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We analyze a queueing model that we call Erlang-R, where the “R” stands for reentrant customers. Erlang-R
accommodates customers who return to service several times during their sojourn within the system, and

its modeling power is most pronounced in time-varying environments. Indeed, it was motivated by health-
care systems, in which offered-loads vary over time and patients often go through a repetitive service process.
Erlang-R helps answer questions such as how many servers (physicians/nurses) are required to achieve prede-
termined service levels. Formally, it is merely a two-station open queueing network, which, in a steady state,
evolves like an Erlang-C (M/M/s) model. In time-varying environments, on the other hand, the situation dif-
fers: here one must account for the reentrant nature of service to avoid excessive staffing costs or undesirable
service levels. We validate Erlang-R against an emergency ward (EW) operating under normal conditions as
well as during a mass casualty event (MCE). In both scenarios, we apply time-varying fluid and diffusion
approximations: the EW is critically loaded and the MCE is overloaded. In particular, for the EW we propose a
time-varying square-root staffing policy, based on the modified offered-load, which is proved to perform well
over small-to-large systems.
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1. Introduction: The Erlang-R Model
It is natural and customary to use queueing mod-
els in support of workforce management. Most com-
mon are the Erlang-C (M/M/s), Erlang-B (M/M/s/s),
and Erlang-A (M/M/s+M) models, all used, for exam-
ple, as models of call centers. But when consid-
ering healthcare environments, we find that these
models lack a central prevalent feature, namely, that
customers might return to service several times dur-
ing their sojourn within the system. Therefore, the ser-
vice offered has a discontinuous nature, because it is
not provided at a single event. This has motivated our
queueing model, (the time-varying) Erlang-R (“R” for
reentrant customers or repetitive service), which
accommodates the return-to-service phenomena.

More explicitly, we consider a model where cus-
tomers seek service from servers. After service is com-
pleted, with probability 1 − p they exit the system
and with probability p they return for further service,
after a random delay time. We refer to the service
phase as a needy state and to the delay phase as a con-
tent state (following Jennings and de Véricourt 2011).
Thus, during their stay in the system, customers start
in a needy state and then alternate between needy
and content states. We assume that there are multi-
ple servers in the system, and their number st can
vary with time. When customers become needy and

a server is idle, they are immediately treated by a
server. Otherwise, customers wait in queue for an
available server. The queueing policy is FCFS (first-
come first-served). Needy service times are indepen-
dent and identically distributed (i.i.d.), with general
distributed G1 and mean 1/�, and content times are
i.i.d. with general distribution G2 and mean 1/�. We
also assume that the needy and content times are
independent of each other and of the arrival process.
The arrival process is a time-inhomogeneous Poisson
process with rate function �t , t ≥ 0; this is empirically
justified, for example, in Maman (2009). Some of our
results require that the needy and content times have
concrete distributions (exponential, deterministic). We
shall state specifically when this is the case. Figure 1
displays our system schematically.

1.1. Examples of Service Systems with
Reentrant Customers

We now describe examples that underscore the prac-
tical relevance of Erlang-R: An emergency ward (EW)
under normal conditions or during a mass casualty
event (MCE), the radiology reviewing process, oncol-
ogy bed management, and call centers.

The first example captures the complex medi-
cal service process, provided by EW physicians (or
nurses) (Marmor and Sinreich 2005). We consider
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Figure 1 The Erlang-R Queueing Model
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separately normal and stressful EW conditions. For
the first, the process starts by admitting patients
and referring them to an EW physician. The physi-
cian examines them to decide between discharge
versus hospitalization—a decision that could require
a series of medical tests. Thus, the process that a
patient experiences, from the physician’s perspective,
fits Erlang-R: a physician visit is a needy state; and
between each visit, the patient is in a content state,
which represents the delay caused by undergoing
medical tests such as X-rays, blood tests, or exami-
nations by specialists. After each visit to the physi-
cian, a decision is made to release the patient from the
EW (home or hospitalized), or to direct the patient to
additional tests. We shall verify later, in §6, that the
simple Erlang-R model captures the essence of the com-
plete EW process, enough to render the model useful
for staffing applications.

EWs often accommodate MCEs, and these are
inherently transient (Cohen et al. 2013). Based on
data from an MCE drill, as described in §7.1, we
demonstrate that our time-varying Erlang-R can accu-
rately forecast MCE census and hence support its
management. Ours is a chemical MCE, and these
share treatment protocols that are especially amenable
to Erlang-R modeling: every T minutes or so, each
patient must be monitored and given an injection,
where T depends on severity. (In our case, patients
were triaged into four levels of severity: the most
acute required treatment every 10 minutes, the second
level every 30 minutes, etc.)

Our second example is the radiology reviewing
process (Lahiri and Seidmann 2009). After a mam-
mography test, the radiologist interprets the results.
In some cases, part of the information on the patient
is lacking: the radiologist starts the reviewing but
the case must be put on hold. One then waits for
this additional information to arrive, after which
the reviewing process starts again. With radiologists
being the servers, this can be modeled using our
needy–content cycle.

The third example is the process of bed manage-
ment in an oncology ward. In such a medical ward,
patients return for hospitalization and treatment far
more frequently than in regular wards. Here servers

are the beds, the needy state models the times when
a patient is in the hospital, and the content state cor-
responds to a patient being at home. A patient leaves
the system when cured or unfortunately passes away.
(A hospital colleague tells us that the same dynam-
ics could possibly fit a geriatric ward during the
flu season, when elderly patients transfer back and
forth between their (nursing) home and the hospital.)
Lessons from fitting Erlang-R to this and the above
examples are summarized in §8.

Our prime motivation is healthcare, yet, Erlang-R
is clearly relevant to other environments, for exam-
ple, call center customers who return for additional
services (Zhan and Ward 2012, Khudyakov et al.
2010). Note that our reentrant customers differ from
what is traditionally referred to as retrial customers
in queueing theory (redials in call centers) (e.g., Falin
and Templeton 1997): these leave the system prior
to service, in response to all lines being busy or
after abandonment because of impatience, whereas
our customers return after service and their returns
are considered part of the service process.

1.2. Contributions
The contributions of our paper are both theoretical
and practical. The main ones are as follows:

Theoretical understanding of the significance of reen-
trance, leading to practical insights for the above healthcare
examples (§8). A central question is when must cus-
tomer returns be acknowledged explicitly, as opposed
to being absorbed within the service or arrival process.
(This absorption has been common practice; see, e.g.,
Green et al. 2006.) Our important insight (§§3 and 4)
is that returns become significant in time-varying sys-
tems (they are not so in a steady state)—roughly
speaking, when the arrival rate varies noticeably dur-
ing the sojourn-time of a customer within the sys-
tem (§4.2). In particular, with periodic arrivals and
exponential services, this significance is most pro-
nounced when the period duration of the arrival
process is around

√

��41 − p5 (§4.3); another insight
is that reentering customers smooth (reduce the
amplitude of) staffing requirements over time (Theo-
rem 5); the lessons are similar for deterministic service
times but the story is then somewhat more complex
(see §EC.1.5 of the Internet supplement, available at
http://dx.doi.org/10.1287/msom.2013.0474).

Stabilizing performance of time-varying queueing net-
works via square-root staffing (SRS) rules (§5). Signifi-
cantly, this has been so far proved feasible only for
isolated queues (Jennings et al. 1996, Feldman et al.
2008, Whitt 2013). As explained below, the network
for which performance is stabilized could be rather
general—for example, the full-fledged EW network
in §6. Our method requires explicit calculations of the
time-varying offered-load, based on Massey and Whitt
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(1993), as well as of key performance measures for
Erlang-R (§§3 and 4).

