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Problem definition: Previous research has shown that early discharge of patients may hurt their medical

outcomes. However, in many cases the “optimal” length of stay (LOS) and the best location for treatment

of the patient are not obvious. A case in point is hematology patients, for whom these are critical decisions.

Patients with hematological malignancies are susceptible to life-threatening infections after chemotherapy.

Sending these patients home early minimizes infection risk, while keeping them longer for hospital observation

minimizes mortality risks if an infection occurs. We develop LOS optimization models for hematology patients

that balance the risks of patient infection and mortality.

Methodology/results: We develop a Markov decision process formulation to explore the impact of the

infection and mortality risks on the optimal LOS from a single-patient perspective. We further consider the

social optimization problem in which capacity constraints limit the ability of hospitals to keep patients for

the entirety of their optimal LOS. Using fluid models, we find that the optimal solution takes the form of

a two-threshold policy. This policy may block some patients and immediately route them to home care,

or speed up some patients LOS and send them to be home-cared early after an observation period at the

hospital.

Managerial implications: Physicians can use our model to determine a personalised optimal LOS for

patients according to their infection and mortality risk characteristics. Furthermore, they can adjust that

decision according to the current hospital load. In a case study, we show that around 75% of the patient

population need some observation period. If the hospital is overloaded, using a speedup only policy is optimal

for 90% of the patient types; applying it to all patient types increases overall mortality risk by 0.5%.

1. Introduction

Cancer is one of the leading causes of death in the US. In addition to the enormous toll of cancer

treatment on patients’ health, the costs associated with such treatment are significant: according

to AHRQ (2014), $87.8 billion was spent in 2014 in the US on cancer-related healthcare, with

27% spent on hospital inpatient stays. Indeed, cancer inpatients incur higher total hospital costs

and longer length of stay (LOS) compared to non-cancer inpatients (Suda et al. 2006). Cancer

patients are treated at the hospital for the disease itself as well as its potential complications.
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For example, cancer inpatients are more susceptible to healthcare-associated infections (HAI) than

non-cancer inpatients (Cornejo-Juárez et al. 2016). These infections increase patients’ LOS and

mortality. Mortality risks following an infection are so high for some types of cancer (e.g., acute

leukemia) that patients may stay at the hospital just for the sake of being monitored to allow for

a quick response in case an infection occurs (Carmen et al. 2019). Thus, a patient “optimal” LOS

is a decision that depends on infection and mortality risks, among other factors. It is therefore

important to understand the considerations associated with the LOS decision (or, put differently,

the decision of when to send a patient home), especially for cancer patients.

Most of the current operational literature assumes that, everything else being equal, it is better

to keep a patient at the hospital for as long as is medically justified. In particular, in the absence

of cost considerations or capacity constraints, there should be no rush to send a patient home. One

critical consideration that is often absent from these discussions is the risk of a patient developing

an infection while at the hospital. According to Magill et al. (2018), in 2015, 3.2% of hospitalized

patients developed HAI. This suggests that there is an important added benefit to sending a patient

home early that is beyond cost or capacity savings.

Focusing on the question of when to send a patient home is closely related to recent trends in

patient care of moving treatments out of the hospital and into outpatient clinics or patients’ homes

(van Tiel et al. 2005), given that both settings allow for physician and nurse visitations as well

as various tests. These solutions have been shown to be safe for some patient populations (van

Tiel et al. 2005); however, for appropriate implementation, one needs to consider the risks and

benefits of the hospital versus out-of-hospital alternatives with respect to each individual patient.

In this work, we develop a systematic approach that takes these factors and others into account

to determine optimal patient length of stay, shedding light on how in-hospital and home care

observations should be combined.

Our work builds on a recent empirical study (Carmen et al. 2019) conducted in a hematology

ward (HW) of an Israeli hospital that indicates that the risk of developing an infection at the

hospital is greater than the risk of developing an infection at home, and that both risks change

over time. This is illustrated in Figure 1(a). On the flip side, provided that a patient has developed

an infection, the survival rates are higher if the infection has occurred at the hospital due to the

proximity of adequate care (see Figure 1(b)). In light of this tradeoff we are interested in gaining

insight into the decision of when to send a patient home based on their location-dependent infection

hazard rate and mortality risk. What makes this decision even more challenging is that the shape of

the time-to-infection hazard rate is dependent upon patient-specific factors (such as their specific

disease), as is illustrated in Figure 1(c). As argued above, due to the tradeoff between infection
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Figure 1 Infection and Mortality Hazard Rate Functions (Carmen et al. 2019) (Acute Leukemia (AL), Chronic

Leukemia (CL), Lymphoma (L), and Multiple Myeloma (MM))

and mortality risks, this decision is relevant even in the absence of cost considerations or capacity

constraints. Thus, we examine both the uncapacitated and the capacitated cases.

In the uncapacitated case (§3) our focus is on the individual patient assuming that the interaction

between patients is minimal. We formulate the problem of choosing when to send a patient home as

a Markov decision process (MDP) with the objective of maximizing total expected survival reward

minus hospitalization cost. We find that the optimal policy is not necessarily of a threshold type.

Nevertheless, under the realistic assumption that once a patient is sent home she will not be sent

back to the hospital unless an infection ensues, any deterministic policy is effectively of a threshold

type. Indeed, we make this assumption. Interestingly, even if the hospitalization cost is zero, this

effective threshold may imply sending the patient home earlier than the maximal time allowed in

order to reduce infection risk. Surprisingly, we find that the effective threshold is not monotone in

the at-home infection hazard rate.

Turning our attention to the capacitated case (§4), the first-order question to address is how

much capacity is needed to handle the system demand. This is equivalent to asking what is the

system’s offered load, i.e., what is the expected number of patients in the ward if capacity was

unlimited. Unfortunately, in practice, due to high costs stemming from the fact that these patients

need isolated rooms during treatment and highly proficient medical staff, and due to the large

increase in demand in recent years stemming from improvements in treatment and patient survival

(LLSC 2016), the system’s capacity is typically not sufficient to handle all of this offered load. For

example, data from the Technion SEELab show that the hematology unit at the Rambam Medical

Center (a large tertiary hospital in Israel) has an average of 97% occupancy. It is therefore critical

to consider systems with limited capacity and to come up with rules that determine which patients

to send home and what is the best time to do so.
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To address the question of offered load, note that traditionally studies on offered load in queueing

systems take service time as exogenous (Whitt 2013). For example, for a stationary multiserver

G/G/N queue the offered load is equal to the arrival rate times the expected service time. What

makes our setting unique is that the service time here is a result of an optimization, determined as

the optimal hospital length of stay and is an output of the MDP we formulated for the uncapacitated

case. Moreover, the offered load can be adjusted as needed by changing the time that patients are

sent home.

The optimization of the timing of sending patients home given an overloaded system addresses

some important questions. Clearly, the optimal thing to do, if this was possible, would be to send

every patient home at the optimal time prescribed by the analysis of the uncapacitated case. But

given that the system does not have sufficient capacity to handle all of the demand, would it be best

to use an equitable policy that sends everyone home earlier than the optimal time? Or would it be

better to send some patients home at the optimal time while sending the rest of the patients home

right away? Or would a much more complex policy be needed, with multiple thresholds applied

to multiple groups of patients? We find that while the universe of possible policies is large, the

capacitated problem reduces to the much simpler problem of dividing the patient population into

up to two groups, with each group having its own threshold of when to send its patients home. We

further explore the specifics of this two-class threshold policy as it applies to certain empirically

driven risk functions.

Using a case study (§5) that is based on real patient data, we demonstrate how optimal LOS

varies with patient characteristics and suggest that 75% of the patient population needs some

observation period. We then examine how patient-discharge policies change if capacity constraints

apply. Finally, we show that a variety of two-threshold policies should be used for some patient

groups, but that a single-threshold speedup is by far the most common one.

2. Literature Review

Our paper is related to several research streams: optimization of medical decisions, optimization

of patient flow and resource utilization, and asymptotic approximations of queueing systems.

Our research is motivated by cancer treatment. According to the World Health Organiza-

tion, “Cancer is the second leading cause of death globally, and is responsible for an esti-

mated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer” (https:

//www.who.int/news-room/fact-sheets/detail/cancer). Within the various types of cancer,

patients with hematological malignancies are known to be highly susceptible to infections, since the

disease and/or therapy significantly weaken their immune system, leading to considerable infection-

related mortality (Cornely et al. 2015, Halfdanarson et al. 2017, Taccone et al. 2009). While the

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
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past decade has witnessed significant advances in treatment strategies for hematological cancers,

prevention of infections and adequate treatment for infected patients still pose a major challenge.

In a large retrospective study of more than 41,000 cancer patients admitted to the hospital due to

suspected infection, mortality rates among those who were treated for leukemia, lymphoma, and

myeloma were as high as 14.3%, 8.9%, and 8.2%, respectively (Kuderer et al. 2006).

Our paper is inspired by empirical evidence accumulated in recent years on how the physical

location of treatment or observation impacts health outcomes. Specifically, Carmen et al. (2019)

showed that the location choice for post-treatment observation (dedicated ward, general ward

(GW), or home) impacts infection and mortality among hematology patients. Chan et al. (2019)

showed that the level of treatment of critical patients, as indicated by the type of ICU, impacts

mortality. And, in a broader view, Song et al. (2020) showed that patient off-placement impacts

LOS, mortality, and readmission. Overall, these studies indicate that choosing the right location

is a key factor in treatment outcomes.

Patients’ length of stay has been shown to be connected with health outcomes as well. Reducing

LOS (speedup) in response to high load was shown to increase mortality of cardiothoracic surgery

patients (Kc and Terwiesch 2009), and increase ICU patients’ readmission (Kc and Terwiesch

2012). In contrast, increasing LOS was shown to reduce mortality of patients with acute myocardial

infarction (Bartel et al. 2020), indicating that the influence of LOS on health outcomes is intricate.

This raises the need to explicitly include this influence in models designed to optimize LOS. For

example, Chan et al. (2012) formulated such a model to support decisions to discharge ICU patients

to a step-down unit. More recently, a hospital-wide optimization method was proposed by Shi et al.

(2020) to support patient-discharge decisions.

Most of the literature up to now has assumed that the best location for patients is at the hospital,

and that early discharges are driven by limited capacity or high hospitalization cost. Our situation

is different. In the hematology case, there is a delicate tradeoff between location, LOS, and health,

due to the reduced risk of developing an infection at home. Therefore, discharge decisions are not

driven only by capacity and cost considerations.

Patient early discharge (speedup) is one way for hospitals to deal with over-congestion. An

alternative policy is to block patients from entering the hospital. For example, for ED services, this

can be done by applying ambulance diversion (Allon et al. 2013) or, more subtly, by providing wait

time information (Dong et al. 2019b). In our context, one can view the decision of sending a patient

home immediately after treatment as a form of service denial. Finally, some literature explicitly

deals with the tradeoff of admission control versus speedup. This tradeoff has been studied in the

Markovian setting of a single-server queueing system (Adusumilli and Hasenbein 2010, Ata and

Shneorson 2006), a multi-server queueing system (Lee and Kulkarni 2014, Yom-Tov and Chan
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2021), and a multi-class queueing system (Ulukus et al. 2011, Turhan et al. 2012). Here, in our

capacitated model, we generalize the distributional assumptions, by considering general service

times and general risk functions in a multi-server setting. Indeed, allocating limited capacity when

patients health condition may change dynamically over time was considered in the context of

community-based treatments of chronic diseases (Deo et al. 2013), mass-casualty events (Mills et al.

2013) and hospital treatment (Nambiar et al. 2020, Ouyang et al. 2020).

Mathematically, our analysis of the capacitated model builds on the literature of heavy-traffic

approximations for general queueing systems. Most closely related to our setting is the framework

developed by Whitt (2006) to use a fluid model to in the analysis of the G/G/n+GI queueing

system in overload. This framework was further utilized by Bassamboo and Randhawa (2016) who

studied prioritization policies in a queueing model with general abandonment and general service

times (G/G/n+GI). They focused on who to serve next given that some customers will abandon if

they have to wait too long before their service starts; in particular, in their framework, once service

starts it cannot be interrupted. By contrast, we focus on the decision of who to send home next,

which in queueing theory terms translates to a decision of whose service time should be truncated

and by how much.

3. The Uncapacitated Case: A Single-Patient Perspective

We start by studying the uncapacitated case, in which we assume a single patient and no capacity

constraints, and determine the optimal length of stay that would maximize the patient’s expected

survival reward minus hospitalization cost. Our approach relies on an MDP formulation of the

decision of when to send the patient home.

3.1. MDP Formulation for a Single Patient

We propose a discrete-time MDP formulation in which the physician makes a decision every period

(day) on whether to keep the patient in the hospital or to discharge her. Cancer treatments are given

in cycles, and our focus here is on a single arbitrary cycle. Each cycle starts with chemotherapy

treatment followed by a recovery stage to allow the immunization system to recuperate. The

treatment stage has a fixed duration according to the treatment protocol while the recovery stage

can be done using hospital protective isolation or home care. Thus, the recovery stage is flexible

and is the focus of our decision model. Our formulation assumes a finite decision horizon for the

recovery stage of a specific cycle. This is consistent with the working assumption for hematological

wards that if a patient has not gotten infected within the first 30 days after treatment, she will not

get infected due to that treatment within that treatment cycle any longer (Carmen et al. 2019) (i.e.,

any infection afterwards is assumed to be unrelated to the specific chemotherapeutic treatment).
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In our MDP formulation we focus on the decision of when to send a patient home after the

treatment and prior to developing infection. If and when an infection occurs it is clear that the

patient should be hospitalized. Thus, we refer to a state wherein a patient has developed an infection

as an absorbing state. We also make the realistic assumption that once a patient has been sent

home, she will not return to the hospital unless she has developed an infection. Thus, sending a

patient home will also result in a transition to an absorbing state. The states and transitions are

illustrated in Figure 2. According to our formulation, the MDP components are defined as follows:

 

Treatment 
Day 1 Day 2 Day 3 Day T 

Discharge Home or infection 

Stay in Ward 
and no 

infection 

Figure 2 MDP state transition

• Define S, the set of system states. We interpret the state s, for s∈ S, s∈ {1, ..., T}, as being at

the beginning of day s after completing s−1 hospitalization days. In addition, we have an absorbing

state, ∆ (indicating that the patient was either discharged or infected). Hence, S = {1, ..., T,∆}.

