [t− r, t].
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Appendix D: The Gt/GI/st Queue as a RAN

This appendix constitutes a compact systematic account of the Gt/GI/st fluid RAN. Most has

already appeared above yet it is worthwhile including here. Indeed, it amplifies the (added)

value of the RAN-viewpoint, by gathering abstract concepts and scattered facts under a concrete

single “roof”.

The Gt/GI/st fluid RAN is conceptualized as an approximation to a stochastic Gt/GI/st

queue, in which the arrival process and the number of servers are scaled up (multiplied at all

t ≥ 0) by η, η ↑ ∞, while the service cdf G is held fixed (Puhalskii and Reed 2010, Liu and

Whitt 2012)1. Formally §2.3, random sets of pre-limit feasible plans converge, as η ↑∞, to RMI

(set of feasible plans) of the Gt/GI/st RAN. This RAN has 2 resources (open customers, closed

servers), 1 activity (service), 2 sub-resources (servers and customers, both at state “awaiting

service”); and it is characterized by the primitives

R=

[
1 0
0 1

]
, C =

[
1
1

]
, P =

[
1
0

]
, Λ=

[
s(·)
A(·)

]
, cdf G(·).

Here s(·) ∈ D1
+ is a staffing function (e.g. s(t) = s1{t∈ [0,H)}, t ≥ 0, corresponds to s ∈ R1

+

servers that arrive, at t = 0, to a shift of length H, at the end of which all depart); A ⪰ 0 is

exogenous arrivals (A(t) is the (average of the stochastic RAN) cumulative amount of arrivals

during the time interval [0, t]); and G is the cdf of service duration, with G(0−) = 0 and, to

avoid triviality, G(0)< 1.

We now list the main features of the Gt/GI/st fluid RAN:

• RMI: X ⪰ 0, s.t. X ≤A, X ≤G ∗X + s.

• Slacks: Q :=A−X = amount of queueing customers; I := s− Ḡ ∗X = amount of idling

servers,

• RMI via slacks: X ⪰ 0, s.t. Q≥ 0, I ≥ 0.

• Busy processes, Total in system: Recall the busy process B :=X−G∗X = Ḡ∗X = amount

of servers (customers) engaged in service; B ≥ 0 is implied by X ⪰ 0. Introduce also L :=A−G∗
X = amount of customers within the system (waiting + served). Then note that L− s=Q− I,
hence Q≥ (L− s)+ and I ≥ (L− s)−. It follows that L= Ḡ ∗A+G ∗Q≥Q∞ +G ∗ (L− s)+,
where Q∞ = Ḡ ∗A is the corresponding Gt/GI/∞ RAN.

• RMI via busy-processes: A function B will be called RMI-feasible busy-process if s≥B and

A≥ [I −G]−1 ∗B ⪰ 0; in which case B is exhaustive. Then B is an RMI-feasible busy-process

iff X := [I −G]−1 ∗B is an RMI-feasible plan; in which case X ⪰ 0 is a feasible plan.

1 Fluid SPNs, on the other hand, arise from scaling (multiplying) the arrival rate λ(t) and the service rate µ(t) by
η ↑∞, while maintaining the number of servers s fixed. This is referred to as uniform acceleration since it amounts
to accelerating, uniformly at all times t≥ 0, both the arrival and service rates (Massey 1985, Mandelbaum and
Massey 1995).
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• Plan X is non-idling (work-conserving) iff Q∧ I ≡ 0; iff (A−X)∧ (s−B)≡ 0, for B above.

Such X exists iff it is maximum among RMI-feasible plans; iff B is maximum among exhaustive

busy-processes; iff Q≡ (L− s)+ and I ≡ (L− s)−, for L above; iff X is the unique fixed-point of

the mapping T (X) :=A∧ (s+G ∗X) which, furthermore, is in D1
↑; iff L≡Q∞ +G ∗ (L− s)+,

in concert with the fluid results in Reed (2009).

• The offered-plans associated with (waiting) customers are defined by X ≤A (set s=∞ in

RMI), and the maximal plan is Xm =A in that case. The offered-load associated with this plan

is s∗ =A−G ∗A busy servers with no waiting and no idleness, which is exhaustive ([I −G]−1 ∗

s∗ =A⪰ 0); s∗ is critical in that more staffing creates idleness and less gives rise to queueing.

(Diffusion refinements, e.g. square-root staffing, use s∗ as a QED staffing-skeleton (Borst et al.

2004).)

• The offered-plans associated with (idle) servers are defined by X ≤ s+G∗X (set A=∞ in

RMI). If [I −G]−1 ∗ s⪰ 0, the maximal plan is Xm = [I −G]−1 ∗ s. The offered-load associated

with this maximal plan (to be referred to as offered capacity) is A∗ = [I −G]−1 ∗ s arrivals with

no waiting and no idleness; it is critical in that less arrivals creates idleness and more gives rise

to queues. (In analogy to server staffing, the offered-capacity A∗ can be used as as skeleton for

customer-appointments (Huang et al. 2022).)