Analytical approximations for the queue-length and
number-of-busy-servers processes. These are derived sep-
arately for systems that are supercritical (e.g., EWs
during MCEs as described in §7) by implementing
methods from Mandelbaum et al. (1998), or systems
that are well balanced, namely, quality and efficiency
driven (QED; see the Internet supplement, §EC.3,
which is a manifestation of the modified-offered-load
(MOL) principle as in Massey and Whitt 1994).

Developing and implementing a complete framework for
assessing the practical value of asymptotic queueing the-
ory. This framework entails four network models:
queueing, fluid, diffusion and simulation. To elabo-
rate, asymptotic queueing models have been tradi-
tionally tested for accuracy against their mathematical
origins: for example, our formulae for QED approx-
imations (§EC.3) or transient fluid/diffusion models
(§7) would have been compared, for numerical accu-
racy, against Erlang-R (Figure 1) steady-state formulae
or transient simulation, respectively. In contrast, here
we seek added value of asymptotic models rather
than accuracy, which we test against a full-fledged
proxy (simulation) of the complex EW reality. The
added value comes about from

• stabilizing the performance of an EW in normal
conditions, using staffing recommendations that are
based on the QED Erlang-R (§6);

• capturing the dynamics of an EW during a
chemical MCE via transient fluid and diffusion
models—this utilizes radio-frequency identification
(RFID)-based data from an MCE drill, which, interest-
ingly, had to be uncensored (§7.1);

• validating the applicability (and understanding
the limitations) of SRS to very small systems, e.g.,
with one to 10 servers (§5.2; this was first observed
in Borst et al. 2004, then taken advantage of for
healthcare systems in Jennings and de Véricourt 2011,
and recently found theoretical explanations in Janssen
et al. 2011).

Erlang-R can be viewed as a proxy for a general time-
varying network from the viewpoint of a particular service
station. To this end, one chooses the latter to be the
needy station (e.g., physicians in our case) and the rest
of the network is aggregated into the content station
(the rest of the EW). The value of this approach, as
discussed above, is the successful stabilization of EW
performance via physician staffing that is Erlang-R
generated.

2. Literature Review
The medical workforce of a hospital consists of
nurses, physicians, and support staff, all jointly con-
tributing as much as 70% to the hospital’s opera-
tional budget (Israel Ministry of Health 2006). Thus,

careful management of workforce capacity is called
for, and here queueing models come naturally to the
rescue. The first to consider the effect of returning
patients in healthcare were Jennings and de Véricourt
(2011). They used a closed queueing model to develop
recommendations for nurse-to-patient ratios, which
Yom-Tov (2010) then expanded to jointly accommo-
date bed allocations; both analyzed their system in a
steady state. Green et al. (2006, 2007) and Zeltyn et al.
(2011) consider explicitly time-varying queues in hos-
pital staffing. They applied the Erlang-C model for
staffing physicians in the EW: Green et al. (2006, 2007)
using the lag-SIPP (stationary independent period-
by-period) approach and Zeltyn et al. (2011) using
the infinite-server approximation plus heuristics. One
goal here is to demonstrate that Erlang-R is more
appropriate for modeling the time-varying EW envi-
ronment, which is due to the repetitive nature of ser-
vice. We refer the reader to Green et al. (2007) for
a comprehensive survey of time-varying queues and
their applications in workforce management.

We focus on QED queues to balance patients’ clin-
ical needs for timely service against the economical
preferences to operate at high efficiency. The QED
regime is widely used in call centers (Gans et al.
2003). However, Jennings and de Véricourt (2011) dis-
covered its relevance also for much smaller health-
care systems. QED queues adhere to some version
of the square-root staffing rule, which was first ana-
lyzed by Halfin and Whitt (1981). For example, in an
Erlang-C (M/M/s) model, the number of servers s is
set to s ≈ R+ �

√
R; here R is the offered-load, given

by R= � ·E6S7= �/�, and � is a quality-of-service
parameter that is set to accommodate service-level
constraints. Data from Zeltyn et al. (2011) suggest that
EWs in fact use QED staffing with 004 <�< 106.

When the arrival rate varies with time, it is nat-
ural to consider service-quality measures at every
moment in time. Our goal, in this case, is to iden-
tify staffing procedures that maintain high levels
of servers’ utilization and, jointly, no matter what
time of day customers enter the system, they will
always encounter the same (high) service level. This
goal has been addressed via two approaches. The
first uses steady-state approximations, such as in
PSA (piecewise stationary analysis), SIPP, or lag-
SIPP (Jennings et al. 1996; Green et al. 2001, 2006).
The approach works well if the system reaches a
steady state quickly. The second approach includes
the MOL in Jennings et al. (1996) or the infinite-server
approximation of Feldman et al. (2008). Here one cal-
culates or approximates the time-varying offered-load
R4 · 5, via a corresponding system with ample servers.
For example, in the time-varying Erlang-C model
(Mt/M/st), R4t5 = E6�4t − Se57E6S7 (Eick et al. 1993b).
Then one uses a time-varying adaptation of the SRS
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formula: s4t5 = R4t5 + �
√

R4t5. This approach works
very well for single queues, we shall apply it here to
Erlang-R, which encapsulates a queueing network.

3. Steady-State Performance Measures
We start with a simple steady-state analysis of the
Erlang-R model, when it is merely a two-state Jackson
network. This provides the backbone for later analy-
sis. We then present formulae for the standard quality
measures of Erlang-R. We thus assume that the ser-
vice times are exponentially distributed, and that the
arrival rate is constant �4t5 ≡ �. Let Q = 8Q4t51 t ≥ 09
be a two-dimensional stochastic queueing process,
where Q4t5= 4Q14t51Q24t55: Q14t5 represents the num-
ber of needy patients in the system at time t, and Q24t5
the number of content patients. Under our assump-
tions, the system is an open (product-form) Jackson
network with the following steady-state distribution:

�ij 2= P4Q14�5= i1Q24�5= j5=
4R15

i

�4i5
c1
4R25

j

j!
c21

where

c1 =

[

4R15
s

s!41 −R1/s5
+

s−1
∑

i=0

4R15
i

i!

]−1

1

c2 =

[

�
∑

j=0

4R25
j

j!

]−1

= e−R21

(1)

where �4i5 is defined as �4i5 2= 4i∧ s5s4i−s5+ , and R1 =

�/441 − p5�5, R2 = 4p�5/441 − p5�5. We call R1 and
R2 the steady-state offered-load of stations 1 and 2,
respectively. Now let Wt be the waiting time for ser-
vice of a (virtual) customer who becomes needy at
time t (either upon first arrival or returning); let
W = limt→� Wt denote the corresponding steady-state
waiting time (weak limit).

Theorem 1. Assume that S1
d
= exp4�5 and S2

d
=

exp4�5, and the arrival rate is constant �. Then

� 2= P4W > 05=

[

4R15
s

s!41 −R1/s5

]

c11

E6W �W > 07=
1

�s41 −�5
1

4W �W > 05 d
= exp4E6W �W > 0751

where �=R1/s, and c1 is defined in (1). (Here d
= denotes

equality in distribution.)

Proof: Theorem 1 is a straightforward result of
Erlang-R being a two-node Jackson network jointly
with the arrival theorem for open Jackson networks.