The initial state is s= 1 and the final state is s= ∆.

• Define A as the set of admissible actions. In general, A= {w,h}, where w stands for ward (we

use “ward” and “hospital” interchangeably) and h for home. We denote by a(s) the action taken in

state s. Hence, a(s) =w means that the patient stays in the hospital ward in state s, and a(s) = h

means that the patient is discharged at state s. It is assumed that at the beginning of the horizon

(time 0) the patient is at the hospital.

• Let t= 0, ..., T denote the time period. We use a subscript t to denote the state or action at

time t.

• Define P as the probability transition matrix. The entry P (s, s′, a) in the matrix P describes

the probability of moving from state s to s′ given choice of action a. Hence, P (s, s′, a) = Pr(st+1 =

s′|st = s, at = a). If the patient is discharged (i.e., a(s) = h), she moves from state s ∈ {1, ..., T} to

∆. Hence, P (s,∆, h) = 1 for all s∈ {1, ..., T}.

If the patient stays at the hospital for observation for another day (i.e., a(s) =w) then she may

move to state s+1 if she develops no infection during that period, or move to ∆ if she does. Hence,

P (s, s+ 1,w) and P (s,∆,w) for all s ∈ {1, ..., T} are determined by the hazard rate of developing
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an infection in state s at the hospital. We define by rw(s) (by rh(s)) the risk function1 of developing

an infection at time s given that the patient is in the ward (at home) at the beginning of that

period and has not developed an infection. Then, P (s,∆,w) = rw(s) and P (s, s+ 1,w) = 1− rw(s)

for all s∈ {1, ..., T − 1}. Formally, we assume that rw(T ) = rh(T ) = 0.

Once we get to state ∆, we stay there indefinitely. Hence, P (∆,∆, a) = 1 for all a ∈ {h,w}. At

the end of the horizon, T , any uninfected patient who is still at the hospital is sent home. Thus,

formally, we have that P (T,∆,w) = P (T,∆, h) = 1.

Note that the functions rw and rh are of general form. Figure 1(c) demonstrates the empirical

shape of this function for two patient types: chronic leukemia and acute leukemia. As can be seen

in the figure, the former exhibits a monotone decreasing infection hazard rate function and the

latter patient type exhibits an increasing and then decreasing infection hazard rate function.

It is important to note that we assume that the hazard rate functions depend on the time that

has elapsed since the completion of the treatment and on the location of the patient at that time.

Importantly, the infection hazard rate function does not depend on the time that the patient was

placed in that location. Thus, for example, rh(t) is the risk of developing an infection exactly t

time units after treatment (provided that no infection has developed prior to that time) given that

the patient is at home at that time and independently of when the patient was sent home from

the hospital.

• Define a reward matrix R. Its elements R(s, s′, a) denote the reward gained from making the

transition from state s to state s′, given action a. To spell out the elements of the reward function

we need to first define the specific gains and costs realized by each action in every state.

We normalize the rewards such that the patient receives a reward of 1 if she survives a cycle and 0

otherwise. A positive reward can be accumulated in one of two cases: either 1) the patient survived

until state T without developing an infection (recall the assumption that one cannot develop an

infection in state T or thereafter, i.e., rw(T ) = rh(T ) = 0.); or 2) the patient developed an infection

and survived. A patient who has developed an infection survives with probability pw (or ph) if the

infection developed while the patient was at the hospital (or home).

We also incur costs in each state. Denote by c (c≥ 0) the hospitalization cost (at the hospital)

per day for days 1, ..., T − 1. (Note that the patient does not incur a hospitalization cost on day T

since in the last day discharge occurs automatically if the patient has not developed an infection).

In the case where the patient incurs home care costs as well, c reflects the difference in cost per

day.

Denote by cI the cost of treating infections (I for infection). This infection treatment cost

includes all hospitalization costs incurred during the period that the patient is hospitalized from

1 We use risk function and hazard rate function interchangeably.
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the beginning of the infection until recovery/death. The infection treatment cost is assumed to

be independent of the time or the location at which the infection started. In the context of our

formulation, the cost cI is incurred once we move to state ∆, unless an infection did not occur

at all up to time T . For convenience, we formulate this cost as a reward that is received if no

infection occurred up to time T . We assume that cI >> c. This is a reasonable assumption because,

in expectation, treating an infection requires more than one day of hospitalization.

We next compute R(s,∆, h) for all s < T , which is the total expected reward to go when the

patient is discharged in state s. For ease of notation we denote this function by Rh(s) :=R(s,∆, h).

This reward function takes into account the probabilities of getting an infection and of recovering

at or after time s until the end of the horizon. This reward function can be computed by backward

induction as follows:

Rh(T ) = 1 + cI

Rh(T − i) = rh(T − i)ph + (1− rh(T − i))Rh(T − i+ 1) ∀i∈ {1, ..., T − 1}.

This can be rewritten as

Rh(T − i) = ph

(
1−

i∏
j=1

(1− rh(T − j))

)
+ (1 + cI)

i∏
j=1

(1− rh(T − j)), ∀i∈ {1, ..., T − 1}. (1)

It is easy to see that Rh(s) is an increasing function of s, because it is a convex combination of

ph and 1 + cI , where the latter term is clearly the greater of the two and its weight is increasing

in s. It reflects the fact that if a patient is sent home later, the cumulative chance of getting an

infection given that the patient has not developed an infection so far is decreasing.

To compute the reward gained from keeping a patient in the ward for an extra day, we need to

consider two options: a) the patient gets infected on that day, or b) the patient remains uninfected

for another day. In the former case, the expected reward is pw − c: the system incurs a one-

day hospitalization cost and receives a reward for the expected patient survival. In particular,

R(s,∆,w) = pw − c for all s ∈ {1, ..., T − 1}. If the patient remains uninfected, the system incurs

only the daily hospitalization cost, c. Thus, R(s, s+ 1,w) =−c, ∀s < T . If the patient reaches state

T without getting an infection the reward is 1 + cI . Hence, R(T,∆,w) = 1 + cI .

In sum, the immediate reward function R for all s∈ {1, .., T,∆} is

R(s, s′, a) =


−c, if s < T, s′ = s+ 1, a(s) =w;
pw− c, if s < T, s′ = ∆, a(s) =w;
Rh(s), if s < T, s′ = ∆, a(s) = h;
1 + cI , if s= T, s′ = ∆, for all a;
0, if s= ∆, s′ = ∆, for all a.

(2)

We assume the following properties for the hazard rate function parameters:
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Assumption 1. 1. In-hospital infection risk is higher than home-care infection risk, i.e.,

rh(s)≤ rw(s), ∀s.

2. Survival probability at the hospital is higher than survival probability at home, i.e.,

ph ≤ pw < 1.

As noted in the introduction, this assumption is consistent with the empirical findings of Carmen

et al. (2019).

3.1.1. The MDP formulation. Define a policy π such that πt(s) is the action the physician

takes at time t if the state is s. Denote by VT (π) the expected reward over the finite horizon T if

policy π is used. In particular,

VT (π) :=Eπ

[
T−1∑
t=1

R(st, st+1, at) +R(sT ,∆, aT )

]
.

Let vt(s) be the optimal reward-to-go function from time t onward, given that the state at time t

is s. (Note that, by definition, at time t, the state s can be either t or ∆.) By Equation (2), since

no reward is gained once state ∆ is reached we have that

vt(∆) = 0, ∀t= 1, ..., T.

For all s 6= ∆, we have that

vT (s) = 1 + cI , s= T,

and for t= 1, ..., T − 1 and s= t, we have that

vt(s) = max

{
Rh(s), at = h;

pw · rw(t) + vt+1(s+ 1) · (1− rw(t))− c, at =w.
(3)

Let Rw(s) be the reward-to-go if the patient is kept at the hospital at time t= s, s 6= ∆, and the

optimal action is taken from time t+ 1 onward. Then,

Rw(s) = pw · rw(s) + vs+1(s+ 1) · (1− rw(s))− c. (4)

Now we can rewrite Equation (3) more compactly as

vs(s) = max{Rh(s),Rw(s)}, s 6= ∆. (5)

Note that the problem at hand is an unconstrained MDP with finite state and action spaces.

Thus, we can conclude that there exists an optimal policy that is non-randomized, using standard

MDP theory. We next establish some structural properties of the MDP solution, and discuss their

implications.
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3.1.2. Structural properties of the optimal policy. Solving the single-patient MDP is

numerically tractable given any set of system and patient parameters, due to the relatively small

state space. The MDP formulation also allows us to uncover some important structural properties

of the optimal solution such as threshold form and monotonicity with respect to various parameters.

These structural properties are the focus of this section. Surprisingly, we find that the optimal

solution is not necessarily of a threshold type. We also discover that, counter-intuitively, the optimal

policy is not monotone in the risk of developing an infection at the hospital.

As is often the case for MDPs with a one-dimensional state space, one might expect the optimal

solution for this MDP to be of a threshold type. It turns out that this is not necessarily true here.

For the optimal policy to be of a threshold type it is necessary that if it is optimal to send a patient

home at time t0 then it is also optimal to send her home at times t, for all t > t0, if she happens to

still be at the hospital at that time. The counterexample in Table 1 shows that this is not always

the case. Specifically, in this example, it is optimal to send a patient home at times 3 and 4 but not

at time 5. Note that in this counterexample we assumed a ward-acquired infection risk function

that is increasing and then decreasing, as is typical for some hematological maladies; see Figure

1(a).

Table 1 An Example of an Optimal MDP Solution that Is Not of a Threshold Type

State - s rw(s) Rh(s) Rw(s) v(s) Decision

1 0.29 2.07 2.30 2.30 ward
2 0.31 2.87 2.97 2.97 ward
3 0.33 4.00 3.97 4.00 home
4 0.35 5.59 5.37 5.59 home
5 0.3 7.84 7.90 7.90 ward
6 11.00 11.00 11.00 home by default

c= 0.1, cI = 10, ph = 0.1, pw = 0.7, rh = 0.29, T = 6

Although the optimal policy lacks a threshold structure, the system nevertheless has a well-

defined effective threshold, which is the first time in which it is optimal to send a patient home.

This is an effective threshold because it is assumed that once a patient is sent home she will not be

readmitted to the ward during the same treatment cycle, unless she develops an infection. Formally,

we denote the effective threshold as topt, where

topt := min{1≤ t < T | Rh(t)≥Rw(t)},

and where, if Rh(t)<Rw(t) for all t < T , then topt := T .

Next we examine the monotonicity properties of the effective threshold with respect to various

system parameters. Intuitively, one expects the effective threshold to be monotonously increasing
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in pw and rh and monotonously decreasing in c, ph, rw, and cI . It turns out that this intuition holds

true for all of those parameters except for rw, the risk of developing an infection at the hospital

(for a counterexample see Table 2 below). The monotonicity statements given below are proved

straightforwardly using the MDP formulation and backward induction.

Proposition 1. Under Assumption 1, the effective threshold topt is:

(a) monotone decreasing in c. That is, as the hospitalization cost, c, increases, the patient will

be discharged home earlier.

(b) monotone decreasing in cI . As the cost of hospitalization after infection, cI , increases, the

patient will be sent home earlier.

(c) monotone decreasing in ph. As the survival probability in the case of infection at home, ph,

increases, the patient will be sent home earlier.

(d) monotone increasing in pw. As the survival probability in the case of infection at the hospital,

pw, increases, the patient will be sent home later.

(e) monotone increasing in rh. As the risk of infection at home, rh, increases, the patient will

be sent home later.

All the proofs for this section appear in Appendix A.

It is intuitive to expect the effective threshold to be monotone decreasing in rw. That is, one

would expect that the greater the risk of developing an infection in the ward, the sooner the

patient will be sent home. It turns out that this intuition is incorrect, as is illustrated by the

counterexample shown in Table 2. This table compares two scenarios, 1 and 2: in Scenario 1 the

patient has a lower risk of infection at the hospital, rw, compared to Scenario 2. At the same time

it is optimal for the patient to be sent home sooner under Scenario 1. The example demonstrates

that if the probability of recovering from an infection at the hospital, pw, is large enough compared

to the utility of sending a patient home, then as the risk of infection at the hospital, rw, increases,

the overall opportunity for recovery at the hospital increases and, therefore, keeping the patient

longer at the hospital could be advantageous. We rigorously establish this intuition in Lemma 1

and Corollary 1, and then outline two simple sufficient conditions on the system primitives for

monotonicity to hold in Corollaries 2 and 3.

We now establish sufficient conditions that support this latter explanation, by showing that under

these conditions the effective threshold is indeed decreasing in the in-hospital infection probability.

Lemma 1 (Monotonicity in rw). If pw ≤ vs(s) for all s, then the effective threshold is mono-

tone decreasing in rw.

