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EC.1. Proofs of Theorems
EC.1.1. The O↵ered-Load Measure

Proof of Theorem 2 in Section 4.1. Let Q1 = {Q

1(t), t� 0} be a 2-dimensional stochastic pro-

cess, where Q1(t) = (Q1
1 (t),Q1

2 (t)): Q1
1 (t) represents the number of Needy patients in the system

at time t, and Q

1
2 (t) the number of Content patients, assuming we have an infinite number of

servers in Node 1 (as well as Node 2).

The process Q1(t) is characterized by the following equations:
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where A

a

1,A
d

2,A12 and A21 are four mutually independent, standard (mean rate 1), Poisson pro-

cesses. We now introduce a family of scaled queues Q⌘,1(t), indexed by ⌘ > 0, so that the arrival

rate grows to infinity, i.e. scaled up by ⌘, but leaves the Needy and Content rates unscaled. By

Theorem 2.2 (FSLLN) in Mandelbaum et al. (1998),
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where Q

(0)(·) is called the fluid approximation, which is the solution to the following ODE:
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Note that R(·) =Q

(0),1(·) by definition.

Proof of Theorem 3 in Section 4.2. Following Massey and Whitt (1993), �+
i

(·), which is the

aggregated-arrival-rate function to Node i, is given by the minimal non-negative solution to the

tra�c equations

�
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1 (t�S1)], (EC.1)
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for t� 0. Then
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where S

i,e

is a random variable representing the excess service time at Node i. Equations (EC.1)

constitute a variation of Fredholm’s integral equation, which one can solve recursively (using the

fact that S1 and S2 are independent) as follows:
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Since J

d

=Geom�0(1� p), P (J = j) = (1� p)pj, which yields the final form of (4).

Proof of Proposition 1 in Section 4.2. Consider the following second-order Taylor-series

approximation for the arrival-rate function �(·): �(t�u)⇡ �(t)��
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, u� 0, where

�

(k)(t) is the kth derivative of �(·) evaluated at time t. Then, from (4) we get an approximation for
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where, by Wald’s equation, E [S1,e +S
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EC.1.2. The O↵ered-Load for Sinusoidal Arrival Rate

Proof of Theorem 4 in Section 4.3.1. Since S
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is exponentially distributed, S
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and similarly for
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Incorporating (EC.5) and (EC.6) into (7) and using sin(x� y) = sinx cosy� siny cosx, we get:
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Similar calculations for �+
1 (t) yield the following theorem:

Theorem EC.1. Assuming that S
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and the phase of �+
1 (·) is given by
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EC.1.3. Comparing to Erlang-C

Proof of Theorem 5 in Section 4.3.2. We must prove that AmpRatio 1, which is given by:
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which is true for every µ, �,!, and 0< p 1.
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In the second part of the theorem, one must prove that AmpRatio reaches its minimum at

!=
p
�µ(1� p). The derivative of AmpRatio with respect to ! is:
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This derivative vanishes when ! = 0 or ! =
p
�µ(1� p). For ! = 0, the AmpRatio reaches its

maximum which is 1, and at !=
p
�µ(1� p) it reaches its minimal value.

The third part of the theorem is a direct result of the limits of R1(t) as presented in Proposition

EC.1 below.

EC.1.4. Analysis of Limits of R(·) with Sinusoidal Arrivals and Exponential Services

We now further investigate the relative amplitudes of the o↵ered-load R1(·) and the aggregate

arrival rate �

+
1 (·), when all service times are exponential. We state the following proposition that

highlights some of the limits of R1(·) and �

+
1 (·) with respect to ! and �:

Proposition EC.1. In the case of sinusoidal arrival rates and exponential service times, with
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Proof: The limits are obtained by straightforward calculations, based on (8), (9), and (EC.8).

We would like to understand the changes in R1(·) and �

+
1 (·) with respect to the external arrival

rate �(·). We call the ratio between the amplitudes relative amplitude. Figure EC.1a shows the

relative amplitude of R1(·) and �

+
1 (·), as a function of ! (µ and � are fixed). We observe that

the relative amplitude of R1(·) is a decreasing function of !, starting from the value 1
µ(1�p)

, and

decreasing to 0 as !!1. On the other hand, �+
1 (·) starts from the value 1

1�p

, and tends to 1 as
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Figure EC.1 Plot of Relative Amplitude.

(a) R1(t) and �+
1 (t) with respect to ! (b) R1(t) with respect to � and !

!!1. Figure EC.1b shows the relative amplitude of R1(·) as a function of ! and � (when µ= 0.5).

We observe that the relative amplitude of R1(·) is an increasing function of �, starting from the

value 1
p

µ

2+!

2
, and increasing to E[S1]�̄
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EC.1.5. Deterministic Service Times

We now discuss shortly deterministic service times. These are not usually found in healthcare sys-

tems, where exponential service times provide a good enough approximation for many applications.

Nevertheless, they are common in manufacturing and communication and, moreover, they add

insight here as well.