In a steady state, node 1 is an M/M/s queue with
parameters 4�1�41 − p51 s5, and node 2 is an M/M/�

queue with parameters 4�1 441 − p5�5/p5. It follows
that, in a steady state, the appropriate QED staffing
policy for our model sets s =R1 +�

√

R1, �> 0, where
� is related to the desired � by

�=

[

1 +�
ê4�5

�4−�5

]−1

3 (2)

here �4 · 5 and ê4 · 5 are the standard normal density
and distribution functions, respectively, (Halfin and
Whitt 1981). Hence, in a steady state, the staffing rec-
ommendations of Erlang-R and Erlang-C coincide.

For every Erlang-R with parameters 4�1�1p1�5,
there are two naturally corresponding Erlang-C
models: one with parameters 4�1�41 − p55, in
which successive services are concatenated with no
delay between them; the second has parameters
4�/41 − p51�5, in which the number of arrivals is
amplified appropriately. Only the first option, with
concatenated services, will be considered from now
on; we refer to this model as multiservice Erlang-C.
(The second option turns out to be an inferior fit over
finite horizons, which was verified via simulations.)

4. The Offered-Load
As mentioned earlier, staffing levels that are based
on the time-varying offered-load, do stabilize per-
formance of nonstationary systems. Adopting this
approach, we now introduce the offered-load func-
tion of our time-varying Erlang-R model, denoted R=

8R4t51 t ≥ 09. Here R4t5 = 4R14t51R24t55, where Ri4t5 is
the offered-load of node i at time t. The function R4 · 5
is defined in terms of a related system, with the same
structure as ours, but in which the number of servers
in node 1 is infinite, which results in an 4Mt/G/�52

network: Ri4t5 is simply the average number of busy
servers (served customers) in this latter network, in
node i at time t; equivalently, Ri4t5 equals the aver-
age least number of servers that is required so that no
arriving customer is delayed in queue prior to service.

We now calculate R under various scenarios:

4.1. The Offered-Load for General Arrivals
and Exponential Services

Assume that Si are exponentially distributed. The
Erlang-R model is then a time- and state-dependent
Markovian service network (Mandelbaum et al. 1998),
for which the following holds:

Theorem 2. Assume that S1
d
= exp4�5 and S2

d
=

exp4�5. Then R4 · 5 is given by the unique solution of the
following ordinary differential equation (ODE): for t ≥ 0,

d

dt
R14t5= �t + �R24t5−�R14t51

d

dt
R24t5= p�R14t5− �R24t50

(3)
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The initial condition is determined by the originating
system.

Proof. See the Internet supplement, §EC.1.1.

With general time-varying arrival rates, the ODE (3)
is unlikely to be tractable analytically. Nevertheless,
one can easily solve it numerically. We used this
method for the experiments in §§5 and 6.

4.2. The Offered-Load for General Arrivals and
General Services

Let J denote the number of returns to service, thus
J

d
= Geom≥041 − p5.

Theorem 3. The offered-load R4 · 5 is given by

R14t5= E

[

�
∑

j=0

pj�4t − S
∗j
1 − S

∗j
2 − S11 e5

]

E6S17

=
E6S17

1 − p
E6�4t − S∗J

1 − S∗J
2 − S11 e571

R24t5= E

[

�
∑

j=1

pj�4t − S
∗j
1 − S

∗j−1
2 − S21 e5

]

E6S27

=
E6S27

1 − p
E6�4t − S∗J

1 − S∗J−1
2 − S21 e571

(4)

where Si1 e is a random variable representing the excess ser-
vice time at node i, S∗j

i is the sum of j i.i.d random variables
Si (the j-convolution of Si), and all these random variables
are assumed independent.

Proof. This theorem follows from Massey and
Whitt (1993). For completeness, we provide a proof in
the Internet supplement, §EC.1.1.

Proposition 1. A second-order Taylor-series approxi-
mation of R14 · 5 is given by

R14t5 ≈
E6S17

1 − p

[

�4t −E6S11 e + S∗J
1 + S∗J

2 75

+
1
2
�4254t5Var6S11 e + S∗J

1 + S∗J
2 7

]

0 (5)

Proof. See the Internet supplement, §EC.1.1.

Approximation (5) reveals a fundamental differ-
ence between the offered-loads of Erlang-R and its
corresponding Erlang-C. The multiservice Erlang-C
second-order approximation is R4t5 ≈ 4E6S17/41 − p55 ·

6�4t − E6S∗J
11 e75 +

1
2�

4254t5Var6S∗J
11 e77. This results from

adjusting the Erlang-C formula in Whitt (2007) to
the case where the service time is a random sum of
i.i.d. (partial) service durations. We thus observe that
Erlang-R corrects the time gap, relative to time t; it
extends this gap further by S∗J

2 , namely, the overall
time spent in the content state during a customer’s
sojourn. It follows that time-varying approximations
of the offered-load, which are based on Erlang-C,
are potentially inaccurate in both time lag and
magnitude—this will be confirmed in the sequel.

4.3. Analysis of Special Cases and Managerial
Insights: Sinusoidal Arrival Rate

In this section, we analyze the offered-load for the
special case of a sinusoidal arrival rate function.
There are several reasons for using the sine function.
First, any periodic time-varying arrival rate (hence
the corresponding offered-load) can be approximated
by a finite linear combination of sine functions, thus
leading to a Fourier expansion of the offered-load.
Second, sine functions yield closed-form solutions
to the offered-load (in some special cases). This, in
turn, reveals the role that the amplitude and fre-
quency of the arrival rate, in conjunction with ser-
vice and content time, play in our system evolution
(§4.3.1). Specifically, all these parameters jointly spec-
ify the amplitude and phase of the offered-load func-
tion, which, in turn, determines magnitude changes
in staffing levels and the timing of such changes.
This explains and quantifies the gap and its magni-
tude between peak arrival rate and peak offered-load,
hence consequent peak staffing. Finally, our closed
forms enable a comparison between Erlang-R and
the corresponding multiservice Erlang-C, thus high-
lighting the influence of returning customers and
the circumstances under which Erlang-R is a model-
ing necessity—as opposed to absorbing returns into
exogenous arrivals (§4.3.2).

Assume that

�4t5= �̄+�̄�sin42�t/f 5= �̄+�̄�sin4�t51 t≥01 (6)
where �̄ is the average arrival rate, � is the relative
amplitude, f is the period, and � = 2�/f is the fre-
quency. (We are assuming here, without loss, that the
phase of the arrival rate is 0.) Substituting this arrival
rate into (4) yields

R14t5 =
�̄

1 − p
E6S17

+ E6S17�̄�
�
∑

j=0

pjE6sin 4�4t − S11 e − S
∗j
1 − S

∗j
2 5570 (7)

We now provide explicit solutions for R4 · 5 in the
case of exponential service times. (Deterministic ser-
vice times are also amenable to the analysis; then the
amplitude and phase behavior of R4 · 5 is also interest-
ing, but less realistic and, therefore, is only hinted at
in the Internet supplement, §EC.1.5.)

4.3.1. Exponential Service Times.
Theorem 4. Assume that �4 · 5 is given in (6), and S1

d
=

exp4�5 and S2
d
= exp4�5. Then (7) has the following form:

R14t5 =
E6S17�̄

1−p
+�̄�

·

√

�−i�

4�−i�54�−i�5−p��
·

�+i�

4�+i�54�+i�5−p��

·cos4�t+�+tan−14�551 (8)

where � =�4�2 − p�2 +�25/4�4�2 +�2 + p��55.
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Figure 2 Relative Amplitude and Phase of R14 · 5 and �+

1 4 · 5 as a Function of �
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Proof. The results follow from applying the char-
acteristic function of the Exponential and Erlang dis-
tributions to (7). See the Internet supplement, §EC.1.2.