Corollary 1. If pw ≤ Rh(s) for all s, then the effective threshold is monotone decreasing in

rw.
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Table 2 An Example of Non-Monotonicity in the Hospital Infection Probability rw

Scenario 1 Scenario 2
State (s) Rh(s) rw(s) Rw(s) Decision rw(s) Rw(s) Decision

1 0.29 0.38 0.29 home 0.48 0.33 ward
2 0.37 0.37 0.36 home 0.47 0.38 ward
3 0.47 0.36 0.45 home 0.46 0.46 home
4 0.62 0.35 0.58 home 0.45 0.57 home
5 0.82 0.34 0.76 home 0.44 0.72 home
6 1.10 1.10 home 1.10 home

c= 0.2, cI = 0.1, ph = 0.1, pw = 0.7, rh = 0.28, T = 6

The following corollary allows us to establish a sufficient condition for monotonicity of the

effective threshold in rw as a simple expression of the system parameters. Note that both c and rw

play no role in this condition.

Corollary 2. If the system parameters satisfy the condition

pw− ph
1 + cI − ph

≤
T−1∏
j=1

(1− rh(T − j)), (6)

then the effective threshold is monotone decreasing in rw.

In particular, whenever cI or ph are large enough or pw is small enough, monotonicity holds.

Finally, we establish, as another corollary to Lemma 1, that the effective threshold is monotone

decreasing in the risk of developing infection in the hospital whenever the cost of hospitalization

is 0.

Corollary 3. If c= 0, then the effective threshold is monotone decreasing in rw.

3.2. Characterizing the Effective Threshold

In this section we focus on the family of effective threshold policies. As per our discussion so far,

the optimal solution to the MDP is, by assumption, an effective threshold, and thus, in looking for

the optimal policy, it is sufficient to focus on this family. Here we study the value function asso-

ciated with all effective threshold policies and specify some sufficient conditions under which this

value function has has a simple, easy-to-characterize, maximum. As argued above, the maximizing

effective threshold is in turn an optimal solution to the MDP.

To be concrete, we define an effective threshold (τ) policy to be such that a patient stays in

the ward until time τ and is sent home at that time if an infection has not been developed by

then. Denote by Jτ the total expected reward of the τ policy from time 1 to T . For example, J1

is the total expected reward of a patient who is sent home immediately at time 1 (we refer to this

strategy as blocking) and Jtopt is the total expected reward if the optimal effective threshold is

used. By definition of topt, Jτ obtains is maximal value at τ = topt.
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For an arbitrary effective threshold τ , define Rτ (t) to be the reward-to-go under the τ policy

from time t to T . From time τ to T , the reward gained from discharging the patient at time τ is

equal to Rτ (t) =Rh(t), for t∈ {τ, ..., T}. From time 1 to τ − 1, the patient is assumed to be in the

ward. Hence,

Rτ (t) = rw(t)pw + (1− rw(t))Rτ (t+ 1)− c, ∀t∈ {1, ..., τ − 1}. (7)

By definition, the total expected reward satisfies

Jτ =Rτ (1). (8)

We note that the optimal effective threshold is the one that maximizes Jτ as a function of τ .

We next analyze specific cases in which Jτ may have a simple structure and where the resulting

optimal policy can be simply inferred. The first two results refer to cases where the fundamental

tradeoff between risk of developing infection and speed of access to treatment does not exist (i.e.,

when Assumption 1 does not hold).

Proposition 2. If rw(·)≤ rh(·), pw ≥ ph and c= 0 then Jτ is monotone increasing. Therefore,

the optimal policy is to stay hospitalized indefinitely (until time T ).

Proposition 3. If rw(·) > rh(·) and pw = ph then Jτ is monotone decreasing. Therefore, the

optimal policy is no observation regardless of the hospitalization costs.

Note that the assumption that pw = ph in Proposition 3 is strong, and may be realistic only if

the patient lives in close proximity to the hospital, and the hospital has dedicated capacity in the

emergency department for these patients. As we discussed in the introduction, it is more realistic

to assume that pw > ph, as in Assumption 1. Consistent with that assumption, the case where

rw(·)> rh(·) and pw > ph is more realistic, and is also more complicated. In that case, we are able

to characterize the structure of the solution only when the risk functions are constant over time,

and show that in that case Jτ is quasi-concave. To that end, assume that the risk functions rw(·)
and rh(·) are constant over time and define f(τ) to be the difference in the reward-to-go at time

τ −1 if the threshold is changed from τ to τ −1, i.e., f(τ) =Rτ (τ −1)−Rτ−1(τ −1). In particular,

f(τ) = rw(pw− ph)− (rw− rh)(1− rh)T−τ (1 + cI − ph)− c, 1< τ ≤ T, (9)

which can be seen by noting that Rτ (τ) =Rτ−1(τ) =Rh(τ) and by referring back to (1) and (7).

Proposition 4. Assume that 0< rh < rw < 1 and both are constant over time and that Assump-

tion 1 holds. Let τ̂ := max{2≤ τ ≤ T | f(τ)> 0}, and τ̂ := 1 if f(τ)≤ 0 for all τ ≥ 2. Then, Jτ is

(strictly) increasing up to τ̂ and is decreasing afterwards. Specifically, if τ̂ = T (which is true if and

only if f(T )> 0), then Jτ is monotone increasing. If τ̂ = 1 (which is true if and only if f(τ)≤ 0

for all τ ≥ 2), then Jτ is monotone decreasing. Thus, it is optimal to send the patient home at time

τ̂ ; i.e., τ̂ is an optimal effective threshold.
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We will see in Section 5.1, that although we cannot prove such a result for general risk functions,

in most cases our date indicate that Jτ is indeed increasing-decreasing as in Proposition 4.

4. The Capacitated Model: A Hospital Ward Perspective

So far we have examined the problem of when to send a patient home assuming that the hospital

has ample capacity. In practice, a hospital may be capacity-constrained, where patients may be

forced to be sent home sooner than is optimal, due to lack of space, beds, equipment, or medical

personnel. In such situations one might be forced to deviate from the optimal discharge policy in a

meaningful way. This section focuses on the question of how to determine when to send a patient

home when there is not enough hospital capacity to implement the uncapacitated solution without

modifications.

The first question that comes to mind in this context is how to determine when the hospital is

indeed capacity constrained. To address this question it is useful to model the hospital ward as a

queueing system. Consider a hospital ward with n beds. We can think of these beds as multiple

parallel servers in a queueing system. Let λ be the arrival rate of patients into the ward and let S

be a random variable that represents the patient length of stay. Let U = λE[S] be the offered load

inflicted on the system by its patients. Then, to determine whether or not the system is under- or

over-loaded one looks at U versus n. Specifically, if U <<n, then the capacity constraints are not

very restrictive, whereas if U ≥ n, then the capacity constraints are substantial. A specific challenge

that arises in this context is that the service time, S, and more specifically its expected value E[S]

are not exogenous. In other words, the patient length of stay is an outcome of optimization and

may in fact be impacted by the system capacity.

To disentangle the patient length of stay from the system capacity we start by recalling another

definition of offered load, which is the expected number of busy servers in an infinite server queue.

Recall that topt is the optimal effective threshold for a patient in the uncapacitated case. In par-

ticular, in a system with an infinite number of servers a patient will stay at the hospital until time

topt and then will be sent home, unless the patient has developed an infection prior to that time.

We will refer to the stay of such a patient as a full stay. Let Stopt be the patient length of stay given

such a threshold policy. Then, we define the system offered load as Utopt = λE[Stopt ], and consider

the system to be overloaded if Utopt >>n.

In the context of our study it is natural to consider the overloaded regime for two reasons:

1. It is exactly in the overloaded regime where the tradeoff between utilizing capacity and opti-

mizing hospital length of stay is critical.

2. The hospital ward that this study is motivated by is indeed overloaded, with an average

occupancy of 97%. This high load is typical due to both the high cost of hematology hospitalization
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(stemming from the patient’s need to be isolated during and after treatment) and increased demand

(stemming from advances in cancer treatment in recent decades).

We assume that patients who cannot be hospitalized for observation in the ward due to capacity

constraints are sent home immediately. Therefore, our model will have blocking dynamics. In

practice, a patient who does not have an available bed in the ward may be hospitalized in another

hospital ward rather than be sent home. However, in general, this is not a desirable practice for

hematology patients because not only will the patient be further exposed to hospital-acquired

infections (Carmen et al. 2019), but this off-placement may result in inferior patient care (Song

et al. 2020, Dong et al. 2019a). In fact Carmen et al. (2019) showed that Internal Wards may be

strictly inferior to home-care for hematology patients. For the more general case, we briefly discuss

in Section 6 how one might utilize our results to consider the three-way decision of Hematology

ward vs. General ward vs. home. Thus, assuming for the time being that no patients are sent to

a ward other than the hematology ward and that the same threshold topt is used to determine

when to send a patient home for all patients who are not blocked, we can model this system as

a G/G/n/n loss system in the overload regime, with service time having the same distribution as

Stopt .

The underlying policy where a patient will either be blocked or stay in the ward according to

an effective threshold of topt is one possible policy to use in the capacitated case. However, one

may argue that this policy is unfair because it favors the patients who are lucky enough to find

an available bed in the ward over patients who are blocked. An alternative policy that treats all

patients the same (in distribution) is, upon arrival of a patient to a full system, to send the patient

with the longest LOS home and admit the new patient instead. In this case the length of stay

distribution would be kept shorter overall, to allow all patients to spend some time in the ward.

Clearly, there are many other policies to consider that combine elements from both of these two

extreme-case policies.

To determine the best policy to use in the capacitated case, we need to find a way to enumerate all

possible policies and to evaluate the reward as a function of the policy so as to find the policy that

maximizes the reward of the entire patient population. The complexity of the underlying process

makes the use of exact analysis prohibitively complex. Instead, we revert to an approximation

using fluid models in which the discrete flow of customers is modeled as a continuous flow of fluid

and where the discrete-time is replaced with continuous-time. This fluid model approach has been

used by Whitt (2006), Kang and Ramanan (2010), and Zhang (2013) for queueing models with

general service times and abandonment distributions where it was also rigorously justified in these

settings. We use it in a way that mimics the approach taken by Bassamboo and Randhawa (2016)

to optimize scheduling in an overloaded queueing system with impatient customers, albeit in a very
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different context. Here we do not rigorously prove that indeed the fluid model is the limit for the

underlying stochastic system, rather, we simply postulate it.

4.1. The G/G/n/n Fluid Model

Consider a G/G/n/n system with generally distributed service time (LOS) Stopt and offered load

Utopt = λE
[
Stopt

]
. Assume that the ward has n beds, and let ρ=

Utopt
n

=
λE[Stopt ]

n
. Further assume

that the system is overloaded, and thus ρ> 1.

Because the system is overloaded, the occurrence of an arriving patient finding a full ward is

frequent. Therefore, it is meaningful to consider what should be done when a patient arrives to

a full ward. Two obvious options to consider if there are no available beds upon a new patient’s

arrival are:

1. Blocking: Send the new patient home, or

2. Speedup: Send home early the patient who has been in the ward the longest (before their

optimal time of topt) to make room for the new patient.

More generally, a policy can mix between blocking and speedup and can also mix the choice rule as

to which patient to send home in the case of a speedup and when. The fluid model can be utilized

to calculate the approximated reward function for any given policy. We proceed with formulating

the fluid model.

Define F (x) as the cumulative distribution function (CDF) of the time until infection if the

patient remains at the hospital for the full horizon T , and assume that F is continuous. In addition,

denote by Fτ (x) as a different CDF which is a truncated version of F (x) (that is, Fτ (x) = F (x)

for x< τ and Fτ (τ) = 1). If we use the policy that keeps all patients in the ward until time τ and

then sends them home (unless an infection has occurred prior to that time) then Fτ describes the

patient service-time (LOS) distribution at the hospital.

The continuous time distribution necessitates an adaptation of the definition of the value function

Jτ—the total expected reward associated with a single patient given a threshold policy τ—to

continuous-time. Consider the two continuous-time infection hazard rate functions, rw(·) and rh(·),

of the time until infection in the ward and at home, respectively. Then, for a threshold τ , we have

that the infection hazard rate of the time until infection is rτ (t) := rw(t)1{t<τ}+ rh(t)1{t≥τ}, and,

correspondingly, the CDF, Gτ (·), of the time until infection under a threshold policy τ satisfies

Gc
τ (t) := 1−Gτ (t) = exp

(
−
∫ t

0

rτ (u)du

)
= exp

(
−
∫ τ∧t

0

rw(u)du−
∫ τ∨t

τ

rh(u)du

)
.

Thus, the value function Jτ may be expressed as

Jτ = pwGτ (τ) + phG
c
τ (τ)

(
1− exp

(
−
∫ T

τ

rh(u)du

))
− c
∫ τ

0

Gc
τ (u)du+ (1 + cI)G

c
τ (T ), (10)
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where the first term corresponds to the product of the probability of contracting an infection in

the ward and the probability of recovery. The second term stands for the product of the proba-

bility of contracting an infection at home and the probability of recovery. The third term is the

hospitalization cost and the fourth term is the reward obtained if no infection has occurred.

Similarly to the discrete time distribution, we define topt to be the effective optimal threshold

with respect to the reward function Jτ . That is, topt is the smallest threshold τ that maximizes

Jτ . Note that here we simply postulate the existence of topt without proof. If an effective optimal

threshold does not exist, one can simply replace it by τ = T . Note that by the optimality of the

effective threshold topt, it is never optimal to keep a patient in the ward beyond topt, but one may

need to discharge the patient earlier due to capacity constraints.

Consider an arbitrary discharge policy π with discharge times that are no later than topt, and

let Fπ be the CDF of the service-time distribution under the policy π. Let Sπ be the service-time

of patients at the hospital under the policy π, and let µπ be the corresponding service rate. In

particular, we have that
1

µπ
=E[Sπ] =

∫ topt

0

F c
π(x)dx.

