
State-Dependent Estimation of Delay Distributions in
Fork-Join Networks
Nitzan Carmeli, Galit B. Yom-Tov

Technion—Israel Institute of Technology,
nitzany@campus.technion.ac.il, gality@technion.ac.il,

Onno J. Boxma
TU/e—Eindhoven University of Technology,

o.j.boxma@tue.nl

Problem Definition: Delay announcements have become an essential tool in service system operations: they influence

customer behavior and network efficiency. Most current delay announcement methods are designed for relatively simple

environments with a single service station or stations in tandem. However, complex service systems, such as healthcare

systems, often have fork-join structures. Such systems usually suffer from long delays as a result of both resource scarcity

and process synchronization, even when queues are fairly short. These systems may thus require more accurate delay

estimation techniques than currently available.

Methodology/results: We analyze a network comprising a single-server queue followed by a two-station FJ structure

using a recursive construction of the Laplace–Stieltjes transform of the joint delay distribution, conditioning on cus-

tomers’ movements in the network. Delay estimations are made at the time of arrival to the first station. Using data of an

Emergency Department, we examine the accuracy and the robustness of the proposed approach, explore different model

structures, and draw insights regarding the conditions under which the FJ structure should be explicitly modeled.

We provide evidence that the proposed methodology is better than other commonly used queueing theory estimators such

as Last-to-Enter-Service (which is based on snapshot-principle arguments) and Queue-Length, and we replicate previous

results showing that the most accurate estimations are obtained when using our model result as a feature in state-of-the-art

machine learning estimation methods.

Managerial Implications: Our results allow management to implement individual, real-time, state-dependent delay

announcements in complex FJ networks. We also provide rules of thumb with which one could decide whether to use a

model with an explicit FJ structure or to reduce it to a simpler model requiring less computational effort.

Key words: Delay estimation; Fork-Join networks; Service systems; Healthcare operations; Queueing.

1. Introduction

Delay announcements have become an essential tool in service system operations, reducing the

anxiety and uncertainty of waiting. They shorten perceived waiting time and increase customer

satisfaction (Maister 1984, Munichor and Rafaeli 2007). More generally, it has been shown, both

theoretically (Armony et al. 2009, Jouini et al. 2011, Pender et al. 2016) and empirically (Dong

et al. 2019, Yu et al. 2016), that delay information influences customer behavior and, when wisely

used, can improve system performance.

1

2

The creation of queues: scarce resources and synchronization requirements. Delay announce-

ments rely on accurate delay estimations. Most methodologies for calculating delay estimations

have been developed for single-station queues (Ibrahim and Whitt 2009a, 2009b, 2011a, 2011b) or

for a predetermined route of queues in tandem (Ang et al. 2016, Gal et al. 2017), and capture delays

stemming from a lack of resources. However, service networks additionally suffer from synchro-

nization delays due to coordination needs in the network. Building methodologies to predict the

combined effect of those two types of delay, which naturally emerge in fork-join (FJ) networks, is

the essence of this paper. Terminology wise, from now on we shall refer to the delay in a station as

the total sojourn time in the station.

An FJ structure models two (or more) activities that can be done in parallel by different

resources, where both (or all) of these activities need to be completed in order to continue the pro-

cess. Consider, for example, an emergency department (ED) patient who needs to have an X-ray

taken and interpreted as well as a blood sample taken and tested at the lab before a physician can

decide on the rest of the treatment. Those two processes, X-ray and blood test, can be (mostly)

done in parallel; hence, their processing times may overlap. This example is illustrated in Figure

1 by the two yellow discs moving along the edges emanating from doctor attendance and leading

to laboratory testing (Lab tests) and to X-Ray. Each colored disc represents a patient; discs of the

same color represent the same patient. Thus, the two yellow discs represent a patient waiting for

an X-ray while their blood specimens are being processed. FJ networks are prevalent in service

systems, such as healthcare systems (as in the above example), the legal system (e.g., when a judge

assigns several specialists to produce their opinion before ruling), and many other environments.

There are two main types of FJs—exchangeable and nonexchangeable. An exchangeable FJ is

usually appropriate to describe assembly lines. For example, assume an assembly of two parts: A

and B. In an exchangeable FJ, any type A part could be assembled (joined) with any type B part.

In service systems, however, FJs are usually nonexchangeable, as “parts” in this case are usually

two entities belonging to a customer. In our ED example, clearly, a patient’s blood test results must

be matched with their own X-ray results and medical file.

Time-lagged information. It is often desirable to provide an estimation for the total sojourn

time of a customer within a given service network. This usually entails estimation of delays in the

different stations of the network, at the time of arrival to the first station. Many service systems,

e.g., healthcare systems, are characterized by long sojourn times. In such systems, there may be

substantial changes in the system state during a customer length of stay (LOS). Therefore, delay

3

Figure 1 A snapshot of patient flow in an Israeli ED. Nodes represent ED processes, and each colored disc

moving along an edge represents a patient who completed the process at the edge origin, and is

waiting for, or currently undergoing, the process at the edge destination. The time a disc spends on

a specific edge is proportional to the patient sojourn time (waiting+service) in the edge destination

activity. The red lines represent the relative progress of the patient in this activity, that is, the time

already spent in this activity out of the total sojourn time.

An animation of the data is available here: ED Flow.

estimation made when customers arrive at the first station for a service station down the customer

path (i.e., estimation of a delay at some future point in time) may suffer from great inaccuracies

stemming from time-lagged information (Dong et al. 2019, Pender et al. 2016)

What to announce? Most delay announcements, both in practice and in the queueing theory

literature, are based on a single-point estimation, usually either the mean or the median. However,

recent findings support the need to provide distributional information to customers, not just the

mean/median. For example, Yom-Tov et al. (2017) showed that delay announcements given as a

range (e.g., “your wait will be between 45 and 60 minutes”) influence customer patience differently

than announcing expected wait or a lower bound, and that they help reduce customer abandonment.

In addition, in a preliminary study of ED announcements, Efrat and Parush (2017) found that

customers perceive such range-based delay announcements as more understandable and credible

than those referring to a single point in time (“your wait will be approximately 45 minutes” or

“your wait will be at least 45 minutes”).

In fact, the importance of estimating waiting-time distributions in order to provide delay

announcements based on different distribution percentiles has already been discussed in Whitt

https://youtu.be/5e8BEVEWTi8

4

(1999) and Sun et al. (2012). In the latter, a quantile regression model was developed to pro-

vide delay estimations in an ED as a range. The authors claimed that, due to the great variability

in patient waiting times (in this case, between triage and first encounter with a physician), it is

extremely challenging to provide a single-point estimation (e.g., the mean waiting time), and that

patients are more satisfied when they receive overestimations rather than underestimations.

1.1. Goals and main contributions

Motivated by real-life service systems, healthcare systems in particular, our ultimate goal is to

provide accurate real-time estimations for delay distributions in service systems. Having said that,

we note that service systems (usually conceptualized as queueing networks) in general can be

extremely complex, and current research on delay estimations in such systems does not go beyond

queues in tandem. Here, we do not attempt to provide a full solution to any given network, but

rather take one important step in that direction by considering the interplay between delays driven

by scarce resources and delays emerging from synchronization requirements. To this end, we con-

sider a combination of tandem queues and an FJ structure, and we develop estimations for delay

distributions in a system of one single-server queue which is followed by an FJ structure.

We note that an FJ structure could be only one part of a much more complex network. The

computational effort required in order to produce delay estimators that account for the FJ struc-

ture(s) within a larger network may become too excessive as the network grows large. One of the

methodologies to avoid this “curse of dimensionality” is to “fold” detailed structures, such as FJs,

into simpler, less detailed building blocks (Senderovich et al. 2016). Thus, an additional goal is to

provide modeling guidelines that consider the trade-off between estimation accuracy and compu-

tational complexity when modeling queues with FJ structures.

The main contributions of this paper are the following:

1. Developing delay estimators for service networks that include FJ structures, focusing on

individual, real-time, state-dependent estimation as opposed to the average, steady-state sojourn

time of all customers. We start by developing formulas for such delay estimators under the assump-

tion that service times are exponential (§2). We then suggest extensions for service times having a

coefficient of variation (CV) different than 1 (§EC.3).

2. Establishing rules of thumb under which the FJ structure should be explicitly modeled ver-

sus situations in which it could be simplified into structures whose delay estimations require less

computational effort.

5

3. Implementing the method developed in 1. in a case study of an ED and showing that

accounting for synchronization queues arising from an underlying FJ structure indeed significantly

improves estimation accuracy.

4. Replicating previous results (Ang et al. 2016, Gal et al. 2017) and showing that enriching

state-of-the-art machine learning techniques with queueing theory features (such as the result of

our model) provides the most accurate estimations. This was done using a unique transaction-level

data base of patients’ paths within an Israeli ED.

1.2. Literature review

There is ample literature on delay estimations in service systems. An extensive survey of (mostly)

steady-state results of exact delay expressions in queueing systems is given by Boxma and Daduna

(1990). Another comprehensive survey, which adds coverage of real-time (state-dependent) results

and the influence of delay information on customer behavior and system operations, is provided

by Ibrahim (2018). Surveys on sojourn times in FJ networks are given in Boxma et al. (1994),

Thomasian (2014).

Sojourn times in FJ networks: To the best of our knowledge, current results on sojourn times

in FJ networks provide mostly approximations or bounds (Baccelli et al. 1989, Nelson and Tantawi

1988). Such approximations or bounds for the complete sojourn-time distribution are given, for

example, in Ko and Serfozo (2004, 2008) and Rizk et al. (2015). Qiu et al. (2015) propose a phase-

type representation of the sojourn-time distribution in an FJ network. In Zhang (1990), a closed-

form solution for the joint Laplace–Stieltjes transform (LST) of steady-state waiting times in an FJ

station with two queues is provided. Kim and Agrawala (1989) obtained the joint sojourn-time dis-

tribution in each single-server station of an FJ queue, starting with an empty system and computing

it recursively at arrival epochs of new customers. The authors considered service durations hav-

ing an Erlang distribution and suggested an approximation for the joint steady-state sojourn-time

distribution by truncating the state space, assuming that the probability of having more than M

customers in each of the queues approaches zero. We also suggest an exact recursive approach to

derive state-dependent estimations of sojourn-time distributions in the FJ part of a network; how-

ever, we provide these estimations at the time of a customer arrival to a preceding service station,

and provide an elegant, simple method for the recursive computation using matrix multiplication.

Snapshot-principle-based estimators in queueing networks: Reiman (1982) studied conven-

tional heavy-traffic diffusion approximations for sojourn times in Jackson networks withK single-

server stations. One of his main results is the snapshot principle: “It is as if the customer takes a

6

snapshot of the network when he enters and all queues remain at the same value during the cus-

tomer’s sojourn through the network.” Snapshot-principle-based estimators follow the assumption

that changes in queue lengths are negligible during a customer visit to the system; this gave rise

to Last-to-Enter-Service (LES) and Head-of-the-Line (HOL) estimators, which basically approx-

imate the waiting time of an arriving customer by the waiting time of the last customer to enter

service (LES), or the elapsed waiting time of the customer currently at the head of the queue

(HOL). Huang et al. (2015), for example, used the snapshot principle to approximate queue length,

virtual waiting time, and sojourn time in a single-server multiclass queue in which an ED physician

treats both newly arrived patients and in-process patients. Nguyen (1993) studied heavy-traffic lim-

its of FJ networks and showed that the total sojourn time of an arriving customer can be regarded

as a function of the longest path. Using a large data set of patients’ transactions within an Israeli

ED, we compare our methodology’s estimation results with those of snapshot-principle-based esti-

mators. Noting that delays in EDs are usually long, and that the system state may change signifi-

cantly during a patient LOS, we show that our methodology indeed substantially outperforms the

snapshot-principle-based estimators.