Theorem EC.2. Assume that S
i

are deterministic, and the arrival rate is given by (6). Then,
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and
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In order to calculate R1(t), we note that S
i,e

is uniformly distributed over [0, S
i

]. Therefore:
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Figure EC.2 shows the changes in relative amplitude and phase as a function of ! · (S1 + S2).

The deterministic case exhibits di↵erent characteristics from the exponential. First, the amplitude

of �+
1 (·) can reach as high as �̄

1�p

and as low as �̄

1+p

; the former as in the exponential case, the

latter in contrast to the exponential case where the minimal amplitude is �̄ (equals the arrival

rate amplitude). Second, we now observe a cyclic behavior, where the amplitude is maximal when

!(S1 +S2) = 2⇡j (for some integer j), and minimal when !(S1 +S2) = ⇡j; in the former case, the

returning stream from Node 2 is fully synchronized with the external input stream �(·) (S1+S2
f

is

an integer), and in the latter the returning stream balances the external input stream. This is very

di↵erent from the exponential case where we observed monotonicity and the amplitude decreases

in !. Finally, Erlang-R is most needed if !(S1 + S2)⇡ 0.25⇡j or ⇡ 1.75⇡j, when both phase and

amplitude are influenced by the reentering customers (patients). Note that, due to the cyclic shape

of the amplitude and phase functions, special care is required when optimizing the system. For

example, reducing LOS (length-of-stay) is often attempted by reducing Needy and Content times

(S1 and S2). However, if the system operates in the decreasing region of the left Figure EC.2,

shortening S1 or S2 will increase the amplitude of �+
1 (·), and therefore the amplitude of R1(·) will
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Figure EC.2 Plot of relative amplitude and phase of �+
1 (t) as a function of !.

also increase, which could destabilize the system. Indeed, a system in which sta�ng amplitude

increases becomes more challenging to operate.

EC.1.6. Time-Varying Di↵usion Approximations

The Stochastic Di↵erential Equations underlying Theorem 7 are:
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(EC.9)

where B

a

1 ,B
d

2 ,B12 and B21 are four mutually independent, standard Brownian motions;

x

+
⌘max(x,0), and x

�
⌘max(�x,0) =�min(x,0).

The following theorem presents the mean vector and the covariance matrix for the di↵usion limit.
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Theorem EC.3. Using the scaling (11), the mean vector for the di↵usion limit (EC.9) is the

unique solution to the following two di↵erential equations:
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The covariance matrix for the di↵usion limit solves:
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EC.2. Stabilizing large Erlang-R network: Additional graphs for case
study 1

In this appendix, we provide additional support that Erlang-R can stabilize various performance

measures. Our testing ground is the large-scale Erlang-R queueing network, considered in Section

5.1.

Figure EC.3a depicts P (W
t

> 0) over a 5-day period (120 hours), for six values of �. The perfor-

mance measure is visibly stable, which indicates that the MOL algorithm works well. As mentioned

before, we expect the relation between P (W > 0) and � to fit the Halfin-Whitt formula. We val-

idated this by calculating the average waiting probability for the time-varying system, for each

value of �, and comparing it to the steady-state Halfin-Whitt formula. In Figure EC.3b, the two

are clearly very close to each other.
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Figure EC.3 Case study 1 - P (Wt > 0) for various � values in large systems.
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Figure EC.4 Case study 1 - Simulation results of server utilization.

(a) Utilization for various � values

!"#$%

!"&%

!"&$%

!"'%

!"'$%

(%

!% $% (!% ($% )!% )$% *!% *$% +!% +$% $!% $$% ,!% ,$% #!% #$% &!% &$% '!% '$%(!!%(!$%((!%(($%

!
"#
$#%
&"
#'
()

*#+,)-.'/01))

-./0%!"(% -./0%!"*% -./0%!"$% -./0%!"#% -./0%("!% -./0%("$%

(b) Time averages vs. theoretical values

98%

100%
Theoretical (steady-state)

Ti

94%

96%
Time average

90%

92%

94%

at
io
n

88%

90%

U
til
iz
a

84%

86%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

�

Figure EC.4a shows the evolution of servers utilization over time, for each value of �, which is

also stable. Thus our sta�ng procedure stabilizes both service level and server utilization. In Figure

EC.4b, we compare the average utilization over time with the theoretical values. The latter were

calculated using the steady-state solution of our model, when given average values of � and s. We

observe that the two are almost identical.

Figure EC.5 depicts E[W
t

] over a 5-day period. We note that, as � grows, E[W
t

] becomes more

stable and well ordered.

Figure EC.6 displays the conditional distribution of the waiting time given delay (W |W > 0), for

three values of � (0.1,0.5, and 1.4). We compare them to the steady-state theoretical distribution,

which is exponential with rate sµ(1� ⇢) (as stated in Theorem 1). The simulation results depict
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Figure EC.5 Case study 1 - Simulation results of E[Wt] for various � values in large systems.
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Figure EC.6 Case study 1 - A comparison of the histogram of W |W > 0 with the corresponding theoretical

distribution.
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(c) � = 1.4
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the distribution of waiting times from all replications, over the entire time horizon. We observe

a very good fit for � = 0.5 (QED) and � = 1.4 (QD (Quality Driven)), but when � is 0.1 (ED

(E�ciency Driven)), the quality of fit deteriorates visibly. This is in line with our observations for

E[W
t

], where small values of � give rise to a performance that does vary in time and hence does

not fit steady-state.