For a threshold policy we will slightly abuse the notation τ to describe not only the threshold

itself but also the policy associated with it. For example, the speedup policy described above is

a threshold policy with a single threshold at some time τ = τspd, and we will refer to this policy

simply as τspd.

To describe the fluid model in steady state we adopt the following characterization from Whitt

(2006), adapted to a blocking (loss) system.

The G/GI/n/n Fluid Model in steady state. The G/GI/n/n fluid model with service-time

distribution Fπ, under overloaded conditions ρπ := λE[Sπ ]

n
> 1, has a unique steady state q, where

q(0−) = λ̄,

q(0) = µπ,

and

q(s) = µπF
c
π(s), s≥ 0,

for λ̄ := λ/n. The fluid blocking rate bπ is λ̄−µπ.

Loosely speaking, q(s) describes the fluid content in steady state of all of the fluid in the system

that arrived exactly s time units ago. Figure 3 depicts the fluid model for the two special policies

described above, namely, blocking (combined with full stay for patients who do receive a bed) and

speedup, for the specific CDF functions Fπ. Note that while the speedup policy in the stochastic
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system is not necessarily a threshold policy, it becomes a threshold policy under the (deterministic)

fluid model because, in steady state, all the fluid that has been in the system the longest, arrived

there at exactly the same time. Denote by τspd the speedup policy threshold, i.e., the maximal LOS

of patients under a single-threshold that can be used when capacity constraint prevents everyone

from staying until topt. To compute the speedup threshold, τspd, one needs to solve the equation

1/λ̄=

∫ τspd

0

F c(x)dx,

whose solution exists due to the intermediate-value theorem and the overloading assumption.
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Figure 3 Depiction of the Fluid Model in Steady State for the Blocking and Speedup Policies

4.2. General Policies

Up to now we have focused on a single-threshold policy where patients are sent home at the

specified threshold unless they develop an infection beforehand. In general, we might consider a

broader family of policies π in which, for all x > 0, a certain fraction ψπ(x) of the patients who

have been in the ward for x time units are sent home at time x, where 0≤ ψπ(·)≤ 1. In addition,

for x = 0, the policy blocks all patients who arrive to a full ward. A threshold policy τ (τ ≥ 0)

is a special case of this family, with ψπ(τ) = 1 and ψπ(x) = 0 for all 0 < x < τ . For simplicity

we focus our attention on policies where the set of time points x such that ψπ(x) > 0 is finite.2

We refer to this finite set of K + 2 thresholds as ~τ = {τi, i ∈ {0,1, ...,K,K + 1}},K <∞ where

0 = τ0 < τ1 < ... < τK < τK+1 = topt.

In the fluid model this policy may equivalently be described as a pair (~τ ,~δ) of thresholds with

a finite set of non-negative numbers ~δ = {δi ≥ 0, i ∈ {0,1, ...,K,K + 1}}, such that at time τi the

fluid content is reduced by a mass of δi. Specifically, the fluid content in steady state for such a

2 Given the continuity of the value function, Jτ , we may approximate any general policy to the required level of
accuracy using a finite set of thresholds, hence, this assumption is not too restrictive (see Remark 1 in Bassamboo
and Randhawa 2016).
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general policy may be described as follows: the process starts at q(0−) = λ̄, then decreases instantly

to q(0) = λ̄− δ0, and, more generally, at time t we have that

q(t) =

λ̄− ∑
{j:τj≤t}

δj
F c(τj)

F c(t), for t≥ 0. (11)

From Equation (11) we see that for the policy to be admissible we must have that
∑K+1

i=0
δi

F c(τi)
= λ̄.

To show that the two representations of the general policy—(~τ ,~δ) and ψ—are equivalent, note

that we have that for all x> 0,

ψ(x) =

{
δi

q(τi)+δi
if x= τi for some i,

0 otherwise.
(12)

Given the above policy description it is natural to want to optimize over all the admissible pairs

(~τ ,~δ) to find one that maximizes the overall value function in steady state. To do this, we next

provide an alternative and equivalent description of such a policy. This alternative description lends

itself well to evaluating the corresponding value function.

Following Bassamboo and Randhawa (2016) we observe that the admissible policy π= (~τ ,~δ) may

alternatively be described as a partition of the patient population into K + 2 classes with arrival

rates λ̄i = δi
F c(τi)

, for i= 0,1, ...,K+ 1, where for class i we apply the single threshold policy πi = τi.

Figure 4 illustrates the equivalence between the two policy descriptions. A general admissible policy

may be described, equivalently, as π = (~τ ,~λ), since, given ~τ , there is a one-to-one correspondence

between ~δ and ~λ.
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Figure 4 Fluid Dynamics with Multiple-Threshold Policy

Given this policy characterization, we are now in a position to state our fluid-level optimization

problem.
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4.3. The Fluid-level Capacitated Optimization Problem

To find the optimal policy for hospital length of stay in the capacitated case at the fluid level, we

seek to divide the fluid-level patient population λ̄ into K+ 2 classes of sizes λ̄i (i= 0,1, ...,K+ 1),

and determine a set of K+ 2 discharge thresholds that will maximize the total value gained by the

entire patient population. The resulting optimization problem is given by

sup
K∈N; (~λ,~τ)∈RK+2

+ ×RK+2
+

K+1∑
i=0

λ̄iJτi (13)

s.t.
K+1∑
i=1

λ̄i
µτi
≤ 1

K+1∑
i=0

λ̄i = λ̄,

0 = τ0 ≤ τ1 ≤ τ2...≤ τK ≤ τK+1 = topt.

where Jτi is the value function associated with a threshold policy τi as defined in (10) and 1/µτi is

the expected time in the ward for a patient of class i:

1

µτi
=

∫ τi

0

xf(x)dx+

∫ ∞
τi

τif(x)dx=

∫ τi

0

xf(x)dx+ τiF
c(τi),

recalling that F is the CDF of the time until infection for a patient who remains in the hospital

ward, and f is the corresponding PDF.

We next argue that in optimality the system is critically loaded; that is, there exists an optimal

solution to (13) where the first constraint is obtained as an equality.

Lemma 2. If the system is overloaded when all patients are sent home according to the threshold

policy topt, then if an optimal solution to (13) exists, then there exists a solution to (13) where the

constraint
∑K+1

i=1
λ̄i
µτi
≤ 1 is obtained as an equality.

All the proofs for this section appear in Appendix B.

The proof for this lemma relies on the overload assumption and the optimality of the discharge

threshold topt. Specifically, for any solution where the system is not critically loaded we can find

another solution where more capacity is utilized and the objective function is at least as high.

By Lemma 2, problem (13) may be equivalently rewritten as

sup
K∈N; (~λ,~τ)∈RK+2

+ ×RK+2
+

K+1∑
i=0

λ̄iJτi (14)

s.t.
K+1∑
i=1

λ̄i
µτi

= 1

K+1∑
i=0

λ̄i = λ̄,

0 = τ0 ≤ τ1 ≤ τ2...≤ τK ≤ τK+1 = topt.
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For problem (14), observe that for a fixed value of K and a fixed set of thresholds ~τ , the problem

becomes a linear program in ~λ, with two constraints. In particular, a basic solution will have at

most two non-zero values of λi. Therefore, much like in Bassamboo and Randhawa (2016), we can

conclude that there exists a solution to (14) in which at most two of the classes are non-empty.

This is formalized in the following proposition.

Proposition 5. There exists an optimal solution to (14) with at most two non-empty classes.

The proof is essentially identical to the proof of Proposition 1 in Bassamboo and Randhawa

(2016) and is hence omitted. By Proposition (5), optimization problem (14) may be reduced to the

following:

sup
0≤λ̄l,λ̄h;0≤τl≤τh≤topt

λ̄lJτl + λ̄hJτh (15)

s.t.
λ̄l
µτl

+
λ̄h
µτh

= 1,

λ̄l + λ̄h = λ̄.

The problem can be further simplified, by setting λ̄h = λ̄− λ̄l, to

sup
0≤λ̄l≤λ̄;0≤τl,τh≤∞

λ̄lJτl + (λ̄− λ̄l)Jτh (16)

s.t.
λ̄l
µτl

+
λ̄− λ̄l
µτh

= 1.

Notice that, given the values of τl and τh, λ̄l is determined uniquely by solving the equation

given by the constraint of (16), as λ̄l =
λ̄−µτh

1−µτh/µτl
if τl 6= τh, and λ̄l = 0 otherwise. Furthermore, in

order for λ̄l to satisfy the conditions in the optimization of (16) we must have that

µtopt ≤ µτh ≤ λ̄≤ µτl ≤∞. (17)

Let τ ∗ be such that µτ∗ = λ̄, where 1
µτ∗

=
∫ τ∗

0
xf(x)dx+ τ ∗F c(τ ∗). (Note that τ ∗ ≡ τspd.) Then,

(17) implies that any feasible solution must have τl ≤ τ ∗ ≤ τh. Therefore, since µτh > 0 it follows

that λ̄l ≤ λ̄ and (16) can be simplified to

sup
0≤τl≤τ∗≤τh≤∞

λ̄l(τl, τh)Jτl + (λ̄− λ̄l(τl, τh))Jτh , (18)

where λ̄l(τl, τh) =
λ̄−µτh

1−µτh/µτl
, if µτl 6= µτh , and λ̄l(τl, τh) = 0, otherwise.

The culmination of the discussion thus far is in the conclusion that the solution of the capacitated

problem reduces into five simple and mutually exclusive cases, as stated in the following corollary.

Corollary 4. The optimal solution to the capacitated problem (13) has an up-to-two threshold

structure as in (18), with the following exhaustive and mutually exclusive cases:
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1. Block or Speedup (Bl-Sp): τl = 0, 0< τh < topt,

2. Two-level Speedup (2×Sp): 0< τl < τh < topt,

3. Speedup only (1×Sp): 0< τl = τh ≤ topt,

4. Speedup or Full Stay (Sp-FS): 0< τl < τh = topt,

5. Block or Full Stay (Bl-FS): τl = 0, τh = topt.

The five possible cases are depicted in Figure 5.
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Figure 5 The five possible solutions to the capacitated optimization problem

Now that we have identified the five possible cases for the solution of the capacitated problem,

we explore the question of whether one can identify the particular solution given some qualities of

the problem primitives. We start with specifying some necessary conditions for the optimal solution

of (18).

Lemma 3 (Necessary optimality conditions). If the functions µτ and Jτ are both differen-

tiable as a function of τ , with derivatives µ′τ and J ′τ , respectively, then

(a) An optimal solution to (18) of the form (τl, τh) with 0< τl < τ
∗ < τh < topt (the 2×Sp policy)

must satisfy
Jτh −Jτl
µτh −µτl

=
µτl
µτh

J ′τl
µ′τl

=
µτh
µτl

J ′τh
µ′τh

. (19)
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(b) An optimal solution to (18) of the form (0, τh) with τ ∗ < τh < topt (Bl-Sp policy) must satisfy

J0−Jτh
µτh

=
J ′τh
µ′τh

. (20)

(c) An optimal solution to (18) of the form (τl, topt) with 0< τl < τ ∗ < topt (Sp-FS policy) must

satisfy

(Jtopt −Jτl)µtopt
(µtopt −µτl)µτl

=
J ′τl
µ′τl

. (21)

Lemma 3 establishes that the ratio J ′τ/µ
′
τ plays an important role in the characterization of the

solution. This ratio expresses the marginal increase in value from increasing the threshold over

the corresponding marginal decrease in service rate. While the former can potentially benefit the

hospital, the latter hurts it because it increases the usage of capacity. This will be further formalized

in Lemma 4 where we denote the negative value of this ratio as ξ(τ).

While Lemma 3 outlines necessary conditions for the optimality of the 2×Sp, Bl-Sp, and Sp-

FS policies, it does not cover the two “boundary” policies of 1×Sp and Bl-FS. We are especially

interested in characterizing conditions under which the simplest and most equitable policy that

uses the same speedup threshold for all patients (1×Sp) is optimal. In the next lemma we will

provide sufficient conditions for the optimality of these two boundary policies, as well as that of

Bl-Sp, under the assumption that the function J is increasing up to the optimal threshold topt. In

our empirically based numerical analysis in Section 5, we observe that virtually all the cases we

encounter satisfy this assumption.

Lemma 4 (Sufficient conditions for optimality). Assume that the functions µτ and Jτ are

both differentiable as a function of τ 3 and that J ′τ > 0 for all 0≤ τ ≤ topt. Define ξ(τ) :=− J ′τ
µ′τ

. Then

ξ(τ)> 0. In addition, assume that ξ(τ) is monotone decreasing. Then,

(a) The policies 2×Sp and Sp-FS are not optimal.

(b) If Jτ−J0
µτ

< ξ(τ) for all τ ∗ ≤ τ ≤ topt then the Bl-FS policy is optimal.

(c) If
Jτ∗−J0

µτ∗
> ξ(τ ∗) then the policy 1×Sp is optimal.

(d) Finally, if there exists τ̃ such that τ ∗ < τ̃ < topt with Jτ−J0
µτ

< ξ(τ) for all τ ∗≤τ < τ̃ and

Jτ−J0
µτ

> ξ(τ) for all τ̃ < τ≤topt, then the Bl-Sp policy is optimal with a speedup threshold τ̃ .

In examining the capacitated case one question that arises is what is the impact of the hospital-

ization cost c on the optimal policy. Specifically, since in the overloaded regime all beds are always

occupied with probability 1, one may think that this cost has no impact on the optimal policy.