Real-time, single-station, queueing theory-based estimations: Ibrahim and Whitt (2009a,

2009b, 2011a, 2011b) proposed a series of real-time waiting-time estimators for a single queue

with abandonments, time-varying arrival rate and capacity, general service durations, and general

inter-arrival and patience distributions. Their predictors can be categorized into two types: queue-

length-based (QL) predictors, and delay-history-based predictors (or snapshot-principle-based pre-

dictors). Thiongane et al. (2016) expanded the delay-history-based predictors to a weighted aver-

age form that can cope with multiclass queues. Although these real-time predictors cover a wide

range of service systems, they only account for single stations and provide only an estimation for

the average waiting time. Nakibly (2002) focused on estimating waiting-time distributions, given

the system state at the time of arrival, but this was again for single-station service systems, albeit

considering skills-based routing, motivated by call centers.

Enriching machine learning methods with queueing theory-based features: Broadly speak-

ing, there are two main types of delay estimators: queueing theory-based (QT) estimators (as spec-

ified above), and machine learning (ML) estimators. The latter are usually based on ample data

logs with many features, while the QT estimators are usually based only on the system state (such

as the number of customers in queue, the processing rates, or the number of service providers).

Thus, it is not surprising that ML estimators often outperform QT estimators (e.g., Mourõo et al.,

7

2017, Sanit-in and Saikaew, 2019, Thiongane et al., 2020). In recent years, there is growing sup-

port for the superiority of estimators that are a combination of ML and QT estimators, that is, ML

estimators that incorporate the results of QT estimators as explanatory variables or features. The

value of this approach has been shown for wait time estimations in call centers (Senderovich et al.

2014, Senderovich et al. 2015), in emergency departments (EDs) (Ang et al. 2016, Benevento et al.

2019, Sun et al. 2012), and even for predicting bus travel times given a scheduled bus journey (Gal

et al. 2017). Our work provides further support for this approach.

Exact analysis of two queues in tandem: From a performance analysis perspective, our work is

most closely related to the literature using exact analysis on open- and closed-service networks of

two tandem queues. Stadje (1996) derived a closed-form solution of the total sojourn time within

a closed network of two single-server queues in tandem with exponential service durations, given

the number of customers in each queue at the time of arrival. Boxma (1983), Daduna (1986), and

Boxma and Daduna (2014) yielded expressions for the joint LST of the sojourn time in the two

tandem queues. Boxma (1983) considered the case of one queue with exponential service times

followed by a queue with general service times in a closed network. It was shown that reversing

the order of the queues yields a different expression for the joint LST. Daduna (1986) generalized

the service time distribution to an Erlang mixture, and Boxma and Daduna (2014) derived an

expression for the joint LST of the sojourn times in both queues, using first general service times

and then exponential service times (for both the closed and open network). We follow that approach

and extend it to FJ queues, adding concurrency, which is prevalent in many service systems (e.g.,

healthcare systems), and thus providing an important additional layer to the analysis.

1.3. Organization

The rest of this paper is organized as follows. In §2, we present our basic model of a network with

one single-server station followed by an FJ structure. In §3, we use an exact analysis approach

to compute the LST of the sojourn time in each station, and the LST of the total sojourn time,

given the real-time system state at the time of arrival to the first station. In §4, we explore three

alternative models and discuss the settings under which each should be considered, accounting for

the trade-off between computational complexity and estimation accuracy. We present a case study

of an Israeli ED and evaluate our model’s performance compared to other QT and ML estimators

in §5. We use our data-based example to numerically evaluate the influence of ignoring the FJ

structure (i.e., the synchronization queues) on the estimation accuracy, and to support our model’s

robustness to deviations from the model’s assumptions. We conclude and discuss future research

directions in §6.

8

2. The fork-join network model
We consider an open queueing network (see Figure 2) with two parts. The first consists of a single-

server queue Q0, and the second consists of two queues in an FJ structure. We refer to the queues

in the second part as the upper FJ station (UFJ) and the lower FJ station (LFJ). We assume that

service times in the first part are exponentially distributed with rate µ0. This assumption can be

relaxed; an analysis of general service times at the first station is given in §EC.2.

The FJ stations can be either single-, multiple-, or infinite-server queues having exponential

service times with rates µ1 and µ2 for the upper and lower stations, respectively. We assume an

FCFS service policy throughout the network. From here on, we shall assume both stations in the

FJ part have a single server, but this is only to simplify notation and is not a constraint in any way.

We use the following notation to describe the system state at the time of arrival of a tagged cus-

tomer (to whom we would like to provide the delay announcement): k is the number of customers

in the first single-server station (including customers in queue and in service), h1 is the number of

customers in the UFJ station, and h2 is the number of customers in the LFJ station. All customers

first receive service in Q0 and then simultaneously join UFJ and LFJ, requiring independent ser-

vices at both stations. Let S0 be the tagged customer’s sojourn time in the first station, and S1 (S2)

be their sojourn time in the UFJ (LFJ) station. Let SFJ be the tagged customer’s total sojourn time

in the FJ part. See Figure 2 for illustration. Because of the FJ structure, the tagged customer leaves

when their sojourn time at both the UFJ and LFJ stations ends: SFJ = max{S1, S2}. Since we

are assuming an FCFS policy, and Q0 has a single server, customers entering the system after the

tagged customer will not influence S0 or SFJ . It can therefore be assumed that no customers enter

the system after the tagged customer, whose total sojourn time can thus be viewed as the time it

will take the system to drain.

Our goal is to determine Ψk,h1,h2(w0,wFJ) ≡ Ek,h1,h2
[
e−w0S0−wFJSFJ

]
, the joint Laplace–

Stieltjes transform of S0 and SFJ , given that, at the arrival epoch of the tagged customer in Q0,

there are k customers in the first station, h1 customers in the UFJ station, and h2 customers

in the LFJ station. We proceed as follows: In the present section, we derive a recursion for

Ψk,h1,h2(w0,wFJ) in k, expressing this LST in several terms Ψk−1,·,·(w0,wFJ). After k steps, we

thus reach Ψ0,·,·(w0,wFJ)—and the latter terms turn out to be easy to obtain. In the next section,

we solve that recursion.

We obtain such a recursion in k for Ψk,h1,h2(w0,wFJ) by conditioning on the remaining service

time of the customer in service in Q0 at the arrival epoch of the tagged customer in that queue. We

9

Figure 2 Two queues in tandem: a single-server queue followed by a fork-join queue.

restrict ourselves for the moment to the case where, at this arrival epoch, we have k,h1, h2 > 0. The

baseline case k = 0 will be treated in the next section; there, we also show that the cases h1 = 0

and h2 = 0 follow from the same analysis.

If the tagged customer arrives and finds customers in all three stations, that is, k,h1, h2 > 0, then

there are four cases to be distinguished for the events in UFJ and LFJ during the remaining service

time t of the customer in service in Q0.

Case 1: Out of the (h1, h2) customers at (UFJ, LFJ), r1 <h1 and r2 <h2 are served in [0, t].

Case 2: Out of the (h1, h2) customers at (UFJ, LFJ), r1 <h1 and all h2 are served in [0, t].

Case 3: Out of the (h1, h2) customers at (UFJ, LFJ), all h1 and r2 <h2 are served in [0, t].

Case 4: All of the (h1, h2) customers at (UFJ, LFJ) are served in [0, t].

Observe that the probability of r1 services in [0, t] equals e−µ1t (µ1t)
r1

r1!
when r1 < h1, and that the

probability of serving all h1 customers in [0, t] equals
∞∑

r1=h1

e−µ1t (µ1t)
r1

r1!
. Observe, furthermore, that

the remaining service time of the customer in service in Q0 has density µ0e
−µ0t. Hence, we obtain

the following key recursion:

Ψk,h1,h2(w0,wFJ)≡Ek,h1,h2
[
e−w0S0−wFJSFJ

]
=

∞∫
0

e−w0tXk,h1,h2µ0e
−µ0t dt, (1)

where Xk,h1,h2 is given by

Xk,h1,h2 =

h1−1∑
r1=0

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,h2−r2+1(w0,wFJ)

+

h1−1∑
r1=0

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,1(w0,wFJ)

10

+
∞∑

r1=h1

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,h2−r2+1(w0,wFJ)

+

∞∑
r1=h1

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,1(w0,wFJ). (2)

The four terms on the right-hand side of (2) correspond to the four cases mentioned above. In the

first term, r1 < h1 customers are served at UFJ, leaving h1 − r1 customers behind; the customer

whose service inQ0 ends at time t then joins UFJ, bringing its number of customers to h1−r1 +1.

That customer also joins LFJ, making the total number of customers there h2 − r2 + 1. Because

of the memoryless property of the exponential distribution, we can, for the LST of the remaining

sojourn times of the tagged customer in the first part and the second part, proceed as if the tagged

customer now arrives in Q0, and finds k − 1 customers in that queue and (h1 − r1 + 1, h2 −
r2 + 1) customers at (UFJ,LFJ)—without having to worry about the lengths of remaining service

times at UFJ and LFJ; they are still exponentially distributed. That explains the occurrence of

Ψk−1,h1−r1+1,h2−r2+1(w0,wFJ) in the first term on the right-hand side of (2). In the second term, all

h2 customers at LFJ have been served before time t, leaving LFJ empty; the arrival of the customer

who was just served in Q0 brings the number of customers at LFJ back to one, so that we get

Ψk−1,h1−r1+1,1(w0,wFJ). The third and fourth terms are similarly explained.

3. Laplace–Stieltjes transform computation
Based on Equations (1) and (2), the joint LST can now be computed recursively. Each iteration

corresponds to the number of remaining customers at the first station, until it has no customers

except for the tagged customer. That is, in the first iteration, there are k customers ahead of the

tagged customer in Q0; in the next iteration, there will be k − 1, and so on. The joint LST in

each iteration is conditioned on the number of potential service completions in the FJ part by the

time the current customer in service in Q0 leaves the first station. In order to concisely express the

recursion for the joint LST, we use the following notation:

a(r1, r2)≡
∞∫
0

e−(w0+µ1+µ2)t
(µ1t)

r1

r1!

(µ2t)
r2

r2!
µ0e

−µ0t dt,

b(r1, h2)≡
∞∑

r2=h2

a(r1, r2) =

∞∫
0

e−(w0+µ1+µ2)t

∞∑
r2=h2

(µ1t)
r1

r1!

(µ2t)
r2

r2!
µ0e

−µ0t dt,

c(h1, r2)≡
∞∑

r1=h1

a(r1, r2),

11

d(h1, h2)≡
∞∑

r1=h1

∞∑
r2=h2

a(r1, r2).

Using the above notation, and a shorthand notation in which we omit w0 and wFJ , the recur-

sive formula for Ψk,h1,h2(w0,wFJ)≡Ψk,h1,h2 given by Equations (1) and (2) (for the case where

k,h1, h2 > 0) becomes

Ψk,h1,h2 =

h1−1∑
r1=0

h2−1∑
r2=0

Ψk−1,h1−r1+1,h2−r2+1 · a(r1, r2) +

h1−1∑
r1=0

Ψk−1,h1−r1+1,1 · b(r1, h2)

+

h2−1∑
r2=0

Ψk−1,1,h2−r2+1 · c(h1, r2) + Ψk−1,1,1 · d(h1, h2). (3)

Note that, if h1 = 0 and/or h2 = 0, (3) remains valid when an empty sum is defined to be zero.