• Fix a service distribution G with G(0)< 1 and a staffing function s. Then for any arrival

function A, there exists a unique RCLL non-negative X that solves X =A∧(s+G∗X) =: T (X),

denote it XA. In other words, XA is the unique fixed point of T which, furthermore, enjoys the

following properties (complementing §4.1):

— Initial condition: X(0) =A(0)∧ [1−G(0)]−1s(0).

—Monotone staffing : If s⪰ 0 than XA is a feasible plan for all A.

—Maximal : If XA is indeed feasible and X is another feasible plan, then XA ≥X.

• Single-resourcing customers leads to the G/GI/∞ RAN:X ≤A, with zero-duration services.

Single-resourcing servers was already described in Section 4.1.

Appendix E: Dynamic Allocation of Ground-robots to Stations – Continuing §4.6

In Section 4.6, we described a RAN model that has been used to analyze and optimize a robotic

order-fulfillment center. A fundamental challenge when operating such a center is the dynamic

allocation of ground-robots (GRs) to stations: namely how many such robots should be allocated

to each station, given specific site configurations (combinations of stations operating in different

modes, for example picking items to fulfill new orders, decanting inventory into empty totes,

dispatching full order totes, etc). Allocating too few GRs to a station would cause station
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starvation, which reduces station throughput. Allocating too many, on the other hand, would

result in long waiting time of GRs for the station: this increases robots’ cycle time which reduces

system throughput; it also hurts flexibility, for example responding to changes in configuration

due to changes in the number of stations or their modes.

The first algorithm of GR allocation was static and mostly heuristic: for each station per

each mode, and regardless of site configurations, it calculated a prefixed range of feasible GR

allocations (interval of minimal to maximal number of GRs). This was replaced by a RAN-based

control, which dynamically adapts GR allocations to changing site configurations.

RAN-based decisions on GR allocations must be made within milliseconds (upon need). This

necessitates a trade-off between model complexity (catering to relevant details) vs. computa-

tional feasibility (solution in a timely manner). Here modeling amounts to specifying, from a

superset of resources and activities, those constituting the currently-relevant RAN model (while

the others are disregarded or aggregated). Computational constraints then render infeasible a

dynamic complex RAN (hundreds to thousands activities and sub-resources), since it can not be

optimized within milliseconds. The challenge is then addressed via approximating the dynamic

RAN by a “piece-wise static RAN”, which is in fact a sequence of static RANs (described

momentarily) such that each is applied, consecutively, over a short rolling time-horizon. It is

notable that already this sub-optimal approach shortened GR cycle times by over 30%, and

increased total site throughput by up to 8%.

The Static RAN. The input for each static RAN is a site configuration, plus the numbers of

available ground- and lift-robots (that are dynamically changing as some robots require charging,

routine maintenance, etc.), plus activity durations (based on historical data that is updated

periodically). The goal is to maximize stations’ throughput (formalized below); and since each

station is naturally modeled as a closed single-server resource (∈ H), this entails maximizing the

utilization of its operator (either human or robotic-arm).

Figure 7 depicts a partial activity diagram of a RAN that models (to facilitate readability)

only two types of stations and a single racking unit. Examples of activities (represented by

rectangles in the figure) include loading an inventory tote for picking, or loading an empty tote

for decanting, unloading a tote, returning a tote back to the shelving units, picking an item

from a tote, etc.



72

Figure 7 RAN diagram of an order-fulfilment robotic system (partial). Activities are represented by rectangles,

arrows represent sub-resources, and different colors correspond to different resources. Question-mark

rhombuses represent decision points.

Each static RAN, or rather its primitives C, P , R,A and Λ(∞), is created automatically from

data (with different site configurations resulting in different RAN models). One then seeks to

maximize the weighted sum of station throughput rates x, or formally

max
x

w⊤x

s.t. (RCAx)k ≤RΛ(∞)k, for k /∈ H, k closed,

(RCAx)k ≤ λ̂k, for k ∈ H,

(Cx)l ≤ (Px)l +λl, for λl > 0,

(Cx)l = (Px)l, for λl = 0,

(39)

where w is the non-negative vector of weights. For the single-server stations we have λ̂k = 1.

GRs and lift robots (LRs) are modeled as closed, many-servers, resources, for which RΛ(∞) is

the number of GRs/LRs available on site. All sub-resources involved with GRs and LRs, such

as “GR ready for load” or “LR ready for unload”, have λl = 0. Finally, open resources (and their

sub-resources) represent external demand (e.g., orders), for which the relevant λl’s is positive.

Given an optimal x∗, CAx∗ provides the number of sub-resources that participate in ongoing

activities which, in particular, includes the number of ground-robots allocated to the different

stations; in practice, and to hedge against uncertainty, one adds to this number some empirically-

grounded square-root factor.
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There are additional practical challenges that arose during implementations of the above,

for example optimal solutions may turn out “unfair” in that the utilization of stations with

human operators are not equal across stations. The RAN framework proved rich enough to

accommodate this challenge (generate fair solutions), and ample others.
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