3 We define the derivatives at 0 as the derivatives from the right and the derivatives at topt as the derivatives from
the left.
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However, we recall that the cost c is incorporated into the calculation of the function Jτ and hence

does play a role in determining the optimal threshold topt (recall, for example, Proposition 1(a)).

In particular, c plays a role in the optimal solution of the capacitated case, but only through its

impact on J .

4.4. The Multi-Patient Type Case

In this section we extend the homogeneous-patient capacitated ward problem to heterogeneous

patients. Consider a hospital ward with multiple types of patients, where each type has its own

characteristics. Let type-j patients (j = 1, ...,C) have rjh(·) and rjw(·) infection hazard rate functions

at home and in the ward, respectively, and let pjh and pjw be the corresponding probabilities of sur-

viving that infection. These patient-type characteristics result in a type-dependent reward function

J jτ , and a type-dependent optimal threshold tjopt. Additionally, consider the type-j arrival rate to

be λj. Then, a hospital ward with limited capacity needs to determine when to send patients home

while taking their types into account.

To address this problem we once again consider a system that operates in the overloaded regime.

To define overload in this context we similarly let Sj
t
j
opt

be the length of stay of a type-j patient

given a full stay with threshold tjopt. Let U =
∑C

j=1 λ
jSj

t
j
opt

be the system’s offered load. Assuming

that the ward has n beds and, again, letting ρ= U
n

, the system is considered overloaded if ρ> 1.

Similarly to the single-patient type case, we use a fluid-model approximation to evaluate the

system’s workload in steady state. We again consider a generic policy to be such that it divides

each patient type j into Kj + 2 classes, where class i (i = 0, ...,Kj + 1) of patient type j has an

arrival rate of λ̄ji and a single-threshold policy is applied to this class with a threshold of τ ji , with

0 = τ j0 ≤ τ
j
1 ≤ ...≤ τKj ≤ τKj+1 = tjopt. The corresponding multi-type optimization problem can be

written as

sup
~K∈NC ; (~λj ,~τj)∈RK

j+2
+ ×RK

j+2
+

C∑
j=1

Kj+1∑
i=0

λ̄jiJτji
(22)

s.t.
C∑
j=1

Kj+1∑
i=1

λ̄ji
µ
τ
j
i

≤ 1,

Kj+1∑
i=0

λ̄ji = λ̄j, j = 1, ...,C,

0 = τ j0 ≤ τ
j
1 ≤ ...≤ τ

j

Kj
≤ τ j

Kj+1
= tjopt, j = 1, ...,C,

where the expected length of stay of a patient of type j and class i is

1

µ
τ
j
i

=

∫ τ
j
i

0

xf j(x)dx+

∫ ∞
τ
j
i

τ ji f
j(x)dx=

∫ τ
j
i

0

xf j(x)dx+ τ ji (1−F j(τ ji )).



26

For fixed values of K1, ...,KC and of ~τ 1, ...,~τC , the above is a linear program in ~λ1, ...,~λC with∑C

j=1(Kj + 2) variables and C+ 1 constraints. Thus, similarly to Proposition 5, we can show that

there exists an optimal solution to (22) with at most C+1 non-empty customer classes. This result

is spelled out next.

Proposition 6. There exists an optimal solution to (22) that creates at most C + 1 patient

classes.

Notwithstanding, any feasible solution to (22) will have at least one threshold associates with

each of the C patient types due to the second set of constraints. The following corollary immediately

follows:

Corollary 5. There exists an optimal solution to (22) where C − 1 of the patient types have

a single type-specific threshold applied to them and up to one patient type has two type-specific

thresholds applied to it.

We thus conclude that handling the multi-patient type capacitated case is not as onerous as one

might think. It involves figuring out what single patient-type should have two thresholds applied

to it as well as identifying the relevant C + 1 thresholds. Note that the C − 1 classes that have a

single threshold apply a speedup only policy (Figure 5(c)), where the speedup threshold in this

case could also be 0.

5. Numerical Analysis

In this section we explore the practical implications of our theoretical results using real-world

scenarios that are based on the empirical observations of Carmen et al. (2019). We start by exploring

the uncapacitated, single-patient case and then continue by investigating the impact of imposing

capacity constraints.

The paper Carmen et al. (2019) provides an empirical model that computes patient infection

and mortality risks based on patient characteristics such as age, disease, chemotherapy treatment

length (days), health condition at the end of treatment (based on white blood cell (WBC) counts),

patient location, and more. Here we utilize the output of their model and feed these risk functions

back into our model in order to glean insights into how our model might be used in practice.

5.1. The uncapacitated Case

For the uncapacitated case, we investigate how various factors affect the optimal observational

hospital length of stay for hematology patients in the presence of ample capacity. Our analysis

includes all four types of hematological cancer diseases: acute leukemia (AL), chronic leukemia

(CL), lymphoma (L), and multiple myeloma (MM). For each disease type we vary some of the
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patient characteristics such as age and treatment length. We then run the MDP model presented

in Section 3.1 to find the optimal effective threshold given these patient characteristics. Consistent

with practice, for all cases we consider the maximum length of stay to be T = 30. In addition, for

ease of exposition, we assume zero hospitalization costs (i.e., c= cI = 0).

Figure 6 shows how the optimal effective threshold changes as a function of patient characteristics

such as type (disease, age), current medical state (treatment protocol, WBC (white blood cell

count) at the end of the protocol treatment), and medical history (number of past infections).

We observe that, in general, as age increases, it is optimal for the patient to stay longer in the

hematology ward (Figure 6(a)). Another difference is observed when looking at the length of

protocol (Figure 6(b)): patients with a medium-length protocol (6–8 days), that are the most

aggressive treatment protocols, should stay longer in the ward than patients with short- or long-

length protocol. The state of the patient at the end of treatment is an important factor too, as

observed in Figure 6(c): high-risk patients whose WBC at the end of their treatment is low need a

much longer observation period and will need to be discharged later. Finally, patient history also

impacts risk and the optimal observation time, as we observe in Figure 6(d). The non-monotonicity

around the low number of past infections likely follows from the fact that the first couple of

treatment cycles have a higher infection risk than later cycles (see Table 2 in Carmen et al. 2019).

The infection risk functions observed in virtually all of the above examples are of two main types

(as is seen in Figure 1(c)): one type exhibits a monotone decreasing infection risk function and the

other exhibits an increasing and then decreasing infection risk function (i.e., increasing-decreasing).

For each patient type, we observed that the two infection risk functions—for home and hospital—

have the same shape and differ only in the level of risk, i.e. the shape of the risk functions depends

only on patient characteristics. We find that, in general, the increasing-decreasing risk functions

result in no observation period unless the patient has a very long history of infection (more than 8

occurrences) and is above 55 years of age, while the monotone decreasing risk functions result in

observation periods. We demonstrate the former alternative next.

Let us consider a specific case study, presented in Figure 7. The figure shows the policy change as

a function of age for patients with a long history of infections (9), but who finished this particular

treatment in good condition (WBC > 1000). In this case the increasing-decreasing infection risk

function reaches a peak in day 12 (see Figure 7(a)) and the risk increases with age. Figure 7(b)

illustrates an interesting phenomenon where up to age 40 no observation is recommended, while

if the patient is above 45 years old observation is recommended until around the peak of the risk

function. This drastic change is not apparent when we just look at the incremental effect of age

on the risk function, which is not large. Things become more clear when we observe the expected

reward function Jτ in Figure 7(c), which changes from a decreasing function for patients below
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(a) Policy as a function of disease and age (b) Policy as a function of disease and

treatment protocol length

(c) Policy as a function of disease and

WBC count at the end of treatment
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Figure 6 Optimal Effective Threshold (Based on Infection and Mortality Risks Given in Carmen et al. 2019)

45 years old to an increasing-decreasing function for older patients. Thus, while the change in Jτ

appears to be continuous in patients’ age, the resulting optimal policy is not.
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(c) Jτ as a function of age

Figure 7 Policy as a Function of Age (AL, High WBC, 6–8-Days Protocol, 9 Past Infections)

Figure 8 shows a histogram of the optimal observation time in days for a random sample of 1200

patients treated in the HW. The figure shows that, in the incapacitated case, around 25% of the

patients should not stay for observation at all, while the rest would benefit from staying in the

hospital for some period. In practice, it may be the case that the hospital does not have space
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for all of these patients and, therefore, will either cut their LOS short or block new patients from

being observed. This capacitated case is the the focus of the next section.
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Figure 8 Histogram of Optimal Observation Days (Random Sample of 1200 Patients Treated in HW)

5.2. The Capacitated Case

In this section, we demonstrate how capacity constraints change the optimal policy and increase

total patient mortality risk. Our main performance measure here is the expected reward, J , which

in this particular case is equivalent to the total survival rate because of our assumption of zero

hospitalization costs.

We start by examining the shape of different expected reward functions. As demonstrated in

Figure 7(c), we observe that the reward function, J , is generally flat around the optimal threshold

topt. J may change drastically as we get farther away from topt; therefore, strict capacity constraints

will result in high patient risk (low total survival rate), while less stringent constraints will not

change patients risk dramatically.

We next proceed to examine the policy structures that appear in our data as a function of system

load, assuming a homogeneous patient population. According to Corollary 4 we expect the optimal

policy to have up to two thresholds and belong to one of five possible types. Lemma 4 suggests

that only three of the five policy types may be of relevance, under certain conditions. We wish to

empirically test which policy types should be the most prevalent in practice. In this analysis we

assume a range of system loads from moderate to high load where ρ equals 1.02, 1.05, 1.1, or 1.2

(i.e., the arrival rate (λ̄) is µtopt × ρ).

We solve the optimization problem for all 19,200 combinations of disease (4), WBC level (2),

age(15), number of past infections (10), treatment protocol length (4), and system load (4). For

these instances we identify parameter combinations that result in the optimality of all five afore-

mentioned policies depicted in Figure 5. Table 3 presents the frequency of each such policy type.

Because in all of those parameter combinations τspd is not necessarily an integer, a precise 1×Sp

is rarely feasible, due to discretization. We therefore consider any policy in which τh − τl = 1 a
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“1×Sp-type” policy, where the group that is sped up more is discharged one day ahead of the rest

of the patients. The set of 1×Sp-type policies may be further divided into two subcases: one in

which the upper threshold τh = topt and a second case in which the upper threshold τh < topt; the

former may also be considered as an Sp-FS policy and the latter as a 2×Sp policy. Those subcases

are labeled in Table 3 as columns “1×Sp or Sp-FS” and “1×Sp or 2×Sp”, respectively. Note that

we have encountered no pure Sp-FS solutions, but we did encounter some that are pure 2×Sp

solutions.

Our numerical analysis leads to the following observations: a) Policies of 1×Sp type cover around

90% of our examples. Only 7.2% are pure 2×Sp type, 2.5% are of Bl-Sp type, and 0.1% are Bl-FS.

In particular, Bl-Sp and Bl-FS should be hardly used in practice. b) As the load in the system

increases, policies of 1×Sp type become more prevalent than pure 2×Sp. However, Bl-Sp captures

a higher percentage of extremely high loads (e.g., when ρ= 1.2). c) The difference in prevalence of

policy types between the different types of cancer is small. The only exception is AL, which has a

higher percentage of Bl-Sp and “1×Sp or 2×Sp”. The dominance in the optimality of 1×Sp type

over all other cases demonstrates that optimality and fairness largely go hand in hand so that one

does not need to sacrifice one goal over the other.

Comparing the total reward (which in this case is equivalent to the total survival rate because

of our zero hospitalization cost assumption) of all patients under the uncapacitated policy to the

capacitated policy, we find that the decrease in the total survival rate due to limited capacity is

less than 1.5% (when ρ = 1.2). (When ρ = 1.1 the maximal decrease is 0.7%, when ρ = 1.05 the

maximal decrease is 0.25%, and when ρ= 1.02 the maximal decrease is 0.05%.)

The high frequency of occurrences where a policy of 1×Sp type is optimal raises the following

question: how much would total survival rate decrease if we restricted our attention to the simple

and fair 1×Sp policy. We thus compared the difference in expected reward (where the hospitaliza-

tion cost is 0) when applying the 1×Sp solution instead of the optimal capacitated policy. For all

the examples we examined above, the decrease in total survival rate (i.e., the reduction in expected

reward) ended up being less than 0.5%. We can therefore suggest that, in practice, the fair policy of

1×Sp may be used exclusively, simplifying the problem significantly without compromising much

in terms of optimality.

6. Conclusions

Our paper analyzed LOS optimization of hematology patients that balances between hospital-

acquired infection risk (which drives hospitals to discharge high-risk patients as soon as possible)

and home-acquired infection risk (which drives hospitals to keep high-risk patients as long as

possible, to prevent delays in treating infection). Using MDP formulation we explore the connection
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Table 3 Frequency of solution types as a function of patient characteristics

Case Bl-Sp 2×Sp 1×Sp or 2×Sp 1×Sp or Sp-FS Sp-FS Bl-FS

All 2.5% 7.2% 45.1% 45.0% 0.0% 0.1%
Age 20 1.8% 4.6% 38.8% 54.9% 0.0% 0.0%

25 2.2% 4.7% 39.5% 53.2% 0.0% 0.4%
30 1.6% 4.7% 40.3% 53.0% 0.0% 0.4%
35 2.0% 5.4% 40.9% 51.4% 0.0% 0.4%
40 2.4% 5.5% 41.6% 50.1% 0.0% 0.4%
45 2.5% 6.1% 42.5% 48.9% 0.0% 0.0%
50 2.3% 6.6% 43.2% 47.9% 0.0% 0.0%
55 2.3% 7.1% 44.8% 45.8% 0.0% 0.0%
60 3.0% 7.6% 45.3% 43.5% 0.0% 0.7%
65 2.5% 7.8% 46.8% 42.8% 0.0% 0.0%
70 2.4% 8.4% 47.5% 41.7% 0.0% 0.0%
75 2.7% 9.0% 48.6% 39.7% 0.0% 0.0%
80 3.0% 9.1% 49.8% 38.2% 0.0% 0.0%
85 2.7% 9.4% 50.7% 37.2% 0.0% 0.0%
90 2.9% 10.1% 51.6% 35.3% 0.0% 0.0%

Disease AL 7.9% 0.0% 62.9% 28.7% 0.0% 0.4%
CL 0.0% 10.9% 32.5% 56.6% 0.0% 0.0%
L 0.0% 17.4% 35.2% 47.4% 0.0% 0.0%

MM 0.0% 2.5% 44.4% 53.1% 0.0% 0.0%
Load 1.02 0.0% 8.7% 16.9% 74.2% 0.0% 0.2%

1.05 0.2% 11.2% 34.0% 54.4% 0.0% 0.2%
1.1 0.9% 8.8% 56.6% 33.5% 0.0% 0.2%
1.2 8.7% 0.2% 73.0% 18.1% 0.0% 0.0%

between the infection risk function and the optimal policy from the single patient perspective.