Taking k = 0 requires more attention; the case k = 0 will be treated at the end of the section. By

simple algebraic manipulations we get

a(r1, r2) =
µ0

µ0 +w0

∞∫
0

(µ0 +w0)e
−(µ0+w0)te−µ1t

(µ1t)
r1

r1!
e−µ2t

(µ2t)
r2

r2!
dt (4)

=

(
r1 + r2
r1

)
µ0

µ0 +w0 +µ1 +µ2

(
µ1

µ0 +w0 +µ1 +µ2

)r1 (µ2

µ0 +w0 +µ1 +µ2

)r2
,

b(r1, h2) =
µ0

µ0 +w0

∞∫
0

(µ0 +w0)e
−(µ0+w0)te−µ1t

(µ1t)
r1

r1!

(
1−

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
dt,

c(h1, r2) =
µ0

µ0 +w0

∞∫
0

(µ0 +w0)e
−(µ0+w0)te−µ2t

(µ2t)
r2

r2!

(
1−

h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)
dt,

d(h1, h2) =
µ0

µ0 +w0

∞∫
0

(µ0 +w0)e
−(µ0+w0)t

(
1−

h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)(
1−

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
dt.

These three integrals can also be evaluated in the same way as the integral expression for

a(r1, r2). Furthermore, note that if we define Y1 to be a Poisson process with rate µ1, Y2 as a

Poisson process with rate µ2, and Ω∼ exp(µ0 +w0), then

a(r1, r2) =
µ0

µ0 +w0

P (Y1(Ω) = r1, Y2(Ω) = r2) ,

b(r1, h2) =
µ0

µ0 +w0

P (Y1(Ω) = r1, Y2(Ω)≥ h2) ,

c(h1, r2) =
µ0

µ0 +w0

P (Y1(Ω)≥ h1, Y2(Ω) = r2) ,

d(h1, h2) =
µ0

µ0 +w0

P (Y1(Ω)≥ h1, Y2(Ω)≥ h2) .

12

3.1. Boundary conditions

The recursive computation of the joint LST ends when there are no customers at the first station

except for the tagged customer, that is, when k = 0. In this case, the tagged customer’s sojourn

time at the first station will only be their service time, which is exponential with rate µ0. We define

Zx,y(wFJ) as the LST of the total sojourn time of the tagged customer in the FJ part, given that

there are x customers at the UFJ station and y customers at the LFJ station (including the tagged

customer), as follows:

Zx,y(wFJ) :=E
[
e−wFJSFJ | h1 = x,h2 = y

]
=

∞∫
0

e−wFJ t dFSFJ |x,y(t). (5)

The sojourn time of a tagged customer arriving at the UFJ (LFJ) station and finding x− 1 (y− 1)

customers there will be the sum of x (y) service durations, each exponentially distributed with rate

µ1 (µ2). Therefore, (S1|h1 = x)∼Gamma (x,µ1), (S2|h2 = y)∼Gamma (y,µ2), and from the

gamma-Poisson relationship, we get

FSFJ |x,y(t) = P (SFJ ≤ t | h1 = x,h2 = y) = P (S1, S2 ≤ t | h1 = x,h2 = y)

= P (S1 ≤ t | h1 = x,h2 = y)P (S2 ≤ t | h1 = x,h2 = y)

= P (S1 ≤ t | h1 = x)P (S2 ≤ t | h2 = y)

=

(
1−

x−1∑
m=0

e−µ1t
(µ1t)

m

m!

)(
1−

y−1∑
n=0

e−µ2t
(µ2t)

n

n!

)
.

It follows that once k= 0, the recursive formula is done, since it is only left to calculate Zx,y(wFJ)

for all possible values of x and y (which is a straightforward Laplace–Stieltjes calculation of

FSFJ |xy(t)) and the probabilities of having h1 = x and h2 = y by the time the tagged customer

completes service at the first station.

We shall now review the k = 0 case. The resulting recursive formula (again, we omit wFJ for

notational simplicity) becomes

Ψ0,h1,h2 =

h1−1∑
r1=0

h2−1∑
r2=0

Zh1−r1+1,h2−r2+1 · a(r1, r2) +

h1−1∑
r1=0

Zh1−r1+1,1 · b(r1, h2)

+

h2−1∑
r2=0

Z1,h2−r2+1 · c(h1, r2) +Z1,1 · d(h1, h2). (6)

13

Here, the LST Zx,y ≡ Zx,y(wFJ) is defined as in Equation (5), and a(·, ·), b(·, ·), c(·, ·), and d(·, ·)

are defined as in Equation (4). In this formula, an empty sum (h1 = 0 and/or h2 = 0) is again

defined to be zero. Note that the term with h1 = h2 = 0 becomes

Ψ0,0,0 =Z1,1d(0,0) =
µ0

µ0 +w0

Z1,1. (7)

Note furthermore that (SFJ |1,1) is the maximum of two exponential random variables with rates

µ1 and µ2. Therefore,

FSFJ |1,1(t) = P (S1 ≤ t | h1 = 1)P (S2 ≤ t | h2 = 1) =
(
1− e−µ1t

) (
1− e−µ2t

)
and

Z1,1 =

∞∫
0

e−wFJ t
[
µ1e

−µ1t
(
1− e−µ2t

)
+µ2e

−µ2t
(
1− e−µ1t

)]
dt

=
µ1

µ1 +wFJ
− µ1

µ1 +µ2 +wFJ
+

µ2

µ2 +wFJ
− µ2

µ1 +µ2 +wFJ
.

The recursive formula can be easily and efficiently calculated if written in compact matrix form.

Details are provided in EC.1. Assigning wFJ = 0 will yield the LST of the sojourn time in the first

single-server station, assigning w0 = 0 will yield the LST of the sojourn time in the FJ part, and

assigning wFJ =w0 will yield the LST of the tagged customer’s total sojourn time in the system.

From the LST, we obtain the Fourier–Stieltjes transform and then use the numerical inversion of

Witkovský (2016) to retrieve the sojourn-time distribution.

3.2. General service durations

An extension to general service durations in the first station is provided in EC.2. The case of

completely general service durations in the FJ part is not a trivial extension of our model, and

we leave it for future research. However, one can capture the essence of most distributions via its

first two moments, or equivalently by its expected value and the coefficient of variation (CV). We

therefore extend our model to also include Erlang and hyperexponential service durations in the FJ

part of the network. The Erlang distribution can be used when service durations in one of the FJ

stations (or in both of them) exhibit a CV that is less than 1, while the hyperexponential distribution

can be used when the CV is greater than 1. Details are provided in EC.3.

14

4. Guidelines for modeling: complexity vs. accuracy

In §2, we presented an exact analysis approach to estimating delays in a network with one single-

server station followed by an FJ part comprising an upper station (UFJ) and a lower station (LFJ).

Naturally, this three-station queueing system may be one building block in a larger queueing net-

work. Our exact iterative approach allows for estimating delay distributions. However, it may face

the “curse of dimensionality” when the system grows large—when either the number of nodes or

the queue lengths become large. In this section, we explore the trade-off between computational

complexity and estimation accuracy, comparing our detailed FJ model (§2) with other relevant

“black-box” models.

We explore three alternative models, all providing an estimated distribution for the delay in the

FJ part of the network at the time of arrival to the first station. Below, we elaborate on each of

the three models, including their computational complexity and the parameters to be considered

to allow fair comparison between them. As in the previous section, we denote the number of

customers seen upon arrival to the first station, the UFJ station, and the LFJ station by k, h1, and

h2, respectively. We denote the equivalent service rates by µ0, µ1, and µ2. For convenience, we

shall also denote γ0 = k+1
µ0

, γ1 = h1+1
µ1

, and γ2 = h2+1
µ2

.

The first model will be called the two-queue-lengths (2QL) model. This model includes two

queues in tandem; that is, we reduce the FJ part to a single station, the one with the highest work-

load. This means that we exclude the LFJ station if γ1 > γ2, and we exclude the UFJ station

otherwise. Note that if the service rates at the two FJ stations are equal, then, in a specific time

epoch, the station with the longer queue will have a higher load. The underlying assumption of

this model is that during the tagged customer’s stay at the first station, the same FJ station will

remain the most loaded and the queue length at this FJ station will not change considerably (the

snapshot principle). In this model, the sojourn time at the FJ part will be determined by the crit-

ical FJ station. Thus, if γ1 > γ2 (γ2 >γ1) the customer’s sojourn time in the FJ part will have an

Erlang (h1 + 1, µ1) (Erlang (h2 + 1, µ2)) distribution, which is computed in O(1) time.

The second model is an extension of 2QL, which we will refer to as the tandem-critical model,

as we again reduce the FJ part to the station with the highest workload. However, this time, we

account for the queue evolution at this station during a customer’s stay at the first station as a

special case of the model presented and analyzed in Boxma and Daduna (2014). To calculate the

computational complexity of this model, we can assume, for simplicity, that h1 = h2 = h. The

15

computational complexity of calculating a(·), b(·), c(·), and d(·) in (4) can be regarded as O(1).

The number of such computations required in this model is O
(

k∑
i=1

(h+ i)

)
.

The third model we consider is a delay-node model. Here we propose to use a delay node

within the FJ part. A delay node is an infinite-server station with a generally distributed service

time. This approach was inspired by Yom-Tov and Mandelbaum (2014) and van Leeuwaarden

et al. (2017), who used it for making staffing decisions in the complex ED environment. Those

papers neglected the FJ structure inherent in ED services. Nevertheless, the delay-node approach

can capture the dynamic structure so common in ED services. The resulting model will then have

one single-server queue, followed by an FJ part consisting of one single- or multiple-server queue

with exponentially distributed service durations and one infinite-server queue with general service

durations. We consider two variations of the delay-node model, one in which the more loaded

station in the FJ part becomes the delay node (denoted delay-high), and the other in which the less

loaded station is the delay node (denoted delay-low).

This model can be reduced to one very similar to that presented in Boxma and Daduna (2014).

With the delay node, in each of the recursion iterations, the joint LST is conditioned only on the

number of potential service completions at one station with exponential service durations (and not

on two such stations) in accordance with the recursion in Boxma and Daduna (2014). It thus has

the same computational complexity as the tandem-critical model. However, the time each customer

spends at the last station (an FJ with one delay node and one Markovian node) does not follow an

Erlang distribution. Instead, it is the maximum of two independent random variables, one with a

general distribution (corresponding to the sojourn time in the delay node) and one with an Erlang

distribution. Formulas for this model are presented in EC.4.

Here, we assume that the UFJ station is the delay node, having (merely as an example) an expo-

nentially distributed service time with rate µ1
h1+1

. This means that the time spent in the delay node

is proportional to the workload in this node at the time of arrival, similar to the processor-sharing

service policy. As we shall see, this simplification of the delay node allows for fair comparison

between the different models and, in addition, accounts for the fact that a higher load at the UFJ

station results in larger sojourn times.

In this section, we qualitatively examine the differences between the three models and the model

presented in §2, which will be denoted below as the Markovian fork-join (MFJ) model. In §5.3,

we evaluate the models’ performance using a case study of an ED. Assuming that the true under-

lying system is, in fact, a Markovian single-server queue followed by a two-station Markovian FJ,

16

the model that perfectly captures this system is our MFJ model. However, the MFJ model has a

computational complexity of O
(

k∑
i=1

(h+ i)2
)

(assuming that h1 = h2 = h), which has approxi-

mately (h+ k) times more computations than the tandem-critical model and the delay-node model,

and (h+ k)2 k times more computations than the 2QL model. This raises a number of questions:

Under which circumstances is it enough to use the simple 2QL model, which does not account

for the system dynamics? Under which circumstances can we neglect the FJ structure and use the

tandem-critical model? Finally, under which circumstances can we use the delay-node model?