EC.3. Approximating the Number of Needy Customers and Waiting
Times in the QED Regime

In this section, we derive QED approximations for the actual number of customers in the system and

the virtual waiting time process. One could attempt to use the fluid and di↵usion approximations

developed in Section 7 for this purpose. However, these approximations work well under the zero-

measure assumption, and when the system operates in the QED regime, the system is critical at all

times. The problem when using these approximations under QED sta�ng is twofold: first, we have
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numerical di�culties in calculating the di↵usion process itself since the di↵usion approximation

is non-autonomous. Second, the fluid process itself has a di↵erent interpretation under the QED

regime: no longer does it represent the average behavior of its originating stochastic system.

To understand the interpretation problem, we use the following example from Case Study 1.

Figure EC.7a shows the fluid solution of the process Q(0)
1 (·) (the number of Needy customers), as

well as the following simulation results: the average number of customers in the Needy state, and

the average number of customers in service. We note that the fluid model fits perfectly the number

of customers in service and ignores the number of customers waiting in queue (for service). This

is because our MOL sta�ng procedure keeps the sta�ng level always slightly above the average

number of customers. Thus, the fluid approximation “sees” the system as if it had an infinite

number of servers, and actually calculates the number of busy servers, without the queue.

In order to fill the gap and to estimate correctly the number of Needy customers (in queue and

in service), recall the insight (§5.1) that, under MOL sta�ng, the system behaves as if the Needy

state were a stationary M/M/s model (Erlang-C). Therefore, we attempt to use the stationary

approximation of the Erlang-C model to estimate the number of customers in the queue. Halfin and

Whitt (1981) approximated E[Q(1)] by the following formula: E[Q1(1)] = �

µ

+ ↵

�

sµ

⇣
1� �

sµ

⌘�1

,

with ↵ in Theorem 1. We propose an MOL correction, adjusting this formula to time-varying

environments, in the following manner: E[Q1(t)] = R(t) + ↵

R(t)

s(t)

⇣
1� R(t)

s(t)

⌘�1

. Figure EC.7b com-

pares this corrected approximation to simulation results for various � values. We observe that the

simulation and approximation are remarkably close.

One can also provide a correction to the E[W
t

] function in the QED regime, using the following

expression: E[W
t

] = ↵

µs(t)

⇣
1� R(t)

s(t)

⌘�1

. Experiments show that this correction works well for � >

0.3, as is apparent in Figure EC.8.
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Figure EC.7 Q1(t) - Fluid approximation vs. simulation results under QED sta�ng, for various �’s.
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(b) Corrected approximation vs. simulation
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Figure EC.8 E[Wt] - Corrected Fluid approximation vs. simulation for various �’s.

12

14

Sim�(beta=0.3)

Si (b 0 5)

10

Sim�(beta=0.5)

Sim�(beta=0.7)

Sim�(beta=1.0)

6

8

E[
W
] Sim�(beta=1.5)

Theoretical�(beta=0.3)

Theoretical�(beta=0.5)

2

4
Theoretical�(beta=0.7)

Theoretical�(beta=1.0)

Theoretical�(beta=1.5)

0

2

0 720 1440 2160 2880 3600 4320 5040 5760 6480

Time


	Introduction: The Erlang-R Model
	Examples of Service Systems with Reentrant Customers
	Contributions
	Literature Review
	Steady-State Performance Measures
	The Offered-Load
	The Offered-Load for General Arrivals and Exponential Services
	The Offered-Load for General Arrivals and General Services
	Analysis of Special Cases and Managerial Insights: Sinusoidal Arrival Rate
	Exponential Service Times
	When is Erlang-R necessary? (Comparing to Erlang-C)


	Validation of MOL Staffing
	Case Study 1 - Large System
	Case Study 2 - Small System; Hospital Arrival Rates

	Using Erlang-R for Staffing EW Physicians: Fitting a Simple Model to a Complex Reality
	Fluid and Diffusion Models of the Number of Needy Customers, with Application to Mass-Casualty Events
	Mass-Casualty Events
	Erlang-R in Support of MCE Staffing



	Conclusions and Further Research
	Proofs of Theorems
	The Offered-Load Measure
	The Offered-Load for Sinusoidal Arrival Rate
	Comparing to Erlang-C
	Analysis of Limits of R() with Sinusoidal Arrivals and Exponential Services
	Deterministic Service Times
	Time-Varying Diffusion Approximations
	Stabilizing large Erlang-R network: Additional graphs for case study 1
	Approximating the Number of Needy Customers and Waiting Times in the QED Regime