We then consider the social optimization problem in which capacity constraints limit the ability

of the hospital to work with the otherwise optimal solution. Our analysis covers a wide range of

risk function dynamics that occur in practice and, therefore, it can guide hospitals in terms of

observation policy decisions.

One important realistic aspect that our model captures is the patient heterogeneity. In particular,

a hematology ward may have several types of patients being treated in parallel. Based on our

numerical analysis of the single-patient type, we learned that limiting our attention to a speedup-

only policy does not increase patient risk by much. Therefore, in the more complicated multi-patient

type case, it may be sufficient to focus on the speedup only policies, instead of the whole range of

possible policies. Even if that is not the case, our analysis of the capacitated case reveals that at

most one patient type will need more than a single discharge threshold.

Hematology units are inherently small due to the need to keep patients isolated (which is expen-

sive), and hence are typically overloaded. But one may also use our model for other types of medical

conditions, where capacity may be less constrained. In such units the number of patients may vary

over time and thus dependencies between load and infection risk may also play an important role

in the decision between hospitalization and home care. Such dependencies are natural to consider
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because infection risk may increase with the number of people a patient encounters during her

stay. Further work could explore these dependencies.

Another interesting direction to explore as further research is the decision of when to send a

patient home when information on their medical condition is dynamically updated over time. We

note that models for predicting infection risk of Hematology patients dynamically over time do

not exist in the literature yet. Hence, following Carmen et al. (2019), we assume that the infection

hazard rate is known as soon as the patient finishes treatment, and is not updated (expect for the

elapsed time and whether or not the patient got an infection) while the patient is under observation.

For all practical purposes, our current models are the best that can be implemented with current

technology. But we believe that new information that is received during observation may change

the infection hazard rate of a specific patient and thus the optimal observation time may need to

be updated dynamically. Our analysis can be straightforwardly generalized to handle this case in

the uncapacitated single-patient context, but more research is needed to determine how to handle

this case when capacity constrains are in effect. This will be important to address as new models

for predicting patient risks dynamically become available.

We assume in our paper that patients either stay in the hematology ward or are sent home,

while in practice a patient who does not have an available bed in the hematology ward may be

hospitalized in the general ward rather than be sent home. Yet, the dedicated hematology ward is

always better than the general ward for hematology patients (Carmen et al. 2019), both in terms

of infection risk and in terms of mortality risk. This suggests that our analysis may be utilized to

incorporate the option of general-ward hospitalization versus home care in a sequential fashion.

To summarize, our paper explored the question of where a patient should be observed following

cancer treatment, considering that both the hospital care and home care have their pros and cons.

Our framework allows one to find a solution that strikes the right balance between the two locations

and offers the “best of both worlds.” In particular, we show that in many cases, one does not

necessarily have to choose between hospital care and home care and, in fact, a combination of the

two is optimal. Our framework may be used to study other service systems where there are inherent

tradeoffs between professional service and self-service and a fine balance needs to be achieved.
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Ulukus MY, Güllü R, Örmeci L (2011) Admission and termination control of a two-class loss system. Stochas-

tic Models 27(1):2–25.

van Tiel FH, Harbers MM, Kessels AG, Schouten HC (2005) Home care versus hospital care of patients with

hematological malignancies and chemotherapy-induced cytopenia. Annals of Oncology 16(2):195–205.

Whitt W (2006) Fluid models for multiserver queues with abandonments. Operations Research 54(1):37–54.

https://www.llscanada.org/disease-information/facts-and-statistics
https://www.llscanada.org/disease-information/facts-and-statistics
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3525866
https://web.iem.technion.ac.il/en/service-enterprise-engineering-see-lab/general-information.html
https://web.iem.technion.ac.il/en/service-enterprise-engineering-see-lab/general-information.html


35

Whitt W (2013) OM forum: Offered load analysis for staffing. Manufacturing & Service Operations Man-

agement 15(2):166–169.

Yom-Tov GB, Chan CW (2021) Balancing admission control, speedup, and waiting in service systems.

Queueing systems 97:163–219.

Zhang J (2013) Fluid models of many-server queues with abandonment. Queueing Systems 73:147–193.



36

Appendix A: Proofs for Section 3

We prove Proposition 1 by breaking it into smaller more specific lemmas each concentrating on the mono-

tonicity with respect to a different parameter.

Lemma 5 (Monotonicity in c). Under Assumption 1, the effective threshold topt is monotone decreasing

in c. That is, as the hospitalization cost, c, increases the patient will be discharged home earlier.

Proof: Let Rw(s; c) be the hospital (ward) reward-to-go, as defined in (4), when the hospitalization cost

is c. Since Rh(s) is independent of c, it is sufficient to prove that Rw(s; c) is monotone decreasing in c. To

see why this is sufficient, suppose that Rw(s; c) is decreasing in c and define topt(c) as the effective threshold

when the hospitalization cost is equal to c. Suppose that c1 < c2. By definition, Rh(topt(c1))≥Rw(topt(c1); c1).

By the monotonicity of Rw(s; c) in c, this implies that Rh(topt(c1)) ≥ Rw(topt(c1); c2). But, by definition,

topt(c2) = min{1≤ t≤ T | Rh(t)≥Rw(t; c2)}. Thus, topt(c2)≤ topt(c1).

We next use backward induction to show that Rw(s; c) is indeed decreasing in c. In fact, we show that

Rw(s; c) and vs(s; c) are both decreasing in c, where vs(s; c) is the optimal reward-to-go function, as defined

in (5), when the hospitalization cost is c.

We first establish the monotonicity of Rw(s; c) and vs(s; c) for the end of the horizon at s= T −1. Indeed,

Rw(T − 1; c) = pwrw(T − 1) + vT (T ; c)(1− rw(T − 1))− c= pwrw(T − 1) + (1 + cI)(1− rw(T − 1))− c. Hence,

Rw(T − 1; c) is decreasing in c, and vT−1(T − 1; c) = max{Rh(T − 1),Rw(T − 1; c)} is also decreasing in c.

For the backward induction step, suppose that the monotonicity of Rw(s; c) and vs(s; c) holds for state

s= T − i+ 1; then, we need to establish that it also holds for state s= T − i. Indeed, for state s= T − i,

we have that Rw(T − i; c) = pwrw(T − i) + vT−i+1(T − i+ 1; c)(1− rw(T − i))− c is a sum of three functions,

two that are decreasing in c and one is independent of c, and hence the total is decreasing in c. In addition,

vT−i(T − i; c) is decreasing in c, as it is equal to the maximum between two functions, one that is independent

of c and the other one that is decreasing in c. �

Lemma 6 (Monotonicity in cI). Under Assumption 1, the effective threshold topt is monotone in cI . As

the cost of hospitalization after infection, cI , increases, the patient will be sent home earlier so as to reduce

the probability of developing an infection.

Proof: We first argue that it is sufficient to prove that

Rh(s; cI)−Rw(s; cI) is increasing in cI for all s, (23)

where Rh(s; cI) is defined in (1) and Rw(s; cI) is defined in (4), both assuming that the cost of contracting an

infection is cI . Indeed, if (23) holds, assume that c1I < c
2
I and let topt(cI) be the effective threshold associated

with the cost cI . By the definition of effective threshold, we have that Rh(topt(c
1
I ); c

1
I )−Rw(topt(c

1
I ); c

1
I )≥ 0.

Together with (23), it follows that Rh(topt(c
1
I ); c

2
I )−Rw(topt(c

1
I ); c

2
I )≥ 0. This implies that the first point t

such that Rh(t; c2I )−Rw(t; c2I )≥ 0 has to satisfy t≤ topt(c1I ).

We now turn to the proof of (23). Specifically, we will show by backward induction on s that for c1I < c
2
I ,

Rh(s; c2I )−Rh(s; c1I )≥Rw(s; c2I )−Rw(s; c1I )≥ 0. (24)
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In order for the induction step to go through, we need to also establish for each value of s that

Rh(s; c2I )−Rh(s; c1I )≥ vs(s; c2I )− vs(s; c1I )≥ 0, (25)

where (25) is an auxiliary statement needed in the proof of (24).

Initiation: For state T both (24) and (25) hold, as Rh(T ; cI) =Rw(T ; cI) = vT (T ; cI) = 1+cI , by definition.

Induction: For general s, suppose that (24) and (25) hold for s+ 1. By definition, Rw(s; cI) = pwrw(s) +

vs+1(s + 1; cI)(1 − rw(s)) − c, and Rh(s; cI) = phrh(s) + Rh(s + 1; cI)(1 − rh(s)). Therefore, Rw(s; c2I ) −
Rw(s; c1I ) = (vs+1(s+1; c2I )−vs+1(s+1; c1I ))(1−rw(s))≥ 0, and Rh(s; c2I )−Rh(s; c1I ) = (Rh(s+1; c2I )−Rh(s+

1; c1I ))(1−rh(s))≥ 0. To complete the proof of (24) for state s, using Assumption 1, it is sufficient to establish

that Rh(s+ 1; c2I )−Rh(s+ 1; c1I )≥ vs+1(s+ 1; c2I )− vs+1(s+ 1; c1I ), which follows by the induction hypothesis

on (25).

To show (25) at state s, we need to consider four cases depending on the utility-maximizing action in (3):

1. vs(s; cI) =Rh(s; cI), for all cI ∈ {c1I , c2I},
2. vs(s; cI) =Rw(s; cI), for all cI ∈ {c1I , c2I},
3. vs(s; c

1
I ) =Rh(s; c1I ) and vs(s; c

2
I ) =Rw(s; c2I ), and

4. vs(s; c
1
I ) =Rw(s; c1I ) and vs(s; c

2
I ) =Rh(s; c2I ).

Note that in case 1, (25) at state s trivially holds. In case 2, (25) at state s follows directly from (24) at state

s. Case 3 cannot be realized since it contradicts (24) (unless there is a tie between Rh(s; cjI) and Rw(s; cjI)

for j = 1,2, but then case 3 reduces to cases 1 and 2). Finally, in case 4, the first inequality in (25) reduces

to Rw(s; c1I )≥Rh(s; c1I ), which is true in case 4, since assuming that vs(s; c
1
I ) =Rw(s; c1I ) means that keeping

the patient in the ward is the utility-maximizing action in the case where cI = c1I . It remains to show that, in

case 4, Rh(s, c2I )−Rw(s, c1I )≥ 0. But note that Rh(s, c2I )−Rw(s, c1I )≥Rw(s, c2I )−Rw(s, c1I ) by the assumption

on the optimality of sending a patient home when cI = c2I , and that Rw(s, c2I )−Rw(s, c1I )≥ 0 by (24). Thus,

we have established (25) for a general value of s. �

Lemma 7 (Monotonicity in ph). Under Assumption 1, the effective threshold is monotone decreasing

in ph. As the survival probability in case of infection at home, ph, increases, the threshold will be lower;

hence, the patient will be sent home earlier.

Proof: We first argue that it is sufficient to prove that

Rh(s;ph)−Rw(s;ph) is increasing in ph for all s. (26)

Indeed, if (26) holds, assume that p1
h < p2

h and let topt(ph) be the effective threshold associated with

the recovery probability ph. By the definition of the effective threshold, we have that Rh(topt(p
1
h);p1

h) −
Rw(topt(p

1
h);p1

h)≥ 0. By (26), we have that Rh(topt(p
1
h);p2

h)−Rw(topt(p
1
h);p2

h)≥ 0. This implies that the first

point t such that Rh(t;p2
h)−Rw(t;p2

h)≥ 0 has to satisfy t≤ topt(p1
h), hence, topt(p

2
h)≤ topt(p1

h).

To prove (26) we will use backward induction. Specifically, we will show by backward induction on s

that Rh(s;p2
h)−Rw(s;p2

h)≥Rh(s;p1
h)−Rw(s;p1

h). In order for the induction step to go through, we need to

establish for each value of s that

Rh(s;p2
h)−Rh(s;p1

h)≥Rw(s;p2
h)−Rw(s;p1

h)≥ 0, (27)
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and that

Rh(s;p2
h)−Rh(s;p1

h)≥ vs(s;p2
h)− vs(s;p1

h)≥ 0, (28)

where (28) is an auxiliary statement needed in the proof of (27).

Initiation: For state T the statement is trivial, as Rh(T ;ph) =Rw(T ;ph) = vT (T ;ph) = 1+cI , by definition.