We thus examine the difference in the theoretical density function of the sojourn time in the

FJ part under different scenarios, where a scenario is a combination of the three queue lengths

(k, h1, h2), as seen by an arriving customer. For convenience, we shall assume from now on that

all service rates are equal to one and that γ1 ≥ γ2 in all scenarios. Figure 3 presents the probability

density functions of our MFJ model (blue, solid), the delay-high model (purple, dotted), the delay-

low model (yellow, dashed), the tandem-critical model (red, dashed-dotted), and the 2QL model

(green, solid), for various scenarios.

We seek to establish guidelines, or conditions, under which one can use simpler models to esti-

mate the sojourn-time distribution in the FJ part with fairly good accuracy. We start by exploring

the effect of modeling one FJ station as a delay node. We note that when one FJ station has a

much higher load than the other, the sojourn time in the FJ part will be mainly determined by the

more loaded station. Hence, modeling the other station as a delay node, that is, using the delay-low

model, will not have a substantial effect on the sojourn time in the FJ part. This means that using

the delay-low model will result in almost the same density function as the one derived from the

MFJ model. By contrast, using the delay-high model will result in a very different density function.

As expected, when the loads in both FJ stations are equal, there is no difference between the

delay-high and delay-low models. We do observe two interesting phenomena. Consider the case

where h1 = h2 = 1. Considering one station as a delay node, with an exponential service duration,

should not affect the time that a single customer currently in service at the FJ stations spends there.

However, it does affect the time that a tagged customer, entering the first single-server station,

spends in the FJ part. To be concrete, the delay-node models will underestimate this tagged cus-

tomer’s time in the FJ part, and as the number of customers in front of the tagged customer at the

first station increases, so does the underestimation. This is because each customer leaving the first

station may find a queue at both FJ stations. According to the delay-node models, there is no queue

at one station. Hence, each of these customers has a positive probability of being delayed in the

17

queue that is not accounted for by the delay-node models, and this delay will accumulate until the

tagged customer reaches the FJ station.

A second interesting phenomenon that we observe is the following: as the number of customers

at the FJ stations increases, the density function resulting from the delay-node models has increas-

ingly greater variability than the density function derived from the MFJ model. To explain this

phenomenon, assume that a tagged customer arriving to the FJ part finds h1 = h2 = h > 1 cus-

tomers at the FJ stations. According to the delay-node model, the time this tagged customer will

spend in the FJ part is max
{
Erlang (h+ 1,1) ,Exp

(
1

h+1

)}
, while according to the MFJ model

it is max{Erlang (h+ 1,1) ,Erlang (h+ 1,1)}. The delay-node models result in greater vari-

ability since Var [Erlang (h+ 1,1)] = (h+ 1)<Var
[
Exp

(
1

h+1

)]
= (h+ 1)2, even though both

have the same expected value, h+ 1.

We now seek to explore when one should use a model that accounts for the FJ structure, or equiv-

alently, when one should ignore it and use the tandem-critical model. We observe that when both

FJ stations are equally loaded, the tandem-critical model will underestimate sojourn times at those

stations. This is due to the fact that Erlang (n1, α) � max{Erlang (n1, α) ,Erlang (n2, α)},1

and as n2 increases, getting closer to n1, the difference between the two distributions increases.

However, if n2� n1, as in the case where one FJ station is much more loaded than the other one,

then Erlang (n1, α)≈max{Erlang (n1, α) ,Erlang (n2, α)}; hence, in such cases it is reason-

able to use the simpler tandem-critical model instead of a model that accounts for the FJ structure.

In short, when one FJ station is much more loaded than the other, it is very unlikely that the less

loaded station will cause synchronization delays; hence, accounting for the FJ structure is less

important.

Lastly, to explore the effect of the FJ queue evolution throughout the tagged customer’s stay

in the system, we examine the density function resulting from the 2QL model, which does not

account for this evolution. From Figure 3, we conclude that it is reasonable to use the queue-length

model when one of the FJ stations, or both of them, is much more loaded than the first single-server

station, that is, when γ1� γ0. In such cases, the time the tagged customer will spend in the first

station is much shorter than in the FJ station; hence, by the time they leave the first station, the

change in the loaded FJ station queue will be negligible, compared to the initial queue there.

To conclude, when one or both of the FJ stations is much more loaded than the first single-server

station, the simple 2QL model is interchangeable with the tandem-critical model. When one FJ

1 Here “�” is in the sense of stochastic ordering, that is, A�B means that P (A>x)≤ P (B >x) , ∀x∈ (−∞,∞).

18

Figure 3 Sojourn-time distribution in the FJ station for various scenarios according to the following models:

MFJ (blue), delay-high (purple, dotted), delay-low (yellow, dashed), tandem-critical (red, dashed-

dotted), and queue-length (green, solid).

station is much more loaded than the other FJ station, the tandem-critical model and the delay-low

model are interchangeable with the MFJ model.

5. “All models are wrong, but some are useful” (George Box)

As this well-known quote implies, any model, ours included, is constrained by its assumptions—

assumptions that are rarely fully met. Using a case study (§5.1) and a simulation study, we shall

demonstrate that, despite this fact, the proposed model is robust enough to be practical in real, com-

plex, challenging service networks, such as those in healthcare systems. To this end, we first com-

pare estimations based on our MFJ model to two commonly used queueing theory-based estimators

and to a state-of-the-art machine learning method (§5.2). Our next step (§5.3) is to numerically

evaluate the value of delay estimators that account for synchronization queues, which naturally

arise in an FJ structure. To do so, we compare the estimation accuracy of our MFJ model with the

accuracy of the simplified models presented in §4. Finally, in §5.4, we check for robustness by

relaxing the FCFS model assumption.

19

5.1. Case study

We use two years of data (from April 2014 to August 2016) taken from an Israeli ED. The structure

of the ED process was first established by in-depth interviews with various ED personnel—the ED

manager, physicians, nurses, and administrators—and then verified by obtaining transaction-level

data on all treatments provided throughout a patient’s stay. On average, 138 patients arrive to the

ED per weekday. The ED classifies them into two groups: non-severe independent walking patients

(47%), and acute patients, which are assigned to a bed (53%). The average LOS in the ED for

walking patients is approximately 5 hours; for acute patients, the average LOS is approximately

9.5 hours. As previously mentioned, Figure 1 presents a snapshot of real-time patient flow through

the entire ED process. The following case study will focus on part of that network, including the

following three stations: nurse attendance, doctor attendance, and lab testing.

Focusing on patients that went through these three stations (82.5% of the ED patients) and based

on interviews with nurses and physicians, we assumed that the process in these stations can be

modeled by a single- or few-server station which is followed a two-station FJ. For most patients at

the nurse attendance station, the nurse will also take a blood sample to be tested. In some cases,

the test results will arrive before the patient’s arrival to the doctor attendance station, and in other

cases, afterwards. Therefore, the laboratory testing and the doctor attendance are done in parallel

and can be modeled as an FJ network (see Figure 4 for illustration). This description was also

verified via the data we collected. However, we also note that unlike the FJ network assumptions,

even if the doctor is available, they will sometimes wait for the lab tests to arrive before examining

a patient.

Figure 4 Modeling the beginning of an ED process as a single-server queue followed by a fork-join queue.

Our model requires six parameters: the queue length and the service rate at each of the three

stations. We estimated the service rates using the data of the first two years (2014–2015) as the

training set data (72% of the data observations). We then used the 2016 data as a test set, upon

20

which we compared the different models. Separation of the data into two different time periods (as

opposed to random separation) ensures that the observations in the two data sets are independent.

More details on parameter estimations are provided in §EC.5.

Figure 5 presents the service rate at the three stations as a function of the queue length. It seems

that, in general, there is a speed-up phenomenon in all three stations: as the queue length increases,

the service rate increases. This may be due to service providers accelerating their work in order

to mitigate the load in the system or simply due to extra staffing in loaded times. Incorporating

such phenomena into our model is straightforward: we simply change service rates to be state-

dependent.

Figure 5 Service rates as a function of queue lengths.

5.2. Point estimations

In this section, we compare our primary model (see §2) results with actual patient sojourn times

according to our ED data. A patient’s sojourn time at the first station (S0) is considered to be the

time between administrative reception and nurse attendance. A patient’s sojourn time at the second

station is considered to be the time between nurse attendance and doctor attendance. For most of

the blood tests (70% of the cases), the hospital records the time of a blood test order. This time

is usually only a few minutes after the nurse attendance time, which suggests that blood tests are

taken during the nurse attendance. Hence, for all cases, even when there was no record of a blood

test order (about 30% of the cases), we assumed that the laboratory testing phase starts at nurse

21

attendance and ends when the final blood test results arrive. Consequently, the sojourn time in the

FJ part (SFJ) is defined as the maximum of the doctor attendance sojourn time and the laboratory

testing sojourn time. The total sojourn time was then calculated as the summation of the sojourn

time at the first station and the sojourn time in the FJ part.

Our data included 112,727 observations. We excluded all observations with zero sojourn time

in at least one of the stations, (approximately 4.8% of all observations) or with a sojourn time

exceeding 5 hours in at least one of the stations (0.5% of the observations). This resulted in 106,662

observations. As stated above, we divided the data into two time periods (after verifying that there

were no trends): all observations from 2014–2015 were used as a training set, and all observations

from 2016 were used as a test set.

As in §4, we shall define a scenario as a combination of the three queue lengths (k, h1, h2),

as seen by an arriving patient. We estimated the three service rates for each scenario as specified

in §EC.5. Note that these service rates are dependent not on the queue length in any specific

station, but rather on the queue lengths in all three stations. We then tested different models on

all observations in the test set for which the three queue lengths, as seen at the time of arrival, fit

a scenario that was observed at least 30 times in the training set. This resulted in a total of 191

scenarios for walking patients, 277 scenarios for acute patients, and 5,843 (12,365) observations of

walking (acute) patients in the test set. These observations included all patients who went through

all three stations (that is, it does not include patients without lab tests).

We compare our method with three other estimation methods: a variation of the Last-to-Enter-

Service (LES) estimator, the 2QL estimator, and a machine learning, Gradient Boosting Regressor

(GBR) (Friedman 2001) with different sets of features.

The LES estimator is easy to implement, fairly robust, and hence widely used (Gal et al. 2017,

Huang et al. 2015); it is based on the snapshot principle, which has been proven to also hold for FJ

networks (Nguyen 1993). Consider a tagged patient arriving at the administrative reception. The

LES estimator is based on the principle that this tagged patient’s waiting time at any of the fol-

lowing three stations (nurse attendance, doctor attendance, and lab testing) can be estimated by the

waiting time of the last patient to enter service at that station, prior to the tagged patient’s recep-

tion time. Our data includes a single time stamp for every activity done in the ED. For example,

we do not know exactly when a nurse attendance service started and ended, but rather we have

a single time stamp indicating that this service occurred. This time stamp is associated with the

fulfilment of the patient electronic medical file by the nurse; therefore, it is reasonable to assume

22

that it occurred at (or close to) the end of the service. Thus, to estimate sojourn times we take a

variation of the LES and use the sojourn time of the last patient to complete service at each of the

three stations. This estimator will be denoted Last to Complete Service (LCS). In order to estimate

the sojourn time of a tagged patient in the FJ part, we first compute the patient’s LCS estimators

for the doctor attendance and lab testing stations separately, and then take the maximal value of the

two. This is based on the snapshot principle for FJ networks proved by Nguyen (1993). The total

time of the LCS estimator will be the summation of the LCS estimators for the first station and for

the FJ station.