Therefore, the amplitude of R14 · 5 is

Amp4R15

= �̄�

√

�− i�

4�− i�54�− i�5− p��
·

�+ i�

4�+ i�54�+ i�5− p��
(9)

and its phase is

Phase4R15=
1

2�
cot−1

(

�4�2 − p�2 +�25

�4�2 +�2 + p��5

)

0

A similar calculation for �+

1 4t5 (�+

i 4 · 5 is the
aggregated-arrival-rate function to node i) is provided
in Theorem EC.1 of the Internet supplement, §EC.1.2.
Theorem 4 yields a simple relation between the
amplitudes of R4 · 5 and �+

1 4 · 5: Amp4R15 = Amp4�+

1 5 ·
√

�2 +�2, which separates two influences on the
offered-load amplitude: Amp4�+

1 5 is associated with
returning customers and

√

�2 +�2 with the last ser-
vice before departure. The right diagram of Figure 2
shows an analogous but additive relation between
phases: the phase of R14 · 5 is the sum of the phase
shift between �+

1 4 · 5 and �4 · 5 (due to returning cus-
tomers) with the phase shift between R14 · 5 and �+

1 4 · 5
(last service). As indicated, phases determine timing
of required staffing: a large phase corresponds to a
long time lag between the peak of the arrival rate and
the peak of staffing. We observe that the influence
of the returning customers decreases and vanishes as
� ↑ � (both in amplitude and phase).

In the the Internet supplement, §EC.1.4, we elab-
orate on the amplitude of R14 · 5 and �+

1 4 · 5. We ana-
lyze limiting cases. We show that both amplitudes are
decreasing functions of �, and that the amplitude of
R14 · 5 is an increasing function of �.

4.3.2. When Is Erlang-R Necessary? (Compar-
ing to Erlang-C). We now compare amplitudes and
phases of the offered-loads for Erlang-R with those
of the multiservice Erlang-C model. The amplitude
of the offered-load in Erlang-C, with arrival rates (6)
and service rate �c = 41 − p5�, is given by Amp4Rc5=

�̄�/
√

�2
c +�2, and its phase is �c = 41/42�55 ·

cot−14�c/�5 (Eick et al. 1993a). The ratio between the
amplitudes and phases are thus given by

AmpRatio=
Amp4R15

Amp4Rc5

=

�̄�
√

�−i�
4�−i�54�−i�5−p��

�+i�
4�+i�54�+i�5−p��

�̄�√
441−p5�52+�2

1

(10a)

PhaseRatio=
Phase4R15

Phase4Rc5

=

cot−1
(

�4�2−p�2+�25

�4�2+�2+p��5

)

cot−1
(

41−p5�

�

) 0

(10b)

Theorem 5. Assume that the arrival rate is sinusoidal
and service times are exponential. Comparing Erlang-R
with parameters (�1�1p1�) against the (multiservice)
Erlang-C model with parameters (�1 41 − p5�):

1. The amplitude of the offered-load in Erlang-R is
always smaller than that of the multiservice Erlang-C.

2. The amplitude ratio attains its minimal value when
�=

√

��41 − p5.
3. Both amplitude and phase ratios approach one as � ↑

� or � ↑ �. The amplitude ratio also approaches one as
� ↓ 0.

Proof. All results follow from analyzing Equa-
tions (10a) and (10b); see the Internet supplement,
§EC.1.3.

The first part of the theorem implies that return-
ing customers have a stabilizing effect on the system.
This means that the difference between high and low
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Figure 3 Ratio of Amplitudes and Phases Between Erlang-R and Erlang-C as a Function of � (Case Study 1, §5.1)
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staffing levels is smaller when customers reenter ser-
vice, which alleviates staffing scheduling decisions.
An example of the difference between the amplitudes
is given in the left diagram of Figure 3. Having a
smaller amplitude means that for one part of the
cycle, R14 · 5 is higher, and in the other part Rc4 · 5 will
be higher (as we show later in Figure 5). The implica-
tion is that Erlang-C will both overstaff or understaff.
The impact of this observation on the service level is
further explored in §5; it shows that one must take
into account the repetitive nature of service to avoid
excessive staffing costs or undesirable service levels.

The second part of the theorem identifies the cases
in which the difference between the amplitudes is
maximal. In particular, for periodic arrivals, this dif-
ference is most pronounced when the period dura-
tion of the arrival process is a square-root order of
the multiplication of needy service time, content time,
and the average number of services. In such cases, the
arrival rate varies significantly over the sojourn of a
customer within the system.

The phase ratio, as a function of � (see the
right diagram of Figure 3), exceeds one up to � =
√

42�2 + p41 − p5��5/p, and from that point on it is
smaller than one. Therefore, for certain values of �,
the Erlang-C offered-load leads that of Erlang-R and
for other values it lags behind.

From the last part of the theorem and Figure 3,
we gain an understanding of when the influence of
returning customers is not significant, and thus does
not require the use of the Erlang-R model. We observe
that if � ↑ �, or � ↑ �, the difference between the
offered-load of Erlang-R and Erlang-C becomes neg-
ligible. An intuitive explanation for this finding is
that when � ↑ �, the arrival rate changes so rapidly
that its changes are assimilated in the variance of the
arrival process. In this case, the offered-load becomes
constant; this is true for both Erlang-C and Erlang-R.
As � ↑ �, customers immediately return to the needy
state; thus the system behaves as if the services were

concatenated into a single exponential (41 − p5�) ser-
vice. The limit � ↓ 0 is interesting as well: here the
amplitude ratio does indeed converge to one, but the
phase ratio need not. (All the above observations will
be used, in §8, to analyze the significance of Erlang-R
in the healthcare examples of §1.1.)

5. Validation of MOL Staffing
We now propose a staffing procedure for the time-
varying Erlang-R model, which we validate via sev-
eral examples. We propose the use of the SRS with
MOL approximation (e.g., Massey and Whitt 1994).
We shall compare it to two other approaches: time-
varying Erlang-C and PSA approximation. Impor-
tantly, MOL has been proven effective for staffing
(time-varying) isolated queues. It has not been previ-
ously tested for time-varying queues within queueing
networks, which is what we do here.

The MOL algorithm for Erlang-R runs simply as
follows:

1. Calculate the time-varying offered-load R4 · 5,
generally by (4) or approximately via (3) or (5).

2. Staff the needy station according to the SRS for-
mula: s4t5=R14t5+�

√

R14t51 t ≥ 0, where � is chosen
according to the steady-state Halfin–Whitt formula
(2). (This follows from the needy part of Erlang-R hav-
ing the same steady-state distribution of the multiser-
vice Erlang-C.)

We use simulation to validate our approach. The
first example (§5.1) serves as a proof of concept and
does not mirror the hospital environment: it is too
large of a system. The second (§5.2) is a small system
with an arrival-rate shape that is taken from hospital
data, and the third example (§6) is an actual EW.

5.1. Case Study 1—Large System
In this case study, we validate our assumption that the
MOL algorithm stabilizes network performance over
time, showing along the way that Erlang-R must be
used in time-varying environments. We use a stylized
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Figure 4 Case Study 1—Simulation Results of P 4Wt > T 5 for Various � Values and W �W > 0 in Large Systems

(a) P(Wt > T), T = 5 minutes (b) W |W > 0
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sinusoidal arrival rate (6). This example has a rela-
tively large �̄ since we wish to start our validation
process with a system where the asymptotic approx-
imations are expected to work well. The parameters
of this experiment are �̄ = 30 customers per hour,
p = 2/3, �= 002, f = 24 hours, �= 1, �= 005, and 001 ≤

� ≤ 105; 100 replications were generated for each �
value.