Induction: For general s, suppose that (27) and (28) hold for s+ 1. By definition, Rw(s;ph) = pwrw(s) +

vs+1(s + 1;ph)(1 − rw(s)) − c, and Rh(s;ph) = phrh(s) + Rh(s + 1;ph)(1 − rh(s)). Therefore, Rw(s;p2
h) −

Rw(s;p1
h) = (vs+1(s+ 1;p2

h)− vs+1(s+ 1;p1
h))(1− rw(s)), and Rh(s;p2

h)−Rh(s;p1
h) = (p2

h−p1
h)rh(s) + (Rh(s+

1;p2
h)−Rh(s+1;p1

h))(1−rh(s)). To complete the proof of (27) for state s, using Assumption 1, it is sufficient

to establish that Rh(s+ 1;p2
h)−Rh(s+ 1;p1

h) ≥ vs+1(s+ 1;p2
h)− vs+1(s+ 1;p1

h) ≥ 0, which follows by the

induction hypothesis on (28).

To establish (28) for state s, we need to consider four cases depending on the utility-maximizing action in

(3). The four cases are represented by the value of vs(s;ph) = max{Rh(s;ph),Rw(s;ph)}:
1. vs(s;ph) =Rh(s;ph), for all ph ∈ {p1

h, p
2
h},

2. vs(s;ph) =Rw(s;ph), for all ph ∈ {p1
h, p

2
h},

3. vs(s;p
1
h) =Rh(s;p1

h) and vs(s;p
2
h) =Rw(s;p2

h), and

4. vs(s;p
1
h) =Rw(s;p1

h) and vs(s;p
2
h) =Rh(s;p2

h).

Note that in case 1, (28) at state s trivially holds. In case 2, (28) at state s follows directly from (27) at

state s. Case 3 is in contradiction to (27) (unless there is a tie between Rh(s;pjh) and Rw(s;pjh) for j = 1,2,

but then case 3 reduces to cases 1 and 2). Finally, in case 4, (28) reduces to Rw(s;p1
h) ≥ Rh(s;p1

h) and

Rh(s;p2
h)−Rw(s;p1

h)≥ 0. The former statement is true due to the assumption that keeping the patient in

the ward is the utility-maximizing action in this case when ph = p1
h. For the latter we have that Rh(s;p2

h)−
Rw(s;p1

h)≥Rw(s;p2
h)−Rw(s;p1

h)≥ 0, where the first inequality is due to the optimality of sending a patient

home at s when ph = p2
h and the second inequality is due to (27). Thus, we have established (28) for all s. �

Lemma 8 (Monotonicity in pw). Under Assumption 1, the effective threshold is monotone increasing

in pw. As the survival probability in case of infection at the hospital, pw, increases, the threshold will be

higher; hence, the patient will be sent home later.

Proof: We first argue that it is sufficient to prove that

Rw(s;pw) is increasing in pw for all s. (29)

To see that (29) is indeed sufficient, notice first that Rh(s) is independent of pw. Now, assume that (29) holds

and define topt(pw) as the effective threshold as a function of pw. Also, let Rw(t;pw) be the hospital (ward)

reward-to-go, as defined in (4), when the recovery probability given that the patient got an infection at the

hospital is pw. Suppose that p1
w < p2

w. By definition, Rh(topt(p
2
w)) ≥ Rw(topt(p

2
w);p2

w). By the monotonicity

of Rw(s) in pw, this implies that Rh(topt(p
2
w))≥Rw(topt(p

2
w);p1

w). But, by definition, topt(p
1
w) = min{0< t≤

T | Rh(t)≥Rw(t;p1
w)}. Thus, topt(p

1
w)≤ topt(p2

w).

To prove (29) we will use backward induction. Specifically, we will show by backward induction on s that

Rw(s;p2
w)≥Rw(s;p1

w). In order for the induction step to go through, we need to establish for each value of

s that

Rw(s;p2
w)≥Rw(s;p1

w), (30)
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and that

vs(s;p
2
w)≥ vs(s;p1

w), (31)

where (31) is an auxiliary statement needed in the proof of (30).

Initiation: For state T the statement is trivial, as Rw(T ;pw) = vT (T ;pw) = 1 + cI , by definition.

Induction: Assume that (30) and (31) hold at state s+1. We will establish that they are also true for state

s. Note that Rw(s;pw) = pwrw(s)+vs+1(s+1;pw) ·(1−rw(s+1))−c. It follows from the induction hypothesis

that Rw(s;pw) is increasing in pw. As for the value function, note that vs(s;pw) = max{Rh(s),Rw(s;pw)},
and hence is also increasing in pw. �

Lemma 9 (Monotonicity in rh). Under Assumption 1, the effective threshold is monotone in rh. As the

risk of infection at home, rh, increases, the threshold will be higher; hence, a patient will be sent home later.

Proof: We first argue that it is sufficient to prove that

Rh(s; rh)−Rw(s; rh) is decreasing in rh for all s. (32)

To see that (32) is indeed sufficient, assume that (32) holds and define topt(rh) as the effective

threshold as a function of rh. Suppose that r1
h > r2

h. By definition of the effective threshold, we

have that Rh(topt(r
1
h); r1

h) − Rw(topt(r
1
h); r1

h) ≥ 0. Due to the conjectured monotonicity, this implies that

Rh(topt(r
1
h); r2

h)−Rw(topt(r
1
h); r2

h)≥ 0. This implies that the first point t such that Rh(t; r2
h)−Rw(t; r2

h)≥ 0

has to satisfy t≤ topt(r1
h). Hence, we have that topt(r

2
h)≤ topt(r1

h).

We prove (32) by backward induction. Specifically, we will show by backward induction on s thatRh(s; r2
h)−

Rw(s; r2
h)≥Rh(s; r1

h)−Rw(s; r1
h). In order for the induction step to go through, we need to establish for each

value of s that

Rh(s; r2
h)−Rh(s; r1

h)≥Rw(s; r2
h)−Rw(s; r1

h)≥ 0, (33)

and that

Rh(s; r2
h)−Rh(s; r1

h)≥ vs(s; r2
h)− vs(s; r1

h)≥ 0, (34)

where (34) is an auxiliary statement needed in the proof of (33).

Initiation: For state T the statement is trivial, as Rh(T ; rh) =Rw(T ; rh) = vT (T ) = 1 + cI by definition.

Induction: For general s, suppose that (33) and (34) hold for s+ 1. By definition, Rw(s; rh) = pwrw(s) +

vs+1(s + 1; rh)(1 − rw(s)) − c, and Rh(s; rh) = phrh(s) + Rh(s + 1; rh)(1 − rh(s)). Therefore, Rw(s; r2
h) −

Rw(s; r1
h) = (vs+1(s+1; r2

h)−vs+1(s+1; r1
h))(1−rw(s)), and Rh(s; r2

h)−Rh(s; r1
h) = phr

2
h(s)+Rh(s+1; r2

h)(1−
r2
h(s))− phr1

h(s)−Rh(s+ 1; r1
h)(1− r1

h(s))≥ phr1
h(s) +Rh(s+ 1; r2

h)(1− r1
h(s))− phr1

h(s)−Rh(s+ 1; r1
h)(1−

r1
h(s)) = (Rh(s+ 1; r2

h)−Rh(s+ 1; r1
h))(1− r1

h(s)), where the inequality follows from the fact that by assump-

tion r1
h(s)≥ r2

h(s), and from the fact that, by (1), ph ≤Rh(s+ 1; r2
h). That is, by replacing r2

h(s) with r1
h(s)

in the expression above, we end up replacing a convex combination of ph and Rh(s+ 1; r2
h) with another

convex combination of these two terms that gives a higher weight to the lower term ph. To complete the

proof of (33) for state s, using Assumption 1, it is sufficient to establish that Rh(s+ 1; r2
h)−Rh(s+ 1; r1

h)≥
vs+1(s+ 1; r2

h)− vs+1(s+ 1; r1
h)≥ 0, which follows by the induction hypothesis on (34).

To show (34) for state s, we need to consider four cases depending on the utility-maximizing action in (3).

The four cases depend on the maximizing action in vs(s; rh) = max{Rh(s; rh),Rw(s; rh)} for r1
h and r2

h:
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1. vs(s; rh) =Rh(s; rh), for all rh ∈ {r1
h, r

2
h},

2. vs(s; rh) =Rw(s; rh), for all rh ∈ {r1
h, r

2
h},

3. vs(s; r
1
h) =Rh(s; r1

h) and vs(s; r
2
h) =Rw(s; r2

h), and

4. vs(s; r
1
h) =Rw(s; r1

h) and vs(s; r
2
h) =Rh(s; r2

h).

Note that, in cases 1 (34) at state s trivially holds and in case 2 (34) follows directly from (33). Case 3 is in

contradiction in (33) (unless there is a tie between Rh(s; rjh) and Rw(s; rjh) for j = 1,2, but then case 3 reduces

to cases 1 and 2). Finally, in case 4, (34) reduces to Rw(s; r1
h)≥Rh(s; r1

h) and Rh(s; r2
h)−Rw(s; r1

h)≥ 0. The

former statement is true due to the assumption about the utility-maximizing action in the case rh = r1
h. For

the latter we have that Rh(s; r2
h)−Rw(s; r1

h)≥Rw(s; r2
h)−Rw(s; r1

h)≥ 0, where the first inequality is due to

the optimality of sending a patient home at s when rh = r2
h and the second inequality is due to (33). Thus,

we have established (34) for all s. �

Proof of Lemma 1 (Monotonicity in rw): We need to establish that if pw ≤ vs(s) for all s, then

the effective threshold is monotone decreasing in rw. Since Rh(s) is independent of rw, we argue that it is

sufficient to prove that, under the Lemma’s conditions,

Rw(s) is decreasing in rw for all s. (35)

To see that this is indeed sufficient, suppose that Rw(s) is decreasing in rw and define topt(rw) as the effective

threshold as a function of rw. Also, let Rw(t; rw) be the hospital (ward) reward-to-go, as defined in (4), when

the infection hazard rate function at the hospital is rw. Suppose that r1
w < r

2
w. By definition, Rh(topt(r

1
w))≥

Rw(topt(r
1
w); r1

w). By the monotonicity of Rw(s) in rw, this implies that Rh(topt(r
1
w))≥Rw(topt(r

1
w); r2

w). But,

by definition, topt(r
2
w) = min{0< t≤ T | Rh(t)≥Rw(t; r2

w)}. Thus, topt(r
2
w)≤ topt(r1

w).

To prove (35) we will use backward induction. Specifically, we will show that for each value of s that

Rw(s; r2
w)≤Rw(s; r1

w), (36)

and that

vs(s; r
2
w)≤ vs(s; r1

w), (37)

where (37) is an auxiliary statement needed in the proof of (36).

Initiation: For s= T : Rw(T ) = vT (T ) = 1 + cI , by definition, hence both (37) and (36) hold.

Induction: Assume that the monotonicity of Rw(s+ 1; rw) and vs+1(s+ 1; rw) in rw holds for state s+ 1.

We show that in that case it also holds for state s. By definition, Rw(s; rw) = pwrw(s) + vs+1(s+ 1; rw) ·

(1− rw(s))− c, which is decreasing in rw, by assumption, since Rw(s; rw) is a convex combination of pw and

vs+1(s+1; rw) (minus c), pw ≤ vs+1(s+1; rw) by the Lemma’s assumption, the coefficient of pw is increasing,

and from the induction hypothesis. In particular, Rw(s; r1
w) = pwr

1
w(s) + vs+1(s + 1; r1

w)(1 − r1
w(s)) − c ≥

pwr
2
w(s) + vs+1(s+ 1; r1

w)(1− r2
w(s))− c ≥ pwr2

w(s) + vs+1(s+ 1; r2
w)(1− r2

w(s))− c = Rw(s; r2
w). Finally, the

monotonicity of vs(s; rw) in rw, i.e. (37), follows straightforwardly by (5). �

Proof of Corollary 1: By definition vs(s)≥Rh(s). Thus, if pw ≤Rh(s), the conditions of Lemma 1

are satisfied and therefore the effective threshold is monotone decreasing in rw. �
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Proof of Corollary 2: The first thing to note is that if (6) holds, then

pw− ph
1 + cI − ph

≤
i∏

j=1

(1− rh(T − j)), ∀i= 1, ..., T − 1.

This is because removing terms from the product on the RHS of (6) will not decrease this product. The

corollary then follows from Corollary 1 and Equation (1). �

Proof of Corollary 3: We will show by backward induction that if c= 0, then pw ≤ vs(s) for all s. The

proof will then follow from Lemma 1. For s= T , vT (T ) = 1 + cI ≥ 1> pw. Suppose that at time s+ 1 we have

that vs+1(s+ 1)≥ pw. When c= 0, Rw(s) is a convex combination of pw and vs+1(s+ 1) — a term that is

greater than or equal to pw by the induction hypothesis. Thus, Rw(s)≥ pw. But, by definition, vs(s)≥Rw(s).

�

Proof of Proposition 2: Assume that rw(·)≤ rh(·), pw ≥ ph, and c= 0. Let τ1 and τ2 be two thresholds

such that τ1 < τ2. To prove Proposition 2 we need to show that Jτ1 ≤ Jτ2 . By (8), this is the same as showing

that Rτ1(1) ≤ Rτ2(1). In fact, we will prove a stronger claim in which Rτ1(t) ≤ Rτ2(t) for all t ∈ {1, ..., T}

(where recall that Rτ (t) is the reward-to-go from t to T under a threshold τ , see (7)). The proof is based on

backward induction.

For all t ≥ τ2 we have that Rτ1(t) = Rτ2(t) since the patient is at home from time τ2 to T under both

policies. We next consider times t such that τ1 ≤ t < τ2. Assume that the inequality holds for time t+ 1, i.e.,

Rτ2(t+ 1)−Rτ1(t+ 1)≥ 0, and show that it also holds for t.