The 2QL estimator is simply an extension of the commonly used QL estimator (Ibrahim and

Whitt 2009a) for two queues in tandem. As in our model, its only parameters are the queue length

observed at the time of arrival and the total service rate at the station. As described in §4, the 2QL

model in fact reduces the FJ part to a single station, represented by the more loaded station at the

time of the customer arrival to the first station.

The GBR is a tree ensemble model. It starts with a regression tree of a fixed size as the base

learner. At each iteration, a new estimator is added to the model, obtaining a new model (tree), that

attempts to improve the former one. The added estimator is trained to fit the residual of the last

model (i.e., the difference between the model’s predicted values and the actual values). When using

the mean squared error (MSE) loss function, these residuals correspond to the negative gradients

of the loss function, and therefore they define the “steepest descent” direction.

A summary of the results is provided in Table 1. The columns correspond to the FJ part (doctor

attendance and lab testing) and the total sojourn time, for both walking and acute patients. The

top two rows present statistics of the average sojourn time and its standard deviation. The rest

of the rows present the MSE of the different models (in minutes). Note that our model (denoted

by MFJ) and the 2QL model provide estimations for the entire distribution, while the others only

provide a single-point estimation; hence, for “fair” comparison, we present here the MSE with

respect to the expected sojourn times. We consider two variations of the GBR model. In GBR (PA),

the explanatory variables are individual patient attributes set at the time of the customer arrival:

gender, age, means of arrival (independently, by ambulance, etc.), and a set of variables indicating

arrival time (hour, day of week, month). In GBR (PA+MFJ), we add to the patient’s attributes an

additional explanatory variable which is the result of our MFJ model.

It is clear that our model outperforms the LCS estimator and the 2QL estimator, with over 40%

improvement in the MSE compared to the LCS estimator, and approximately 5%–7% improvement

23

Walking Acute

FJ Station Total FJ Station Total

Avg. sojourn time 59.58 87.27 59.64 87.78

Sojourn time STD 36.7 42.08 39.16 43.79

LCS 2409 2945 2833 3354

2QL 1522∗ 1796∗ 1803∗ 2056∗

MFJ 1419∗ 1695∗ 1664∗ 1944∗

GBR (PA) 1300∗ 1676 1516∗ 1848∗

GBR (PA+MFJ) 1278∗ 1558∗ 1507∗ 1802∗

Table 1 Mean squared error (in minutes) of various models in estimating sojourn times in the FJ part and

the total sojourn time. Values marked with ∗ are those for which the difference from the MSE value above is

statistically significant according to the Diebold–Mariano test (Diebold and Mariano 2002).

.

compared to the 2QL estimator. One may argue that the somewhat small improvement in the MSE

compared to the 2QL estimator does not justify the additional computational complexity required

for the MFJ estimator; however, the two estimators might result in very different distributions. In

§4 we discussed the implications of using the 2QL estimator to predict distributions and under

what conditions one could use it instead of the MFJ model. In the next section (5.3), we examine

the accuracy of the two methods in estimating delay distributions in the FJ part.

We observe that the GBR (PA) model reduces the MSE by approximately 9% in the FJ station

and by only 1%–5% in estimating the total sojourn time, compared to our MFJ model. Adding

the mean delay time according to our MFJ model as an additional explanatory variable further

reduces the MSE; the reduction is statistically significant according to the Diebold–Mariano test

for predictive accuracy comparison (Diebold and Mariano 2002).2 This result replicates previous

results (e.g., Ang et al., 2016, Gal et al., 2017), showing that the integration of queueing theory-

based estimators as features of machine learning techniques achieves the best estimation accuracy.

It is important to note that the superiority of the ML method is not surprising. In Chocron

et al. (2021), it was shown that for a simple single-station queue with FCFS priority policy, QT-

based estimators can be compatible with ML methods; however, for more complex systems, ML

estimators outperform QT-based estimators. Be that as it may, QT-based estimators, ours included,

2 Similar results were obtained using linear regression and an XGBoost algorithm (Chen and Guestrin 2016). The results reported
here are the best achieved within the set of learning models that we tried.

24

do not require a learning phase. That is, they can be immediately implemented in any service

system. By contrast, ML methods require a learning phase that is unique to every service system.

One cannot “copy” an ML model from one system to another without having to train the model

again. This requires the preliminary work of collecting enough data, cleaning it, and calculating

relevant features, all of which usually demand a lot of time and effort. In our case study, these ML

techniques yield only a minor improvement, which may not justify the additional effort required

in order to apply these models in other service systems.

5.3. The value of an FJ model

In §4, we explored, qualitatively, the influence of different model structures on the resulting delay

distributions. Here, we use our case study to compare the estimation accuracy of the different

models discussed in §4. We show that if the underlying system dynamic indeed includes an FJ

structure, and therefore synchronization queues, then using simplified models that do not account

for that structure can lead to less accurate delay estimations.

We compare the models’ accuracy in providing a single-point estimation, namely the distribution

mean, for the delay in the FJ part (doctor attendance and laboratory testing). In addition, we put

special emphasis on examining the models’ accuracy in capturing the tail of the distribution, and in

particular, their ability to avoid underestimation. We argue that avoiding underestimation of delays

is more important than avoiding overestimation, due to the asymmetry in people’s reactions to

estimation errors. For example, Efrat-Treister et al. (2020) showed that when actual waiting times

exceed the announced waiting times, ED patients react negatively and tend to be more aggressive

(a reaction that did not happen with overestimations).

Table 2 presents the MSE of the single-point estimation, as well as the models’ accuracy in

capturing the 75th and the 90th percentiles. To this end, we calculated the percentage of patients

in our test set whose sojourn time in the FJ part was less than or equal to the appropriate values of

the 75th and the 90th percentiles, according to each of the models. The closer these percentages of

patients are to 75% and 90%, the better the models capture the distribution tail, and percentages

higher than the percentiles (overestimations) are better than lower (underestimations).

We observe that the MFJ model provides the best estimation for the mean sojourn time in the FJ

part, for both walking and acute patients; the MSE reduction is statistically significant according

to the Diebold–Mariano test (Diebold and Mariano 2002), with respect to the model providing the

least MSE value among all the other models. For acute patients (68% of our test population), the

MFJ model also provides the best performance in capturing the tail of the sojourn-time distribution.

25

Walking Acute

Mean (MSE) 75th % 90th % Mean (MSE) 75th % 90th %

2QL 1522 0.64 0.8 1803 0.72 0.85

tandem-critical 1616 0.60 0.79 1720 0.73 0.87

delay-high 1473 0.76 0.93 1946 0.82 0.93

delay-low 1460 0.73 0.88 1853 0.81 0.91

MFJ 1419 0.69 0.85 1664 0.79 0.89
Table 2 Comparison of different model structures in estimating the mean sojourn times in the FJ part and

in estimating the tail of the sojourn-time distribution.

.

Note that the two models which neglect the FJ structure (2QL and tandem-critical), and thus

overlook the effect of synchronization queues, substantially underestimate the sojourn time at the

FJ part for both walking and acute patients. This is yet another support for the need to account for

FJ structures when present.

Another observation is that for walking patients, the delay-node models outperform the MFJ

model. This may be due to the fact that the ED patients who wait for the two services (doctor

attendance and laboratory testing) only partially represent the actual queue and load in those sta-

tions; the lab processes patients’ samples from the entire hospital, and the doctor may (and usually

does) attend each ED patient more than once. This raises the problem of missing data, and indeed,

one way to handle this is to ignore the queue information and treat such stations as delay nodes.

This idea was implemented successfully for ED staffing problems by Yom-Tov and Mandelbaum

(2014). Our hypothesis is that the missing data problem is less relevant for acute patients due to

their clinical condition which sets them in a higher priority. For example, the doctor may priori-

tize newly arrived acute patients over patients who were already seen. Thus, while the delay-node

models capture the tail of the FJ sojourn-time distribution better when it comes to walking patients,

when considering acute patients, the missing data effect diminishes and therefore an exact model,

such as the MFJ model, outperforms the delay-node models.

5.4. Priority policies

One of the main model assumptions is that each station operates according to an FCFS priority

policy. However, in healthcare systems, particularly in EDs, patients are assigned different priori-

ties according to their medical condition. Since our data does not include priority levels, we used

simulation to examine the influence of having a priority policy on the accuracy of our estimations.

26

We assumed that arrivals follow a non-homogeneous Poisson process, where the time-dependent

arrival rate was taken as the average hourly arrival rate of walking patients according to our data

(April 2014 to August 2016). We ran the simulation for a period of two years (17,520 hours) and

then removed the first and last weeks (any patient arriving at t < 168 hours or t > 17,352 hours),

to allow for a warm-up period and to account for all patients who may have passed lower-priority

patients. We took all scenarios in which k,h1, h2 ∈ {0,1, ...,5}, as these are the relevant queue

lengths according to our case study ED data. We assumed that all priority classes have the same

service rates (which are equal to the average service rates of walking patients, according to our

data: µ0 = 5.5, µ1 = 4.2, µ2 = 6). We also assumed a non-preemptive static priority policy; we

believe this is quite reasonable when focusing on walking patients. The percentage of arriving

patients from each priority level was set according to the parameters presented in Huang et al.

(2015). They focused on triage levels 3 to 5, which include the less severe patients (5 being the

least severe) and are compatible with walking patients. Level 3 patients constituted 10% of the

arriving population, and level 4 and 5 patients constituted 40% and 50%, respectively.

We compared our MFJ model (which does not account for priorities) with LCS estimators (see

§5.2) with and without priorities. The ordinary LCS estimator does not take into account the under-

lying priority policy that is operating in the simulation. It estimates the sojourn time of an arriving

tagged customer as the sojourn time of the last customer who left the service station prior to the

tagged customer’s arrival. By contrast, the LCS estimator with priorities estimates the tagged cus-

tomer’s sojourn time as the sojourn time of the last customer who left the service station from the

same priority level as the tagged customer (in the spirit of Thiongane et al. 2016).

Table 3 presents the MSE of the three models (in minutes) compared to the simulation results.

This includes the total MSE as well as the MSE for each priority class (low, medium, and high).

First, we observe that in all cases, except for high-priority customers in the first station, our MFJ

model outperforms the LCS model with priorities, reducing MSE by 30%–38%. We believe this

is due to the fact that our model accounts for the system’s evolution over time, whereas the LCS

estimator, with or without priorities, cannot capture the changes in queues during a customer’s

sojourn time in the system. The LCS estimator is a snapshot-principle-based estimator. The two

main assumptions of the snapshot principle are that changes in queue lengths are negligible dur-

ing a customer stay in the system, and that the system is operating under an FCFS policy. The

LCS estimator with priorities relaxes the assumption of the FCFS policy, while our MFJ estimator

relaxes the assumption of a “steady state” during a customer stay in the system. We observe that

27

First station FJ station

Low Medium High Total Low Medium High Total

Avg. sojourn time 32.58 20.13 17.01 26.08 71.48 46.32 38.57 58.20

LCS 1763 699 567 1220 8487 4129 3201 6229

LCS with priorities 1831 516 340 1165 8749 2444 1573 5526

MFJ 1244 320 345 787 6134 1526 1037 3793
Table 3 Mean squared error (in minutes) of different models for estimating sojourn times in the first station

and the FJ station, for low-priority (16,625 observations), medium-priority (13,210 observations), and

high-priority customers (3,254 observations).

in this time-varying system, where we have a combined effect of resource queues and synchro-

nization queues, the latter relaxation allows greater improvement. The same results were obtained

when repeating the simulation with high-priority customers, who comprised 50% of arriving cus-

tomers (low priority: 10%, medium priority: 40%). According to Bassamboo and Ibrahim (2021),

the LES estimator performs better in moderately to highly congested systems. The traffic intensity

ρ (average daily arrival rate divided by average service rate) in our simulation, which is based on

our case study ED data, is fairly low at all three stations (up to 0.7), which could explain the poor

results of the LCS estimator compared to our MFJ estimator.