We find that for a large enough system in the
QED regime 4� > 0035, the MOL approach stabilizes
all performance measures of the Erlang-R queueing
network. Consequently, any prespecified QED service
level can be achieved stably over time. For example,
Figure 4(a) shows the empirical P4Wt > T 5, the frac-
tion of needy arrivals at time t, who are delayed
in queue more than T units of time. This fraction
was calculated over a five-day period, for various
values of �. We note that P4Wt > T 5 is relatively
stable for all � tested. Figure 4(b) shows the condi-
tional distribution of the waiting time given delay
(W � W > 0), when �= 005. (It is calculated over all
arrivals during the five-day period.) We compare it
to the steady-state theoretical distribution, which is
exponential with rate s�41 − �5 (as stated in Theo-
rem 1). The simulation results depict the distribution
of waiting times from all replications, over the entire
time horizon. We observe a very good fit in the QED
regime (here � = 005). Other performance measures
are also considered in the Internet supplement, §EC.2.
The reason for success appears to be that the time-
varying SRS controls the system, at all times, in a state
that is very close to a naturally corresponding steady-
state system. This also explains why the constant � is
calculated using steady-state formulae, and it need
not vary in time.

Remark. Although the above performance mea-
sures, under MOL QED staffing, are close to being
constant over time, it is important to understand that
the total number of customers in the system does vary
over time. Specifically, the number of customers turns

out to be accurately described by E6Q14t57 = R14t5 +

�4R14t5/s4t5541 − 4R14t5/s4t555
−1; see the Internet sup-

plement, §EC.3, for more details.

Comparing Erlang-R, Erlang-C and PSA staffing.
In applications, researchers have used Erlang-C to
model systems in which customers return multiple
times for service. For example, Green et al. (2001,
2007) used Lag-SIPP for staffing EW physicians. We
now compare the outcome of using Erlang-R staffing
against that of using Erlang-C staffing, the latter
based on one of two methods: MOL and PSA. The
performance measure we focus on is the delay proba-
bility, setting its target level to 0.5 (hence �= 005). Fig-
ure 5(a) shows that, whereas using Erlang-R stabilizes
system performance around the prespecified target,
using Erlang-C or PSA does not. PSA performs the
worst (resulting in the least stable system), because
PSA staffing does not take into account either the
time lag or the reentrant effects. We explain the per-
formance differences by considering the offered-load
function R4 · 5 (Figure 5(b)). We observe that for one
half of the cycle, Erlang-C overestimates R4 · 5, result-
ing in overstaffing, which, in turn, results in a better
performance than the prespecified target. However, in
the other half cycle, the opposite occurs, causing the
performance to be worse than prespecified. Erlang-R,
in contrast, stabilizes performance over the whole
time horizon. (These observations also follow from
our theoretical analysis in §4.3.2.) The conclusion
again is that one must take into account the repetitive
nature of service.

5.2. Case Study 2—Small System;
Hospital Arrival Rates

In the second case study, we investigate the use of the
MOL algorithm in small systems, specifically in set-
ting staffing levels for EW physicians. To this end, we
consider the actual arrival rate function of the emer-
gency ward in Figure 6. The values for p, �, and �
were inferred from that EW data.
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Figure 5 Case Study 1—Comparing Erlang-R, Erlang-C, and PSA
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There are obvious problems in applying our MOL
approach to small systems: First, our approxima-
tions are expected to be less accurate, being limits
as systems grow indefinitely. (In our simulation, the
number of servers changes between one and eight.)
Second, rounding up a “theoretical” need of say
1.5 servers to two servers means adding 30% excess
capacity to the required capacity, which suggests dif-
ficulties in stabilizing performance around prespeci-
fied values. Related to this is the fact that the set of
achievable performance measures is manifestly dis-
crete for small systems: changing the staffing level of a
small system by a single server could discontinuously
change its performance. For example, if the offered-
load is R = 2075, the values that P4W > 05 can have
are shown in Table 1. Finally, one cannot have an EW
operate with no physicians, and for small servers this
lower bound of one plays a binding role. It is therefore
unclear whether, under these circumstances, we shall
still be able to stabilize system performance around
a predetermined value. Nevertheless, we found that
it is possible to stabilize even such small systems,
given specific (though not all, as expected) target
performance levels. The performance measures are

Figure 6 Case Study 2—Plot of Arrival Rates in an Emergency Ward
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relatively stable, and the four possible scenarios are
visibly separable. (Because of space limitations, we
have not included supporting graphs; furthermore,
Figure 9(a) in §6 well demonstrates these phenomena
in an even more complex environment.)

There is another important impact of system size
that we observed in this case study. When verifying
whether the relation between actual P4W > 05 and �
fits the Halfin–Whitt formula, we note a gap between
the two (see the left diagram in Figure 7). The left plot
in Figure 7 shows the relationship between these func-
tions, when we consider the target � values used in
the square-root formula. In most cases, the empirical
function is shifted downward, and the gap between
the two is reduced as � grows. This is mainly due
to the rounding procedure. The right plot of Figure 7
shows the same graph, but as a function of the effec-
tive � values. We observe that the two functions have
the same shape but the empirical function is shifted
upward. The gap between them appears to be con-
stant. As this seems to be the effect of using asymp-
totic approximations in such a small system, we also
applied the refined approximations of Janssen et al.
(2011). This caused the gap to narrow, but it is still
noticeable.

The practical guideline that can be derived from
these graphs is that, when targeting a specific
P4W > 05 value, one should use a smaller value of �,

Table 1 Small Systems: An Example of a Discrete Range for
P 4W > 05, as a Function of �

Target � range Effective � s P 4W > 05 (%)

4004741100557 1.055 4 3400
4100551106587 1.658 5 1104
4106581202617 2.261 6 300
1.658 and up � 7 0

Note. We distinguish between target � and effective �; the latter is the �

actually used, calculated by 4�= 4�s� −R15/
√

R15.
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Figure 7 Case Study 2—Comparison of the Erlang-R Simulation to the Formulae in Halfin and Whitt (1981) and Janssen et al. (2011)
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based on the left diagram of Figure 7. More research
is also needed to understand the Halfin–Whitt (and
Janssen et al. 2011) function for small systems while
also considering the rounding effect. As a first step,
one can develop graphs such as Figure 7, using a
steady-state simulation of an Erlang-C model.

6. Using Erlang-R for Staffing EW
Physicians: Fitting a Simple Model
to a Complex Reality

In this last case study, we test Erlang-R as a sup-
port tool for planning a real system. Specifically, we
demonstrate that it can be used to practically plan
staffing of physicians in an EW, although the real
system is far more complicated than our model. In
passing, we show that applying Erlang-C to the real
system is inferior to Erlang-R. The EW system was
briefly described in our introduction; for a complete
description see Marmor and Sinreich (2005). In our
experiment, we use their accurate and detailed EW
simulation model (it takes into account even walking
distances), which is flexible in that it is easily adapted
to a given EW. We fit the simulator to the EW of our
partner Israeli hospital (Armony et al. 2011), and then
use the simulator as an accurate portrait of the com-
plex EW reality.

Clearly, many of our main assumptions do not hold
in the EW environment. For example, service times
are not exponentially distributed and could depend
on the load in the EW, as follows from Armony et al.
(2011). Moreover, there are seven types of patients that
seek EW services, and each type goes through a differ-
ent routing process during their sojourn. The physi-
cians are divided into four groups, according to their
expertise. There is an explicit connection between a
patient type and a physician group. We now sim-
plify this complex system into an Erlang-R by setting

parameter values, for each physician type separately,
as follows:

• Arrival rate: �4 · 5 is the average arrival rate for
each hour of the day, for each physician group, as
shown in Figure 8.