Rτ2(t)−Rτ1(t)

= rw(t)pw + (1− rw(t))Rτ2(t+ 1)− (rh(t)ph + (1− rh(t))Rτ1(t+ 1))

≥ rw(t)pw− rh(t)ph +Rτ1(t+ 1)(rh(t)− rw(t))

≥ rw(t)ph− rh(t)ph +Rτ1(t+ 1)(rh(t)− rw(t))

= (rh(t)− rw(t))(Rτ1(t+ 1)− ph)≥ 0.

The first equality follows from plugging in Equations (1) and (7), and the assumption that c= 0. The third-

line inequality follows from the inductive assumption. The fourth-line inequality is due to the proposition’s

assumptions regarding p. The last inequality is due to the proposition’s assumptions regarding r and since

Rτ (t)≥min{pw, ph}= ph, which can be shown by backward induction using Equations (1) and (7).

For t < τ1 the expressions are the same and so the inequality remains true.

Since Jτ is monotone increasing in τ , it gets its maximal value at τ = T , which means it is optimal to

hospitalize the patient until the end of the horizon. �

Proof of Proposition 3: Assume that rw(·)> rh(·) and pw = ph. Let τ1 and τ2 be two thresholds such

that τ1 < τ2. To prove Proposition 3 we need to show that Jτ1 ≥ Jτ2 . By definition, this is the same as showing

that Rτ1(1)≥Rτ2(1). We will prove the stronger claim that Rτ1(t)≥Rτ2(t) for all t ∈ {1, ..., T}. The proof

is based on backward induction.

For all t ≥ τ2 we have that Rτ1(t) = Rτ2(t) since the patient is at home from time τ2 to T under both

policies. We next consider times t such that τ1 ≤ t < τ2. We start from t= τ2−1 and move backward (toward
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τ1), by induction. Assume that the inequality holds for time t+ 1, i.e., Rτ2(t+ 1)−Rτ1(t+ 1)≤ 0, and show

that it also holds for t.

Rτ2(t)−Rτ1(t)

= rw(t)pw + (1− rw(t))Rτ2(t+ 1)− c− (rh(t)ph + (1− rh(t))Rτ1(t+ 1))

≤ rw(t)pw− rh(t)ph +Rτ1(t+ 1)(rh(t)− rw(t))

= rw(t)ph− rh(t)ph +Rτ1(t+ 1)(rh(t)− rw(t))

= (rh(t)− rw(t))(Rτ1(t+ 1)− ph)≤ 0.

The first equality follows from plugging in Equations (1) and (7). The third line inequality is due to the

induction hypothesis and the fact that c≥ 0. The fourth line equality is due to the proposition’s assumption

regarding p. The last inequality follows from the fact that Rτ (t) ≥ min{pw, ph} = ph, which can again be

shown by backward induction on (1) and (7).

Once t < τ1 the expressions are the same and so the inequality remains true.

Since Jτ is monotone decreasing in τ it obtains its maximal value at τ = 1, which means all patients are

discharged immediately; i.e., the no-observation policy is optimal. �

Proof of Proposition 4: Assume that 0 < rh < rw < 1, that both are constant over time, and that

Assumption 1 holds. Recall the definition of f(τ) in (9). Specifically,

f(τ) :=Rτ (τ − 1)−Rτ−1(τ − 1) = rw(pw− ph)− (rw− rh)(1− rh)T−τ (1 + cI − ph)− c, 1< τ ≤ T.

Let τ̂ := max{2≤ τ ≤ T | f(τ)> 0}, and τ̂ := 1 if f(τ)≤ 0 for all τ ≥ 2. Then, we need to prove that Jτ is

(strictly) increasing in τ for all values up to τ̂ and is decreasing afterwards.

We first note that f(τ) is decreasing in τ . In particular, it crosses 0 at most once. Therefore, f(τ)> 0 for

all τ ≤ τ̂ and f(τ)≤ 0 for all τ > τ̂ . Thus, to show that Jτ obtains its maximal value at τ̂ it is sufficient to

show that (i) Jτ is locally strictly increasing in τ (namely, Jτ >Jτ−1), for any τ such that f(τ)> 0, and that

(ii) that J(τ) is locally (weakly) decreasing in τ (namely, Jτ ≤ Jτ−1), for any τ such that f(τ)≤ 0.

(i) Suppose that f(τ)> 0. We will show that this implies that

Rτ (t)>Rτ−1(t) for all 1≤ t≤ τ − 1. (38)

This, in particular, will imply that Rτ (1)>Rτ−1(1), which, by definition, is equivalent to showing that Jτ

is locally strictly increasing in τ . We prove (38) by backward induction on t. For t = τ − 1, (38) directly

follows from the definition of f(τ) as f(τ) =Rτ (τ − 1)−Rτ−1(τ − 1) and the assumption on f being strictly

positive at τ . Let t < τ − 1 and suppose that Rτ (t)−Rτ−1(t)> 0. We want to show that this implies that

Rτ (t− 1)−Rτ−1(t− 1)> 0. Indeed, by (7),

Rτ (t− 1)−Rτ−1(t− 1) = rwpw + (1− rw)Rτ (t)− (rwpw + (1− rw)Rτ−1(t))> 0,

where the last inequality follows from the inductive assumption.

(ii) The proof of the sufficient condition for Jτ to be locally decreasing in τ is analogous to locally increasing

proof. Details are omitted. �
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Appendix B: Proofs for Section 4

Proof of Lemma 2: Suppose that the system is overloaded under the threshold topt and consider an optimal

solution (K,~λ,~τ) to (13). Suppose that
∑K+1

i=1
λ̄i
µτi

< 1. Then, by the overloaded system assumption, there is

at least one class k0 such that τk0 < topt. Recall that τK+1 := topt. Clearly, µk0 >µK+1, and, by the optimality

of topt, we have that Jtopt ≥ Jτk0 . We now construct a modified solution (K, λ̃, τ̃) as follows:

• τ̃k = τk, for all k.

• λ̃k = λ̄k, for all k 6= k0 and k 6=K + 1.

• For 0< ε≤ λ̄k0 , set λ̃k0 = λ̄k0 − ε and λ̃K+1 = λ̄K+1 + ε.

Then as long as ε is small enough we have that for the new solution the two constraints of (13) are still

satisfied and the objective function is not smaller than in the original solution. Repeat this process until∑K+1
i=1

λ̄i
µτi

= 1. �

Proof of Lemma 3: The proof follows a straightforward approach relying on first-order necessary con-

ditions for optimality. First note that the Lagrangian corresponding to the optimal solution to problem (16)

(which is equivalent to (18)) is

L(τl, τh, λ̄l, α) = λ̄lJτl + (λ̄− λ̄l)Jτh +α
(
λ̄µτl + λ̄lµτh − λ̄lµτl −µτhµτl

)
, (39)

where 0 ≤ τl ≤ τh ≤ topt, λ̄l ∈ [0, λ̄] and α > 0. Moreover, in this Lemma we focus on solutions of the form

τl < τh. We obtain necessary conditions for the optimality of the internal solutions by taking the derivative

of (39) with respect to each variable (τl, τh, λ̄l, α).

∂L

∂τl
= λ̄lJ

′
τl

+α
(
λ̄µ′τl − λ̄lµ

′
τl
−µτhµ

′
τl

)
= 0, (40)

∂L

∂τh
= (λ̄− λ̄l)J ′τh +α

(
λ̄lµ

′
τh
−µ′τhµτl

)
= 0, (41)

∂L

∂λ̄l
= Jτl − Jτh +α (µτh −µτl) = 0, (42)

∂L

∂α
= λ̄µτl + λ̄lµτh − λ̄lµτl −µτhµτl = 0. (43)

By (40), we get

α=
λ̄lJ

′
τl

(λ̄l +µτh − λ̄)µ′τl
.

Further, by (41), we get

α=
(λ̄l− λ̄)J ′τh

(λ̄l−µτl)µ′τh
.

Finally, by (42), we get

α=
Jτh − Jτl
µτh −µτl

.

Thus, item (a) in the lemma follows by replacing λ̄l by
λ̄−µτh

1−µτh/µτl
(by (43)), in two of the above terms and

comparing them.

For item (b), notice that τl = 0 and thus µ0 =∞. Hence, λ̄l = λ̄−µτh , and so the Lagrangian becomes

L(τh, λ̄l, α) = λ̄lJ0 + (λ̄− λ̄l)Jτh +α
(
λ̄− λ̄l−µτh

)
. (44)
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We obtain the necessary conditions for optimality by taking the derivative of (44) with respect to each

variable (τh, λ̄l, α) as follows:

∂L

∂τh
= (λ̄− λ̄l)J ′τh −αµ

′
τh

= 0,

∂L

∂λ̄l
= J0− Jτh −α= 0,

∂L

∂α
= λ̄− λ̄l−µτh = 0.

The statement of this item follows straightforwardly by extracting α from the first two derivatives and

comparing the two, while assigning λ̄− λ̄l = µτh from the third equation.

Analogously, we can prove item (c). Note that τh = topt is an assumption here. Thus, the Lagrangian

becomes

L(τl, λ̄l, α) = λ̄lJτl + (λ̄− λ̄l)Jtopt +α
(
λ̄µτl + λ̄lµtopt − λ̄lµτl −µtoptµτl

)
. (45)

We obtain the necessary conditions for optimality by taking the derivative of (45) with respect to each

variable (τl, λ̄l, α) as follows:

∂L

∂τl
= λ̄lJ

′
τl

+α
(
λ̄µ′τl − λ̄lµ

′
τl
−µtoptµ′τl

)
= 0,

∂L

∂λ̄l
= Jτl − Jtopt +α

(
µtopt −µτl

)
= 0,

∂L

∂α
= λ̄µτl + λ̄lµtopt − λ̄lµτl −µtoptµτl = 0,

from which the statement of this item is easily extracted. �

Proof of Lemma 4:

(a) Suppose that ξ(τ) is monotone decreasing; then, we show that the necessary conditions for the opti-

mality of 2×Sp and Sp-FS—i.e., Eqs. (19) and (21)—cannot hold. To see this, note first that because µτ is

decreasing in τ ,

− µτl
µτh

J ′τl
µ′τl

=
µτl
µτh

ξ(τl)>
µτl
µτh

ξ(τh)>
µτh
µτl

ξ(τh) =−µτh
µτl

J ′τh
µ′τh

,

which is in contradiction to (19). Now consider (21).

If ξ(τ) is monotonic decreasing then

(Jtopt − Jτl)µtopt
(µtopt −µτl)µτl

>
(Jtopt − Jτl)µτl
(µtopt −µτl)µτl

=
Jtopt − Jτl
µtopt −µτl

=

∫ topt
τl

J ′τdτ∫ topt
τl

µ′τdτ
=

∫ topt
τl

J ′τ
µ′τ
µ′τ
dτ∫ topt

τl
µ′τdτ

=

∫ topt
τl

ξ(τ)(−µ′τ )dτ∫ topt
τl

µ′τdτ
>

∫ topt
τl

ξ(τl)(−µ′τ )dτ∫ topt
τl

µ′τdτ
=−ξ(τl) =

J ′τl
µ′τl

.

This is again because Jτ is increasing in τ and ξτ and µτ are both decreasing in τ . The resulting inequality

is in contradiction to (21).

(b) We start by observing that by Corollary 4 an optimal solution to (18) exists and it belongs to one of

the five cases outlined in the corollary. In the case of the current lemma, since the policies 2×Sp and Sp-FS

have been eliminated in part (a), the only viable options are policies of type Bl-Sp, 1×Sp, and Bl-FS. What

these cases have in common is that in all of them there is a speedup threshold τ , such that τ∗ ≤ τ ≤ topt and
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any patient who is not assigned a bed with the intention to be released at time τ is blocked. Thus, the key

to identifying the optimal solution is to find the optimal speedup threshold τ .

Suppose that Jτ−J0
µτ

< ξ(τ) for all τ∗ ≤ τ ≤ topt and consider τ such that τ∗ < τ < topt. Then, we have that

Jτ−J0
µτ

< ξ(τ) if and only if

µ′τ (Jτ − J0) +J ′τµτ > 0. (46)

Now note that for policies of type Bl-Sp, 1×Sp, and Bl-FS, the objective function of (18) at a speedup

threshold of τ is equal to

Vcap(τ) := λl(τ)J0 + (λ̄−λl(τ))Jτ ,

where λl(τ) = λ̄−µτ and, in particular, λl = 0 in 1×Sp (because then λ̄= µτ ). Then, the derivative of Vcap(τ)

is

V
′

cap(τ) = λ
′

l(τ)J0 + λ̄J
′

τ −λ
′

l(τ)Jτ −λl(τ)J
′

τ = (λ̄−λl(τ))J
′

τ +λ
′

l(τ)(J0− Jτ ) =

µτJ
′

τ +λ
′

l(τ)(J0− Jτ ) = µτJ
′

τ +µ
′

τ (Jτ − J0),

where the latter is positive, by (46). Therefore, the τ that maximize Vcap(τ) is the largest threshold possible

in the range [τ∗, topt], i.e., topt, which implies that the Bl-FS policy is optimal here.

(c) In this case, first note that if Jτ∗−J0
µτ∗

> ξ(τ∗) then Jτ−J0
µτ

> ξ(τ) for all τ∗ ≤ τ ≤ topt. Because

Jτ − J0

µτ
>
Jτ∗ − J0

µτ∗
> ξ(τ∗)> ξ(τ).

The rest of the proof is analogous to the proof of (b), expect for the reverse inequality of Eq. (46) which

implies that Vcap(τ) is decreasing in τ .

(d) The proof of this item is straightforward given the proofs of the above two items and hence is omitted.

�
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