We also observe that considering priorities greatly improves the LCS results for medium- and

high-priority classes. However, for low-priority customers, we see no improvement in the results,

but rather an increase in the MSE by 3%. We argue that this is due to the fact that substantial

changes in the three queue lengths may occur during the sojourn time of low-priority customers.

First, the sojourn time of low-priority customers in the system is much higher than that of cus-

tomers from higher priority classes, as observed in Table 3. Secondly, during the waiting time of

low-priority customers, higher-priority customers may enter the system and prolong the queue in

front of them. In addition, low-priority customers will only be served, one by one, when there are

no higher-priority customers in the system, until the next higher-priority customer arrives. This

process creates batches of customers from the same priority class in the departure process of a

service station. Thus, there could be a considerable time difference between the arrival epoch of a

new low-priority customer and the last service completion of a low-priority customer. Hence, for

low-priority customers, the priority LCS estimator may be based on lagged information.

28

6. Discussion
Our research goal was to develop real-time, state-dependent estimations for delay distributions in

service networks that include FJ structures. The motivation came from healthcare systems that are

known to be complex queueing networks. We developed a recursive formula to estimate sojourn

times in a network with one single-server queue followed by an FJ part with two stations. We

derived an estimation for the sojourn time in the first (single-server) part, the sojourn time in the

second (FJ) part, and the total sojourn time; all three estimations are calculated at the time of a

customer’s arrival to the system and are based on the state of the system in that arrival epoch.

We examined our methodology in a case study of an Israeli ED using unique transaction-level

data. This case study revealed that, although essentially none of our model assumptions hold pre-

cisely, our methodology provides fairly accurate estimations for sojourn-time distributions and

outperforms other commonly used QT-based estimators, such as LCS (a small variation of LES)

and 2QL (an extension of QL to two queues in tandem). Furthermore, we showed that although

machine learning estimation methods may outperform our model estimations, incorporating our

model result as an additional feature for these methods provides the most accurate estimations.

We also showed via simulation that even if a priority policy is in place, our methodology, which

ignores priority, still provides better results than other estimators that do account for it.

We start with a Markovian model but then relax some of the distributional assumptions, provid-

ing a natural extension of our model to include general service times in the single-server station,

and Erlang or hyperexponential service times in the FJ stations. In addition, we explore qualita-

tively different models that either neglect or simplify the FJ structure. While having lower compu-

tational complexity, these models may fail to capture delays that are due to synchronization queues

emerging from the FJ structure. We highlight this trade-off and provide initial modeling guidelines

with regard to the most appropriate model under different scenarios.

The simplified models are one resort to the “curse of dimensionality,” which is common with

the exact analysis approach taken here. That is, computations may become cumbersome if there

are more stations in the FJ part or if queue sizes grow large. Another solution, which is usually

appropriate in large systems that operate in heavy traffic, is to develop delay estimations that are

based on fluid or diffusion approximations. We leave this approach for future research.

References
Ang E, Kwasnick S, Bayati M, Plambeck EL, Aratow M (2016) Accurate emergency department wait time prediction.

Manufacturing & Service Operations Management 18(1):141–156.

29

Armony M, Shimkin N, Whitt W (2009) The impact of delay announcements in many-server queues with abandon-

ment. Operations Research 57(1):66–81.

Baccelli F, Makowski AM, Shwartz A (1989) The fork-join queue and related systems with synchronization con-

straints: Stochastic ordering and computable bounds. Advances in Applied Probability 21(3):629–660.

Bassamboo A, Ibrahim R (2021) A general framework to compare announcement accuracy: Static vs. LES-based

announcement. Management Science 67(7):4191–4208.

Benevento E, Aloini D, Squicciarini N, Dulmin R, Mininno V (2019) Queue-based features for dynamic waiting time

prediction in emergency department. Measuring Business Excellence 23(4):458–471.

Boxma O (1983) The cyclic queue with one general and one exponential server. Advances in Applied Probability

15(4):857–873.

Boxma O, Daduna H (2014) The cyclic queue and the tandem queue. Queueing Systems 77(3):275–295.

Boxma OJ, Daduna H (1990) Sojourn times in queueing networks. Takagi H, ed., Stochastic Analysis of Computer

and Communication Systems, 401–450 (North-Holland Publishing Company, Amsterdam).

Boxma OJ, Koole G, Liu Z (1994) Queueing-theoretic solution methods for models of parallel and distributed systems.

In: Performance Evaluation of Parallel and Distributed Systems—Solution Methods, Proceedings of the Third

QMIPS Workshop, Part 1 (CWI Tract 105, Amsterdam).

Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, 785–794 (ACM).

Chocron E, Feigin PD, Cohen I (2021) Queueing theory or queue mining for delay prediction in multi-class service

systems. Working paper.

Daduna H (1986) Two-stage cyclic queues with nonexponential servers: Steady-state and cyclic time. Operations

Research 34(3):455–459.

Diebold FX, Mariano RS (2002) Comparing predictive accuracy. Journal of Business & Economic Statistics

20(1):134–144.

Dong J, Yom-Tov E, Yom-Tov GB (2019) The impact of delay announcements on hospital network coordination and

waiting times. Management Science 65(5):1969–1994.

Efrat M, Parush A (2017) Personalized information to patients in the emergency department: User centered design and

testing, Production and Operations Management Society (POMS) Conference.

Efrat-Treister D, Moriah H, Rafaeli A (2020) The effect of waiting on aggressive tendencies toward emergency depart-

ment staff: Providing information can help but may also backfire. PloS one 15(1):e0227729.

Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Annals of Statistics 29(5):1189–

1232.

Gal A, Mandelbaum A, Schnitzler F, Senderovich A, Weidlich M (2017) Traveling time prediction in scheduled

transportation with journey segments. Information Systems 64:266–280.

30

Huang J, Carmeli B, Mandelbaum A (2015) Control of patient flow in emergency departments, or multiclass queues

with deadlines and feedback. Operations Research 63(4):892–908.

Ibrahim R (2018) Sharing delay information in service systems: A literature survey. Queueing Systems 89(1–2):49–79.

Ibrahim R, Whitt W (2009a) Real-time delay estimation based on delay history. Manufacturing & Service Operations

Management 11(3):397–415.

Ibrahim R, Whitt W (2009b) Real-time delay estimation in overloaded multiserver queues with abandonments. Man-

agement Science 55(10):1729–1742.

Ibrahim R, Whitt W (2011a) Real-time delay estimation based on delay history in many-server service systems with

time-varying arrivals. Production and Operations Management 20(5):654–667.

Ibrahim R, Whitt W (2011b) Wait-time predictors for customer service systems with time-varying demand and capac-

ity. Operations Research 59(5):1106–1118.

Jouini O, Aksin Z, Dallery Y (2011) Call centers with delay information: Models and insights. Manufacturing &

Service Operations Management 13(4):534–548.

Kerner Y (2008) The conditional distribution of the residual service time in the Mn/G/1 queue. Stochastic Models

24(3):364–375.

Kim C, Agrawala AK (1989) Analysis of the fork-join queue. IEEE Transactions on Computers 38(2):250–255.

Ko SS, Serfozo RF (2004) Response times in M/M/s fork-join networks. Advances in Applied Probability 36(3):854–

871.

Ko SS, Serfozo RF (2008) Sojourn times in G/M/1 fork-join networks. Naval Research Logistics (NRL) 55(5):432–

443.

Maister DH (1984) The psychology of waiting lines. Czepiel JA, Solomon MR, Surprenant CF, eds., The Service

Encounter, 113–123 (Lexington Books, Lexington, MA).

Mandelbaum A, Yechiali U (1983) Optimal entering rules for a customer with wait option at an M/G/1 queue. Man-

agement Science 29(2):174–187.

Mourõo R, Carvalho R, Carvalho R, Ramos GN (2017) Predicting waiting time overflow on bank teller queues. 2017

16th IEEE International Conference on Machine Learning and Applications (ICMLA), 842–847 (IEEE).

Munichor N, Rafaeli A (2007) Numbers or apologies? Customer reactions to telephone waiting time fillers. Journal of

Applied Psychology 92(2):511–518.

Nakibly E (2002) Predicting waiting times in telephone service systems. Master’s thesis, Technion—Israel Institute of

Technology.

Nelson R, Tantawi AN (1988) Approximate analysis of fork/join synchronization in parallel queues. IEEE Transac-

tions on Computers 37(6):739–743.

Nguyen V (1993) Processing networks with parallel and sequential tasks: Heavy traffic analysis and Brownian limits.

The Annals of Applied Probability 3(1):28–55.

31

Pender J, Rand RH, Wesson E (2016) Managing information in queues: the impact of giving delayed information to

customers. Working paper. arXiv preprint arXiv:1610.01972.

Qiu Z, Pérez JF, Harrison PG (2015) Beyond the mean in fork-join queues: Efficient approximation for response-time

tails. Performance Evaluation 91:99–116.

Reiman MI (1982) The heavy traffic diffusion approximation for sojourn times in Jackson networks. Applied

Probability–Computer Science: The Interface, 409–421 (Springer).

Rizk A, Poloczek F, Ciucu F (2015) Computable bounds in fork-join queueing systems. ACM SIGMETRICS Perfor-

mance Evaluation Review, 43(1):335–346.

Sanit-in Y, Saikaew KR (2019) Prediction of waiting time in one stop service. International Journal of Machine

Learning and Computing 9(3):322–327.

Senderovich A, Rogge-Solti A, Gal A, Mendling J, Mandelbaum A, Kadish S, Bunnell CA (2016) Data-driven per-

formance analysis of scheduled processes. International Conference on Business Process Management, 35–52

(Springer).

Senderovich A, Weidlich M, Gal A, Mandelbaum A (2014) Queue mining–Predicting delays in service processes.

International Conference on Advanced Information Systems Engineering, 42–57 (Springer).

Senderovich A, Weidlich M, Gal A, Mandelbaum A (2015) Queue mining for delay prediction in multi-class service

processes. Information Systems 53:278–295.

Stadje W (1996) Non-stationary waiting times in a closed exponential tandem queue. Queueing Systems 22(1–2):65–

77.

Sun Y, Teow KL, Heng BH, Ooi CK, Tay SY (2012) Real-time prediction of waiting time in the emergency department,

using quantile regression. Annals of Emergency Medicine 60(3):299–308.

Thiongane M, Chan W, L’Ecuyer P (2016) New history-based delay predictors for service systems. Winter Simulation

Conference.

Thiongane M, Chan W, L’Ecuyer P (2020) Delay predictors in multi-skill call centers: An empirical comparison with

real data. ICORES, 100–108.

Thomasian A (2014) Analysis of fork/join and related queueing systems. ACM Computing Surveys (CSUR) 47(2):1–

71.

van Leeuwaarden JSH, Mathijsen BWJ, Sloothaak F, Yom-Tov GB (2017) The restricted Erlang-R queue: Finite-size

effects in service systems with returning customers, working paper.

Whitt W (1999) Predicting queueing delays. Management Science 45(6):870–888.

Witkovský V (2016) Numerical inversion of a characteristic function: An alternative tool to form the probability

distribution of output quantity in linear measurement models. Acta IMEKO 5(3):32–44.