• Needy times: E6S17= 1/� is estimated by averag-
ing all services given by a specific physician group.

• Content times: E6S27 = 1/� is the average time
between successive visits of a patient to the physician.

• Probability of returning to the physician for an
additional service: p is deduced from the average
number of visits of patients to their physician, which
we take to be 1/41 − p5 and solve for p.

Table 2 specifies the estimated parameters accord-
ing to physician type. We calculated (simply via a
spreadsheet) the offered-load using the differential
Equations (3), and ran the staffing recommendation
with our EW simulation. We assumed that changes
in staffing could be implemented in a one-hour res-
olution. For each interval, we calculated the average
number of physicians needed and rounded up to the
nearest integer. We used one replication of 100 weeks.
(The first setup week was excluded.)

Figure 8 shows the arrival rate and the recom-
mended number of physicians during the day, for
each type of physician, with � = 005. The number of
physicians varies between one and four. We observe
that the staffing function lags behind the arrival rate
function, with an approximate time lag of two hours.
Note that the number of physicians does not change

Table 2 Emergency Ward Simulation Parameters

Physician Patient
type type � E6S17 [hour] � E6S27 [hour] p

1 1, 7 8091 0.112 0.953 1.049 0.7743
2 2, 5 8086 0.113 0.969 1.031 0.6094
3 3, 6 10033 0.097 0.572 1.749 0.6441
4 4 12037 0.081 1.310 0.763 0.7268
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Figure 8 Emergency Ward Case Study—Patient Arrivals and Physician Staffing for Each Physician Type in Emergency Ward Simulation 4�= 0055
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every hour, and natural shift schedules could be
derived to fit this graph.

This EW system is small with merely a few
“servers.” Our results are summarized in Figure 9(a),
which depicts the probability of waiting for four val-
ues of beta: 0.1, 0.5, 1.0, and 1.5; the four cases
are clearly separable and become more stable as �
increases. Figure 9(b) shows a comparison between
the results of Erlang-R and Erlang-C for � = 105,
which is the easiest case to stabilize since the number
of physicians is the largest. We clearly observe the
significant difference between the results of the two
staffing procedures, where Erlang-R yields a much
more stable performance. Table 3 completes the pic-
ture by presenting the residual mean square error
(RMSE) and average percentage error (APE) for
each � category and patient–physician combination.
A smaller value of these measures indicates a more
stable performance. We see that Erlang-R is superior

Figure 9 Emergency Ward Case Study—P 4Wt > 05 for Various � Values
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across all � values and all physician types, but that
the variability (when � = 005) is higher at the patient
level than the aggregated one. This is mainly because
some of the patient types have very small demand
and therefore hit the staffing constraints more often
than others. As � grows, this difference diminishes.
(Supporting figures are omitted for lack of space.) We
also observe that Erlang-R improves stability by 20%–
350% (depending on � and patient-type), which could
be very significant.

To conclude, despite the simplicity of the Erlang-R
model, it does manage to capture the important
aspects of patient visits in the EW, and hospital man-
agement can use it to calculate recommended staffing
for physicians. The same outcome can be expected for
nurse staffing. In fact, one would expect better results
for nurse staffing since it gives rise to a higher number
of servers, hence the MOL is likely to be more accurate.
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Table 3 Stability Comparison Between Erlang-R and Erlang-C Staffing
in an Emergency Ward

(a) P 4Wt > 05 by � (b) P 4Wt > 05 by physician type (�= 005)

Physician
Model � RMSE APE Model type RMSE APE

Erlang-R 0.1 0.091 0.348 Erlang-R 1 0.105 0.217
0.5 0.058 0.338 2 0.142 0.459
1 0.061 0.410 3 0.109 0.259
1.5 0.031 0.404 4 0.115 0.289

Erlang-C 0.1 0.113 0.397 Erlang-C 1 0.185 0.384
0.5 0.131 0.499 2 0.139 0.480
1 0.118 0.588 3 0.133 0.324
1.5 0.111 0.688 4 0.162 0.436

Notes. RMSE =
√

4
∑n

t=14�s4t5− �e5
25/n, APE = 41/n5

∑n
t=1 �4�s4t5 − �e5/

�e�, where �s4t5 is the simulated probability of waiting at time interval t and
�e is the stable theoretical value the system was designed to achieve. (Here
the time interval is one hour, measured over a week, namely, n = 167.)

7. Fluid and Diffusion Models
of the Number of Needy
Customers, with Application
to Mass Casualty Events

In this section, we develop fluid and diffusion lim-
its for Erlang-R. We then use the resulting models/
approximations to analyze an MCE, in which service
demand fluctuates significantly and exceeds capac-
ity, over a relatively short time period. Note that
fluid models are naturally useful for analyzing time-
varying systems, and they are also useful toward
understanding the finite-horizon evolution of systems
in a steady state. For example, one might seek to
evaluate the probability that the number of customers
(patients) in the system exceeds a certain threshold
during a specific time horizon. This could support the
design of alarm protocols such as when to commence
special procedures: ambulance diversion or summon-
ing additional medical staff. In designing such proto-
cols, for example, toward avoiding excessive alarms,
one would in fact require our diffusion refinements
that determine confidence intervals around fluid sam-
ple paths; see Mandelbaum et al. (1999).

It was already noted that Erlang-R, both sta-
tionary and time varying, fits the mathematical
framework of Markovian service networks in Man-
delbaum et al. (1998). This framework justifies the
existence and uniqueness of model solutions that
accommodate time-varying arrivals and time-varying
staffing policies. Specifically, Erlang-R is represented
by Q = 8Q4t51 t ≥ 09, Q4t5= 4Q14t51Q24t55: Q14t5 is the
number of needy patients in the system at time t (i.e.,
those either waiting for service or being served), and
Q24t5 is the number of content patients in the sys-
tem. The process Q is characterized by the following

sample-path equations, for t ≥ 0:

Q14t5 = Q1405+Aa
1

(

∫ t

0
�u du

)

−Ad
2

(

∫ t

0
p�4Q14u5∧su5du

)

−A12

(

∫ t

0
41−p5�4Q14u5∧su5du

)

+A21

(

∫ t

0
�Q24u5du

)

1

Q24t5 = Q2405+A12

(

∫ t

0
p�4Q14u5∧su5du

)

−A21

(

∫ t

0
�Q24u5du

)

1

where Aa
1, Ad

2 , A12, and A21 are four mutually inde-
pendent time-homogeneous Poisson processes with
rate 1. We now introduce a family of scaled queue-
ing models, indexed by � ↗ �, such that both the
arrival rate and the number of physicians are scaled
up by �, and the needy and content service rates
remain unscaled:

Q�
1 4t5=Q�

1 405+Aa
1

(

∫ t

0
��u du

)

−Ad
2

(

∫ t

0
�p�

(

1
�
Q�

1 4u5∧ su

)

du

)

−A12

(

∫ t

0
�41 − p5�

(

1
�
Q�

1 4u5∧ su

)

du

)

+A21

(

∫ t

0
��

(

1
�
Q�

2 4u5

)

du

)

1

Q�
2 4t5=Q�

2 405+A12

(

∫ t

0
�p�

(

1
�
Q�

1 4u5∧ su

)

du

)

−A21

(

∫ t

0
��

(

1
�
Q�

2 4u5

)

du

)

0

(11)

Theorem 6. (FSLLN) Through the scaling (11), we
have

lim
�→�

Q�4t5

�
=Q4054t51 t ≥ 01

where Q4054 · 5, the fluid approximation/model, is the solu-
tion of the following ODE:

Q
405
1 4t5=Q

405
1 405

+

∫ t

0
4�u −�4Q

405
1 4u5∧ su5+ �Q

405
2 4u55 du1

Q
405
2 4t5=Q

405
2 405

+

∫ t

0
4p�4Q

405
1 4u5∧ su5− �Q

405
2 4u55 du0

(12)

The convergence to Q4054 · 5 is almost surely uniformly on
compacts.