Yom-Tov GB, Mandelbaum A (2014) Erlang-R: A time-varying queue with reentrant customers, in support of health-

care staffing. Manufacturing & Service Operations Management 16(2):283–299.

32

Yom-Tov GB, Rafaeli A, Westphal M (2017) An empirical study of customer patience and abandonment in online

customer service, working paper.

Yu Q, Allon G, Bassamboo A (2016) How do delay announcements shape customer behavior? An empirical study.

Management Science 63(1):1–20.

Zhang Z (1990) Analytical results for waiting time and system size distributions in two parallel queueing systems.

SIAM Journal on Applied Mathematics 50(4):1176–1193.

ec1

Technical notes and model extensions

EC.1. Recursive formula calculation

The recursive formula presented in §2, Equation 3, can be easily and efficiently calculated if written

in compact matrix form. We define the following two matrices. The first is Ψ̄k−1,h1+1,h2+1, given

by

Ψ̄k−1,h1+1,h2+1 =

Ψk−1,h1+1,h2+1 Ψk−1,h1+1,h2 . . . Ψk−1,h1+1,1

Ψk−1,h1,h2+1 Ψk−1,h1,h2 . . . Ψk−1,h1,1
...

...

Ψk−1,1,h2+1 Ψk−1,1,h2 . . . Ψk−1,1,1

 ,

and its dimensions are (h1 + 1)× (h2 + 1). The second matrix, Φh1,h2 , is defined as

Φh1,h2 =

a(0,0) a(1,0) . . . a(h1− 1,0) c(h1,0)

a(0,1) a(1,1) . . . a(h1− 1,1) c(h1,1)
...

...
...

a(0, h2− 1) a(1, h2− 1) . . . a(h1− 1, h2− 1) c(h1, h2− 1)

b(0, h2) b(1, h2) . . . b(h1− 1, h2) d(h1, h2)

using the notation in §3, and its dimensions are (h2 + 1)× (h1 + 1). We now observe that

Ψk,h1,h2 = trace

(
Ψ̄k−1,h1+1,h2+1 ·Φh1,h2

)
.

If there are k customers at the first station, h1 customers at the UFJ station, and h2 at the LFJ

station, by the time the tagged customer completes service at the first station there could be up

to h1 + k customers at the UFJ station and up to h2 + k customers at the LFJ station. Thus, to

recursively compute Ψk,h1,h2 , we start with the (h1 + k)× (h2 + k) matrix:

Ψ̄0,h1+k,h2+k =

Ψ0,h1+k,h2+k Ψ0,h1+k,h2+k−1 . . . Ψ0,h1+k,1

Ψ0,h1+k−1,h2+k Ψ0,h1+k−1,h2+k−1 . . . Ψ0,h1+k−1,1
...

...

Ψ0,1,h2+k Ψ0,1,h2+k−1 . . . Ψ0,1,1

 ;

ec2

each of its elements can be easily computed using Equation (6). As a basis for all iterations, it will

be useful to define the following four (h1 + k− 1)× (h2 + k− 1) matrices:

Ah1+k,h2+k =

a(0,0) a(0,1) . . . a(0, h2 + k− 2)

a(1,0) a(1,1) . . . a(1, h2 + k− 2)
...

...

a(h1 + k− 2,0) a(h1 + k− 2,1) . . . a(h1 + k− 2, h2 + k− 2)

 ,

Bh1+k,h2+k =

b(0,1) b(0,2) . . . b(0, h2 + k− 1)

b(1,1) b(1,2) . . . b(1, h2 + k− 1)
...

...

b(h1 + k− 2,1) b(h1 + k− 2,2) . . . b(h1 + k− 2, h2 + k− 1)

 ,

Ch1+k,h2+k =

c(1,0) c(1,1) . . . c(1, h2 + k− 2)

c(2,0) c(2,1) . . . c(2, h2 + k− 2)
...

...

c(h1 + k− 1,0) c(h1 + k− 1,1) . . . c(h1 + k− 1, h2 + k− 2)

 ,

Dh1+k,h2+k =

d(1,1) d(1,2) . . . d(1, h2 + k− 1)

d(2,1) d(2,2) . . . d(2, h2 + k− 1)
...

...

d(h1 + k− 1,1) d(h1 + k− 1,2) . . . d(h1 + k− 1, h2 + k− 1)

 .

The elements of these matrices are computed by Equation (4).

We shall also use the following notation: let X be a matrix; then X[l :m,n : p] is the resulting

matrix by taking all the elements of X in rows l through m, and columns n through p.

In the first iteration, we compute the matrix Ψ̄1,h1+k−1,h2+k−1. Each of its elements,

Ψ1,m,n, ∀1≤m≤ h1 + k− 1, 1≤ n≤ h2 + k− 1,

will be calculated as follows:

Ψ1,m,n = trace

(
Ψ̄0,m+1,n+1 ·Φm,n

)
,

where

Ψ̄0,m+1,n+1 = Ψ̄0,h1+k,h2+k

[
h1 + k−m : h1 + k , h2 + k−n : h2 + k

]
,

ec3

and Φm,n is composed of the matrices A, B, C, and D, in the following manner:

Φm,n =

A[1 :m,1 : n]T C[m,1 : n]T

B[1 :m,n]T D[m,n]

 .
In the second iteration, we calculate Ψ̄2,h1+k−2,h2+k−2. Each of its elements,

Ψ2,m,n, ∀1≤m≤ h1 + k− 2, 1≤ n≤ h2 + k− 2,

can be calculated as follows:

Ψ2,m,n = trace

(
Ψ̄1,m+1,n+1 ·Φm,n

)
.

We continue this process, until we reach the kth iteration, in which the desired LST will be

Ψk,h1,h2(w0,wFJ)≡Ψk,h1,h2 = trace

(
Ψ̄k−1,h1+1,h2+1 ·Φh1,h2

)
.

EC.2. General service times at the first station
In this appendix, we provide a formulation for estimating sojourn times in the FJ network when

service time at the first station has a general distribution.

Assume that a tagged customer arrives to the first station and finds k customers there. Let Rk be

the remaining service duration of the customer being served at the first station at the time of that

tagged customer’s arrival (i.e., given that there were k customers in the first queue). Expressions

for the expected value of Rk and for its LST are given in Mandelbaum and Yechiali (1983) and

Kerner (2008).

Let B (·) be the cumulative distribution function of service duration at the first station (i.e.,

S0|k = 0∼B). As before, we define Ψk,h1,h2(w0,wFJ) as the joint Laplace–Stieltjes transform of

S0 and SFJ given k customers at the first station, h1 customers at the UFJ station, and h2 customers

at the LFJ station.

Ψk,h1,h2(w0,wFJ)≡Ek,h1,h2
(
e−w0S0−wFJSFJ

)
=

∞∫
0

e−w0tXk,h1,h2 dP (Rk < t)

=

∞∫
0

e−w0t

[
h1−1∑
r1=0

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,h2−r2+1(w0,wFJ)

+

h1−1∑
r1=0

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,1(w0,wFJ)

ec4

+
∞∑

r1=h1

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,h2−r2+1(w0,wFJ)

+
∞∑

r1=h1

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,1(w0,wFJ)

]
dP (Rk < t) .

Here, Ψl,m,n (w0,wFJ) is the LST of the joint distribution of the tagged customer’s sojourn time at

the first station and at the FJ part, given that a new service is starting in the first station and that in

this epoch the tagged customer is behind l customers at the first station, and sees m customers at

the UFJ station, and n customers at the LFJ station. We now denote

a(r1, r2,w0) =

∞∫
0

e−(w0+µ1+µ2)t
(µ1t)

r1

r1!

(µ2t)
r2

r2!
dB(t),

b(r1, h2,w0) =

∞∫
0

e−(w0+µ1+µ2)t

∞∑
r2=h2

(µ1t)
r1

r1!

(µ2t)
r2

r2!
dB(t),

c(h1, r2,w0) =
∞∑

r1=h1

a(r1, r2,w0),

d(h1, h2,w0) =
∞∑

r1=h1

b(r1, h2,w0).

Let X be a Poisson process with rate µ1, and let Y be a Poisson process with rate µ2. The above

expressions are reduced to

a(r1, r2,w0) =

∞∫
0

e−w0tP (X(t) = r1, Y (t) = r2) dB(t),

b(r1, h2,w0) =

∞∫
0

e−w0tP (X(t) = r1, Y (t)≥ h2) dB(t),

c(h1, r2,w0) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t) = r2) dB(t),

d(h1, h2,w0) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t)≥ h2) dB(t).

With these new notations, the recursive formula for calculating Ψk,h1,h2(w0,wFJ) presented in

Equation (3) will not change, nor does the rest of the analysis. There will be only minor differences

ec5

in the formulas of the boundary conditions. Let β(·) be the LST of the specified service dura-

tion (which can now be general). Thus, the boundary conditions will now be: Ψ0,0,0(w0,wFJ) =

β(w0)Z1,1(wFJ). In the same manner, we get

Ψk,0,0(w0,wFJ) = Ψk−1,1,1(w0,wFJ)β(w0).

We shall also define (using a shorthand notation in which we omit w0):

a∗(k, r1, r2) =

∞∫
0

e−w0tP (X(t) = r1, Y (t) = r2) dP (Rk < t) ,

b∗(k, r1, h2) =

∞∫
0

e−w0tP (X(t) = r1, Y (t)≥ h2) dP (Rk < t) ,

c∗(k,h1, r2) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t) = r2) dP (Rk < t) ,

d∗(k,h1, h2) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t)≥ h2) dP (Rk < t) .

Hence, define

Φ∗k,m,n =

a∗(k,0,0) a∗(k,1,0) . . . a∗(k,m− 1,0) c∗(k,m,0)

a∗(k,0,1) a∗(k,1,1) . . . a∗(k,m− 1,1) c∗(k,m,1)
...

...
...

a∗(k,0, n− 1) a∗(k,1, n− 1) . . . a∗(k,m− 1, n− 1) c∗(k,m,n− 1)

b∗(k,0, n) b∗(k,1, n) . . . b∗(k,m− 1, n) d∗(k,m,n)

.

As before, for 1≤ l≤ k− 1,

Ψl,m,n = trace
(
Ψ̄l−1,m+1,n+1 ·Φm,n

)
,

and

Ψk,h1,h2(w0,wFJ)≡Ek,h1,h2
(
e−w0S0−wFJSFJ

)
= trace

(
Ψ̄k−1,h1+1,h2+1 ·Φ∗k,h1,h2

)
.

EC.3. General service durations in the FJ stations
In §2, we assumed that service durations in all three stations of the model are exponential. In

Appendix EC.2, we partially relaxed this assumption, considering general service durations in

ec6

the first station. Here, we provide further relaxation of this assumption by allowing Erlang and

hyperexponential service durations in the FJ stations. We note that the Erlang distribution can be

used when the true service durations (according to data) have a coefficient of variation (CV) that

is less than 1, while the hyperexponential service duration is useful when the CV is greater than

1. We start by analyzing the case of service durations with an Erlang distribution. For simplicity,

we assume that service durations in the UFJ station have an Erlang (m,µ1) distribution, while the

LFJ station service durations are exponential with rate µ2, and the first station’s service durations

are also exponential with rate µ0 (the case where both FJ stations have an Erlang distribution

immediately follows and hence is omitted here).