The theorem follows from Theorem 2.2 in Mandel-
baum et al. (1998). We continue by developing diffu-
sion approximations for Erlang-R. These are used for
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calculating variances and covariances, which, in turn,
yield confidence intervals for the number of patients
in the system.

Theorem 7. (FCLT) Through the scaling (11) and with
the fluid limits (12), we have

lim
�→�

√
�

[

Q�4t5

�
−Q4054t5

]

d
=Q4154t51 t ≥ 01 (13)

where Q4154 · 5, the diffusion model/approximation, is the
solution of a stochastic differential equation, as given by
(EC.9) in the Internet supplement, §EC.1.6. The conver-
gence to Q4154 · 5 is the standard Skorohod J1 convergence
in D601�5.

The theorem is a consequence of Theorem 2.3 in
Mandelbaum et al. (1998). Our fluid and diffusion
models are easiest to apply when durations of critical
loading are negligible (the zero-measure assumption
in Mandelbaum et al. 2002). They are thus natural
as models for MCEs, during which overloading con-
stantly prevails. Formally, we have the following:

Proposition 2. Define S to be the set of times when
the fluid number of physicians equals the number of
patients in the needy state: S = 8t > 0 � Q

405
1 4t5 = st9.

Assume that this set of times S has measure zero. Then
(EC.9) simplifies to

Q
415
1 4t5 = Q

415
1 405

+

∫ t

0
4−�1

8Q
405
1 4u5≤su9

Q
415
1 4u5+ �Q

415
2 4u55 du

+Ba
1

(

∫ t

0
�u du

)

−Bd
2

(

∫ t

0
p�4Q

405
1 4u5∧ su5 du

)

−B12

(

∫ t

0
41 − p5�4Q

405
1 4u5∧ su5 du

)

+B21

(

∫ t

0
�Q

405
2 4u5du

)

1 (14)

Q
415
2 4t5 = Q

415
2 405

+

∫ t

0
4p�1

8Q
405
1 4u5≤su9

Q
415
1 4u5− �Q

415
2 4u55 du

+B12

(

∫ t

0
p�4Q

405
1 4u5∧ su5 du

)

−B21

(

∫ t

0
�Q

405
2 4u5du

)

0

The mean vector for the diffusion approximation (EC.10)
is then

d

dt
E6Q

415
1 4t57= −�1

8Q
405
1 4t5≤st9

E6Q
415
1 4t57+ �E6Q

415
2 4t571

d

dt
E6Q

415
2 4t57= p�1

8Q
405
1 4t5≤st9

E6Q
415
1 4t57− �E6Q

415
2 4t573

and the covariance matrix (EC.11) is

d

dt
Var6Q415

1 4t57

=−2�1
8Q

405
1 4t5≤st9

Var6Q415
1 4t57+2�Cov6Q415

1 4t51Q
415
2 4t57

+�t+�Q
405
2 4t5+�4Q

405
1 4t5∧st51

d

dt
Var6Q415

2 4t57

=−2�Var6Q415
2 4t57+2p�Cov6Q415

1 4t51Q
415
2 4t57

+p�4Q
405
1 4t5∧st5+�Q

405
2 4t51

d

dt
Cov6Q415

1 4t51Q
415
2 4t57

=−4�1
8Q

405
1 4t5≤st9

+�5Cov6Q415
1 4t51Q

415
2 4t57

+�Var6Q415
2 4t57+p�1

8Q
405
1 4t5≤st9

Var6Q415
1 4t57

−p�4Q
405
1 4t5∧st5−�Q

405
2 4t50

(15)

Proposition 2 supports MCE modeling and man-
agement, which we turn to next.

7.1. Mass Casualty Events
When an MCE is in progress, the EW must, over a
short time period, attend to already admitted patients,
release those who can be released, and most impor-
tantly, provide emergency care to new arrivals at
overcapacity rates. We now demonstrate that our
transient fluid and diffusion models, from the previ-
ous subsection, usefully capture the state of an EW
during an MCE. This enables one to use Erlang-R for
off-line planning of an MCE, initial reaction at its out-
set (customized to the MCE type, severity and scale),
and subsequently online MCE control until the event
winds up. We focus as before on staffing. To this end,
we use data from a chemical MCE drill. The MCE
took place in July 2010 at 11:00 a.m. and lasted till
13:15; its casualties were transported to an Israeli hos-
pital where our data were collected. The short horizon
of MCEs (here two hours) and the protocol of chemi-
cal events (periodic treatment of patients) renders the
transient Erlang-R, with its recurrent service structure,
naturally appropriate.

Our data is for the severely wounded nontrauma
patients. Figure 10(a) depicts cumulative arrival and
departure counts, collected roughly during 11:15–
13:15. The arrival rate is clearly time varying: peri-
ods with no arrivals alternate with approximately
constant arrival rates, with the rates decreasing as
time progresses. (Our hospital partners, experienced
in managing MCEs, inform us that this piecewise-
constant pattern of arrival rate is typical of MCEs:
it is attributed to the fact that casualties are trans-
ported from the MCE scene by a finite number of
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Figure 10 Chemical Mass Casualty Event Drill: Arrivals, Departures, and Erlang-R Approximations

(a) Arrival and departures in MCE drill (b) Erlang-R approximations (fluid and diffusion)
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ambulances, who traverse back and forth.) The esti-
mated arrival rate function (customers per minute) is
as follows (16a1b5 is an indicator function):

�t = 00773 × 16012254t5+ 00884 × 164416954t5

+ 005 × 16102111754t51 0 ≤ t ≤ 1200 (16)

Erlang-R parameters were estimated from medi-
cal specifications and the physics of Erlang-R, as we
now explain. The severity level of the patients under
consideration calls for medication every 30 minutes,
in addition to treating their injuries. Staffing specs
assigned every physician to four patients at a time.
(In reality, and being a drill, there were ample physi-
cians on site, which implies, no upper bound on the
number of physicians (s = �). Such resource levels
are unlikely to prevail in true-to-life MCEs, but they
facilitate the estimation of parameter values—which
are practice relevant.) One can now estimate �, p, �
via the following three equations:

1/�+ 1/�= 303 1/�+ 30p/41 − p5= 62043

�/�= 3/p0
(17)

The first equation corresponds to the 30-minute
cycle. The second represents length of stay (LOS) as
the first service followed by a geometric number of
cycles; the average LOS of 62.4 minutes is then the
classical Kaplan–Meier estimator (Kaplan and Meier
1958) for censored data: indeed, patients that were
still in treatment when the drill ended (about 20
out of 50) provided only lower bounds on their LOS.
The last equation arises from the patients-to-physician
ratio 4R1 +R25/4 =R1, in which R1, R2 are the steady-
state offered-loads from §3. Solving the equations
in (17) yields average treatment time of 5.4 min-
utes (�= 11006), average content time 24.6 minutes
(�= 2044) and p = 00662.