Assume that a tagged customer arrives to the first station and finds k customers at the first station,

h1 customers at the UFJ, and h2 customers at the LFJ, where the customer in service in the UFJ is

in the j ∈ {1, ...,m} service phase (we believe that it is reasonable to assume that once a customer’s

service starts, it is known in which service phase they are at all times). From the memoryless

property of the exponential distribution, this means that the customer in service in the UFJ station

will need to completem−j+1 exponential phases in order to leave this station. Thus, at the arrival

time of the tagged customer to the first station, the total number of service phases to be conducted,

that is, that are already in the buffer of the UFJ server, is (h1− 1)m+ (m− j+ 1) = h1m− j+ 1.

We define

Ψk,h1m−j+1,h2(w0,wFJ)≡Ek,h1m−j+1,h2

[
e−w0S0−wFJSFJ

]
=

∞∫
0

e−w0tXk,h1m−j+1,h2µ0e
−µ0t dt,

(EC.1)

where Xk,h1m−j+1,h2 is given by

Xk,h1m−j+1,h2 =

h1m−j∑
r1=0

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1m+(m−j+1)−r1,h2−r2+1(w0,wFJ)

+

h1m−j∑
r1=0

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1m+(m−j+1)−r1,1(w0,wFJ)

+
∞∑

r1=h1m−j+1

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,m,h2−r2+1(w0,wFJ)

+
∞∑

r1=h1m−j+1

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,m,1(w0,wFJ). (EC.2)

ec7

Using the following notation (and a shorthand notation in which we omit the w0, wFJ), we get

a(r1, r2)≡
∞∫
0

e−(w0+µ1+µ2)t
(µ1t)

r1

r1!

(µ2t)
r2

r2!
µ0e

−µ0t dt,

b(r1, h2)≡
∞∑

r2=h2

a(r1, r2) =

∞∫
0

e−(w0+µ1+µ2)t

∞∑
r2=h2

(µ1t)
r1

r1!

(µ2t)
r2

r2!
µ0e

−µ0t dt,

c(h1m− j+ 1, r2)≡
∞∑

r1=h1m−j+1

a(r1, r2),

d(h1m− j+ 1, h2)≡
∞∑

r1=h1m−j+1

∞∑
r2=h2

a(r1, r2),

and the recursive formula for Ψk,h1m−j+1,h2 , given by Equations (EC.1) and (EC.2) (for the case

where k,h1, h2 > 0), becomes

Ψk,h1m−j+1,h2 =

h1m−j∑
r1=0

h2−1∑
r2=0

Ψk−1,h1m+(m−j+1)−r1,h2−r2+1 · a(r1, r2)

+

h1m−j∑
r1=0

Ψk−1,h1m+(m−j+1)−r1,1 · b(r1, h2)

+

h2−1∑
r2=0

Ψk−1,m,h2−r2+1 · c(h1m− j+ 1, r2) + Ψk−1,m,1 · d(h1m− j+ 1, h2).

(EC.3)

We now consider the case of hyperexponential service durations in the UFJ. As before, the case

where both FJ stations have a hyperexponential service durations, or where one FJ station has

Erlang service durations and the other has hyperexponential service durations, are an immediate

extension, and hence are omitted here. Assume that in the UFJ station, each customer service is

Exp (µ1
1) with probability p1, or Exp (µ2

1) with probability p2 = 1− p1. We also assume that once

a customer starts to receive service in the UFJ station, we know the type of their service duration

(that is, whether it is with rate µ1
1 or with rate µ2

1). We shall denote customers having an Exp (µi1)

service duration as type i customers, where i= 1,2.

A tagged customer entering the first single-server station observes the three queue lengths and

the type of the customer in service in the UFJ station. Let Ni(t) be the number of service comple-

tions at the UFJ station given that the customer in service in the UFJ station is of type i= 1,2. Let

Ai denote the event: the (r1 + 1)th customer at the UFJ station is of type i = 1,2, and let ACurr
i

ec8

denote the event: the current customer in service in the first station will be of type i= 1,2 on arrival

to service at the UFJ station. We can now define

Ψk,h1,h2,i(w0,wFJ)≡Ek,h1,h2,i
[
e−w0S0−wFJSFJ

]
=

∞∫
0

e−w0tXk,h1,h2,iµ0e
−µ0t dt, (EC.4)

where Xk,h1,h2,i is given by

Xk,h1,h2,i =

h1−1∑
r1=0

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

2∑
j=1

P (Ni(t) = r1|Aj)pjΨk−1,h1−r1+1,h2−r2+1,j(w0,wFJ)

+

h1−1∑
r1=0

∞∑
r2=h2

e−µ2t
(µ2t)

r2

r2!

2∑
j=1

P (Ni(t) = r1|Aj)pjΨk−1,h1−r1+1,1,j(w0,wFJ)

+

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

2∑
j=1

P
(
Ni(t)≥ h1|ACurr

j

)
pjΨk−1,1,h2−r2+1,j(w0,wFJ)

+
∞∑

r2=h2

e−µ2t
(µ2t)

r2

r2!

2∑
j=1

P
(
Ni(t)≥ h1|ACurr

j

)
pjΨk−1,1,1,j(w0,wFJ).

It is left to compute P (Ni(t) = r1|Aj) and P
(
Ni(t)≥ h1|ACurr

j

)
, where i, j = 1,2. To do so,

we define the events: Cn
l,i as there are l customers of type i among the first n customers at the UFJ

station, i= 1,2, l= 1, ..., n, and n= 1, ..., h1− 1. For simplicity, we denote ic := 3− i. Therefore,

for r1 > 0,

P (Ni(t) = r1|Aj) =

r1∑
l=1

P
(
Ni(t) = r1|Cr1

l,i ,Aj

)
P
(
Cr1
l,ic |Aj

)
=

r1∑
l=1

P
(
Ni(t) = r1|Cr1

l,i ,Aj

)(r1− 1

l− 1

)
pl−1i (1− pi)r1−l ,

while for l < r1,

P
(
Ni(t) = r1|Cr1

l,i ,Aj

)
=

t∫
s=0

t−s∫
u=0

(µi1)
l
sl−1e−µ

i
1s

(l− 1)!

(
µi

c

1

)r1−l ur1−l−1e−µic1 u
(r1− l− 1)!

e−µ
j
1(t−(s+u)) duds.

This formulation is derived from conditioning on the case where the service of the l type i cus-

tomers takes exactly s units of time; the service of the (r1− l) type i customers takes exactly u

time units, and the service time of the (r1 + 1)th type j customer exceeds t− (s+ u) time units.

In the case where r1 > 0 and l= r1, we get

P
(
Ni(t) = r1|Cr1

l,i ,Aj

)
=

t∫
s=0

(µi1)
r1 sr1−1e−µ

i
1s

(r1− 1)!
e−µ

j
1(t−s) ds,

ec9

while in the case where r1 = 0, we simply get

P (Ni(t) = 0|Aj) = e−µ
i
1t.

In the same manner,

P
(
Ni(t)≥ h1|ACurr

j

)
=

h1∑
l=1

P
(
Ni(t)≥ h1|Ch1

l,i ,A
Curr
j

)
P
(
Ch1
l,i |A

Curr
j

)
=

h1∑
l=1

P
(
Ni(t)≥ h1|Ch1

l,i

)(h1− 1

l− 1

)
pl−1i (1− pi)h1−l ,

while, for l < h1,

P
(
Ni(t)≥ h1|Ch1

l,i

)
=

t∫
s=0

t−s∫
u=0

(µi1)
l
sl−1e−µ

i
1s

(l− 1)!

(
µi

c

1

)h1−l uh1−l−1e−µic1 u
(h1− l− 1)!

duds,

and for l= h1,

P
(
Ni(t)≥ h1|Ch1

l,i

)
=

t∫
s=0

(µi1)
h1 sh1−1e−µ

i
1s

(h1− 1)!
ds.

EC.4. Fork-join with delay node
We consider a model with one single-server queue (with either exponential or general service time

distribution), followed by an FJ part that consists of one single- or multiple-server queue with

exponentially distributed service durations and one infinite-server queue with some general service

durations. We denote the CDF of this distribution by G(·). Assuming that the delay node (that is,

the infinite-server queue) is the UFJ station, we get, as in the model of Boxma and Daduna (2014),

that the joint LST of the sojourn times in the first station and in the FJ part is given by the following

recursive formula:

Ψk,h2(w0,wFJ) =

∞∫
0

e−w0t

{
h2−1∑
l=0

e−µ2t
(µ2t)

l

l!
Ψk−1,h2−l+1(w0,wFJ)+

∞∑
l=h2

e−µ2t
(µ2t)

l

l!
Ψk−1,1(w0,wFJ)

}
dB(t).

However,

Ψ0,h2(w0,wFJ) =

∞∫
0

e−w0t

{
h2−1∑
l=0

e−µ2t
(µ2t)

l

l!
Zh2−l+1(wFJ) +

∞∑
l=h2

e−µ2t
(µ2t)

l

l!
Z1(wFJ)

}
dB(t),

and

Ψ0,0(w0,wFJ) = β(w0)Z1(wFJ).

ec10

Here β(·) is the LST of the general service times in the first station, and Zx(wFJ) is the LST of

the maximum of two independent random variables, one with general distribution (corresponding

to the sojourn time in the delay node) and one with Erlang distribution (corresponding to the

sojourn time of a customer entering a Markovian multiple/single-server queue with x customers

already there). Hence

Zx(wFJ)≡Ex
(
e−wFJSFJ

)
=

∞∫
0

e−wFJ t dFSFJ |x(t),

where

FSFJ |x(t) = P (SFJ ≤ t|h2 = x) = P (S1 ≤ t, S2 ≤ t|h2 = x)

= P (S2 ≤ t|h2 = x)P (S1 ≤ t) =

(
1−

x−1∑
m=0

e−µ2t
(µ2t)

m

m!

)
G(t).

EC.5. Service time estimation
In order to check the influence of queue length on service rates, we first need to evaluate service

durations. Our data includes a single timestamp for each patient’s activity, which is assumed to

be the activity completion time. We do not have data on activity starting times; hence, estimations

for activity durations were needed. In the ED examined, walking and acute patients are treated by

different doctors and nurses. Thus, in order to calculate service rates at the nurse attendance station

and at the doctor attendance station, we separated the population into walking patients and acute

patients. We did not make this separation when estimating service rates at the lab testing station as

it provides services to all types of patients.

To estimate service rates, we essentially estimated the service duration for each patient and then

inverted the average service duration to get the desired service rate. We explain our service duration

estimation methodology for nurse attendance. Note that all patients’ first activity in the ED is

administrative reception and the second is nurse attendance. Let Patient x be our tagged customer,

and let Patient y be the last patient to go through nurse attendance prior to Patient x. We distinguish

between two cases; see Figure EC.1 for illustration. In Case 1, Patient x’s reception timestamp

was before Patient y’s nurse attendance timestamp. In this case, when Patient x arrived to the

station, the nurse was busy; hence, Patient x’s service duration (at the nurse attendance station)

will be “Patient x’s nurse attendance timestamp” minus “Patient y’s nurse attendance timestamp.”

Otherwise, Case 2 applies, in which the nurse is assumed to be idle. In this case, Patient x’s service

duration (at the nurse attendance station) will be “Patient x’s nurse attendance timestamp” minus

“Patient x’s reception timestamp.”

ec11

Figure EC.1 Estimating service duration, an example.

	Introduction
	Goals and main contributions
	Literature review
	Organization

	The fork-join network model
	Laplace–Stieltjes transform computation
	Boundary conditions
	General service durations

	Guidelines for modeling: complexity vs. accuracy
	``All models are wrong, but some are useful" (George Box)
	Case study
	Point estimations
	The value of an FJ model
	Priority policies

	Discussion
	Recursive formula calculation
	General service times at the first station
	General service durations in the FJ stations
	Fork-join with delay node
	Service time estimation