We now compare, in Figure 10(b), Erlang-R esti-
mators against MCE data. First we have fluid-based
estimators for Q =Q1 +Q2, the total number of casu-
alties, enveloped by a diffusion-based 95% confidence
band. This is to be compared against the actual sam-
ple path, observed from our MCE data (the differ-
ence between cumulative arrivals and departures).
Erlang-R clearly captures well the transient nature of
the MCE: the data is essentially within its confidence
band. Notably, a comparison (omitted for space con-
straints) of Erlang-R with Erlang-C demonstrated that
the latter yields noticeably inferior path-estimators: an
increase of about 45% in RMSE and APE measures,
for the reasons that were explained in §4.3.2.

After validating Erlang-R against the observed Q,
one can now trust it to infer the number of busy
physicians—see the dashed function Q1 in Fig-
ure 10(b). Its evolution was unobservable at the MCE
drill, which is a state of affairs that is to be commonly
expected. Yet Q1 is essential for planning and control
of MCEs, as discussed next.

7.1.1. Erlang-R in Support of MCE Staffing.
Since Erlang-R reliably captures MCE dynamics, one
can use it to support planning for an MCE, initial
reaction to its severity and scale and, ultimately, con-
trolling MCE evolution. For concreteness we consider
staffing upon initial reaction. The procedure would
be similar in planning, when applying Erlang-R for
comparative analysis of plausible scenarios, and con-
trol, where parameter values are updated adaptively
and then fed into Erlang-R over a rolling horizon. All
these applications entail the following steps:

1. Forecasting the arrival rate function �t (e.g., (16))
for each severity group of patients. Any forecasting
model should take into account the estimated num-
ber of casualties routed to the hospital, number of
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ambulances available, and distance from the hospital
(Jacobson et al. 2012).

2. Estimating the offered-load R4 · 5 for each severity
group, taking into account group-specific treatment
protocols as demonstrated above.

3. Calculating the staffing function s4 · 5 via s4t5 =

6R4t5 + �
√

R4t57, t ≥ 0. We recommend a relatively
high �, say � ≥ 2, to account for the emergency sit-
uation at hand. One should then accommodate con-
straints such as the available number of physicians
within the hospital and the availability and time-to-
arrive of out-of-hospital physicians.

4. Predicting EW evolution via Erlang-R under the
planned SRS.

Given our RFID-based data in Figure 10, we now
demonstrate the above steps by planning for staffing
an MCE. Being able to infer Q1 (Figure 10) yields
insights that exploit its special structure of three
phases: a first surge of arrivals (11:00–12:00), peak
period (12:00–13:00), and a closure phase from 13:00
till completion; each phase starts with an increase of
load, which is immediately followed by a decrease
because of ambulances returning to the MCE scene.
As will be demonstrated, this allows one to initially
divert physicians within the hospital to cater to the
first surge while, in parallel, summon off-duty staff
who would join (say from home) toward the second
peak surge. Staffing remains constant within a phase,
which gives rise to the following plan:

1. Initial reaction: Recall that the MCE occurred at
11:00. The first casualties arrived to the hospital at
11:15, thus starting a surge of demand (offered-load)
that peaks at 11:40: Q1 = 5. By SRS, this calls for 5 +

2
√

5 ≈ 9 physicians, which are to arrive, conceivably
from the hospital itself, until 11:15.

2. Peak period: From 12:07, demand for physicians
increases to a peak Q1 = 705 at 12:25. One needs now
705+2

√
705 ≈ 13 physicians, or an additional group of

four physicians that can join within hour from MCE
start.

3. Closure: This last phase starts around 13:00, and
arrivals cease at 13:15. A real MCE would continue at
the hospital till all casualties are hospitalized, while
gradually releasing physicians to their routine or reas-
signing them to help with already-hospitalized casu-
alties. Similarly to the above (not pursued here), one
can again use Erlang-R to plan for the release of
physicians, which, interestingly, involves also the pre-
diction of the MCE completion time.

As mentioned, Chemical MCEs naturally fit the
recurrent service structure of Erlang-R. Other types
of MCEs might need other models. For example,
with relatively more trauma patients and during off-
peak arrivals, physicians who perform initial lifesav-
ing procedures could also accompany their patients
through surgery. A corresponding model would then

consist of two queues in tandem, as analyzed by
Cohen et al. (2013).

8. Conclusions and Further Research
Motivated by staffing applications in healthcare, we
have developed a simple-yet-not-too-simple service
model, Erlang-R, which accommodates returning cus-
tomers in a time-varying environment. The model
valuably captures both normal operating conditions
and MCEs. In the former, it gives rise to an explicit
staffing recipe that matches service capacity with
time-varying demand (the QED operational regime),
which in turn stabilizes operational performance (ser-
vice level, utilization). In MCEs the model can sup-
port planning for initial reaction to and control of
such events.

We started, in the introduction, with four exam-
ples of returning customers/patients in healthcare
systems. We can now conclude, based on the analy-
sis in §§3, 4.3.2, and 7.1 and some additional hospital
data, that Erlang-R better be used for modeling EWs
(both in normal and MCE conditions) whereas, for
oncology and radiology wards, Erlang-C suffices. To
elaborate, for the EW under its normal conditions,
the parameters � = 002618 (as f = 24, in hours)
and

√

��41 − p5 ≈ 304 are such that the EW fits the
left part of Figure 3 (in both plots). The ampli-
tude ratio is within 40093100975 and the phase ratio
is within 4107135, depending on patient type (see
Table 2); hence, the significant difference is between
phases rather than amplitudes, which means that
using Erlang-C will be mostly wrong in timing—
starting (and ending) shifts too soon. In the oncology
ward, the corresponding values are � = 60283 (f = 1,
in days) and

√

��41 − p5= 000495. This puts oncology
on the right side of Figure 3, where we expect lit-
tle if any difference between the two models. Indeed,
the amplitude and phase ratios are 009987 and 009756,
respectively, namely, very close to unity. Next, radi-
ology operates in a steady-state environment, since
the arrival rate is constant, and thus need not use
Erlang-R. Finally, our last example, EW under MCE
stress, must be modeled as Erlang-R since, in tran-
sient times (over a short time horizon), the difference
between Erlang-R and Erlang-C is significant.

It is important to emphasize that, even in the
case when Erlang-C suffices to capture overall per-
formance, Erlang-R would still be preferable over a
finite horizon, or for focusing on the performance
of needy (content) patients. Erlang-R is also capable
of capturing usefully, as in §6, the operational per-
formance of a full-scale EW, from the point of view
of its physicians: the model plainly aggregates the
“world beyond physicians” into a single ample-server
station. One could do the same with EW nurses.
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One could also raise the more general question of
approximating a general queueing network, from the
point of a specific node, by an Erlang-R model (the
specific node would be needy while the rest of the
network is content)—when do such crude approxima-
tions work and, alternatively, when are their refine-
ments necessary?

The healthcare environment suggests further exten-
sions for Erlang-R. To name a few, Yom-Tov (2010)
adds an upper bound on the overall number of cus-
tomers in the system, which corresponds to finite bed
capacity; Chan et al. (2014) consider state-dependent
service times; Huang et al. (2012) trade off high pri-
ority to patients on their first visit versus, alterna-
tively, to those who have been in the system for a long
time; and, finally, customer abandonment can take
place during a first waiting (left without being seen)
or between services (left against medical advice). We
conclude with an outstanding open theoretical prob-
lem, which is the analysis of the limiting time-varying
diffusion process under SRS. This is a prerequisite for
understanding the success of our time-varying MOL
staffing.

Supplemental Material
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