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Many service systems exhibit service slowdowns when the system is congested. Our goal in this paper is

to investigate this phenomenon and its effect on system performance. We modify the Erlang-A model to

account for service slowdowns and carry out the performance analysis in the Quality-and-Efficiency Driven

(QED) regime. We find that when the load sensitivity is low, the system can achieve QED performance, but

the square-root staffing parameter requires an adjustment to achieve the same performance as an ordinary

Erlang-A queue. When the load sensitivity is high, the system alternates randomly between a QED and

an Efficiency Driven (ED) regime performance levels, a phenomenon which we refer to as bi-stability. We

analyze how the system scale and the model parameters affect the bi-stability phenomenon and propose an

admission control policy to avoid ED performance.
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1. Introduction

A central assumption in the operations management literature is that service times are independent

of the load of the system. However, empirical and anecdotal evidence suggest that in many service

systems the two are correlated (see for example Batt and Terwiesch (2012), Gerla and Kleinrock

(1980), KC and Terwiesch (2009) and Feldman et al. (2014)). Depending on the service environ-

ment, heavily-loaded systems may experience service speedups or slowdowns. While speedup was

theoretically investigated in Chan et al. (2014), slowdown was so far been neglected.

Slowdown of service rate, when the system is congested, is a widely spread phenomenon, which is

contributed to several psychological, physiological and technical reasons. High congestion levels may

induce pressure on agents, which according to the psychology literature (see for example Bertrand

and van Ooijen (2002)) may impact human perception, information processing and decision making.

All of these aspects may influence operational performance. While a relatively low level of arousal

may increase productivity, high levels of pressure hurt performance (Wickens et al. 2012). High

congestion levels may also require individuals to conduct multiple tasks in parallel which involves
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a cognitive switching cost (Batt and Terwiesch 2012). At the same time, high congestion levels

may lead staff to work longer hours without proper rest, causing fatigue. Empirical studies provide

evidence that fatigue leads to deterioration in productivity (e.g. KC and Terwiesch (2009), Caldwell

(2001)). Service rate may also deteriorate due to external capacity limitations, for example, IT

systems perform slower when heavily loaded, and hence, the service times of the workers who use

them may increase (Batt and Terwiesch 2012). On the customer side, it is well established that

patients’ condition may deteriorate if treatment is delayed in health care facilities, causing a service

slowdown (Chalfin et al. 2007, Chan et al. 2013). For example, it is shown in Chan et al. (2013)

that one additional hour of delay, when transferring from the ER to the ICU, leads to an increase

in the length of stay in the ICU by 6.5 to 23 hours. Lastly, another reason for slowdown services

is that customers may demand a longer and more personalized service following a long wait. For

example, agents might need to take some extra time to mollify irritated customers who experience

long waits.

Motivated by these empirical findings, from both call-centers and healthcare facilities, we inves-

tigate how the dependence between service rate and workload affects the operational performance

of the system, measured by delay and abandonment, and how service providers can cope with the

consequences of this dependence by adjusting staffing or admission.

Generally, there are two objectives that play opposing roles in the design of service systems. On

the one hand, to increase efficiency and reduce operational costs, system designers aim to increase

resource utilization. On the other hand, high utilization rates lead to increased levels of delay

and abandonment, thereby reducing quality of service. A common approach is to design a service

system that balances the tradeoff between system performance, measured by the probability of

waiting and the probability of abandonment experienced by customers, and resource utilization,

measured by the fraction of time an agent or a resource is occupied. The Quality-and-Efficiency-

Driven (QED) regime in the many-server asymptotic analysis suggests a Square-Root Staffing

(SRS) rule to balance this tradeoff. According to the SRS rule the number of servers, n, is set such

that n=R+β
√
R, where R= λ/µ is the offered load of the system, and β, the SRS parameter, is

set to achieve certain performance measures. For the SRS rule in an exponential type multi-server

queue with abandonment (commonly referred to as the Erlang-A model), β is determined using

the Garnett functions (Garnett et al. 2002). Applying the SRS rule to the Erlang-A model implies

that a significant proportion of customers (e.g. 30%–80%) gets served immediately upon arrival

and the probability of abandonment is small (e.g. < 5%) (Garnett et al. 2002). Other operating

regimes considered in the literature include the Efficiency-Driven (ED) regime and the Quality-

Driven (QD) regime, where the staffing level and the offered load grow in fixed proportion. ED

staffing is used when the staffing cost is very high. In this case, the staffing level is set to n=R−αR
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for 0<α< 1, where α is typically selected in the range 0.1–0.25 (Whitt 2004). This results in 100%

occupancy, probability of waiting close to 1 and a very high abandonment rate (5%–30%) (Garnett

et al. 2002). A QD regime is used when the system requires a very high level of service quality. In

this case, the staffing level is set to n=R+αR for α> 0, where the typical range of α is as in the

ED regime. This staffing level results in very low abandonment (almost 0) and negligible waiting,

but also in an agent occupancy which is far below 100% (Garnett et al. 2002).

In this paper, we modify the Erlang-A model to account for the slowdown effect and analyze the

performance of the modified model when staffing according to the SRS rule. We use the term load

sensitivity to describe the rate of service rate deterioration as a response to increased workload.

We show that the SRS rule may not be a good enough solution in some systems with load-sensitive

service rates. Depending on the model parameters, we observe that systems designed to operate in

the QED regime may have undesirable performances, alternating between being heavily overloaded

and moderately loaded, or even end up being constantly heavily overloaded. This results in a very

high probability of waiting (close to 1) and a significant proportion of customer abandonment (e.g.

10%–20%). Hence, a QED regime staffing rule, or even a QD regime staffing rule, may result in

unwanted performances, typically found when using ED regime staffing rules. We therefore propose

to consider alternative staffing rules and admission control policies that can be applied in the

presence of service slowdowns.

We make the following key contributions:

1) We show that the effect of load sensitivity on system performance is nonlinear. Systems

with low sensitivity may exhibit only a modest deterioration in performance, whereas when the

sensitivity increases beyond a threshold, the performance deteriorates drastically. We show that

the threshold that separates the two cases is derived from the relative relation between the service

rate sensitivity level around zero wait time and the abandonment rate (§4.2).

2) When the load sensitivity is relatively low (i.e., the service rate does not decrease significantly

with the load placed on the system), the SRS rule leads to a QED performance. However, for a

fixed square-root staffing parameter, β, the performance deteriorates with the load sensitivity level.

We develop new approximation functions in the presence of load sensitivity, which can be used

when making staffing decisions (§5). To derive these approximations, it is sufficient to accurately

estimate the service rate function around zero.

3) When the load sensitivity is relatively high, the system alternates between two performance

regions, a phenomenon we refer to as bi-stability: one provides a QED performance while the other

has an ED performance (§4). Therefore, in such cases, applying the SRS rule does not consistently

result in QED performance. We investigate how the system scale and other parameters influence the

occurrence of bi-stability, and the proportion of time the system spends around each performance
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regions (§6). To achieve traditional QED regime performance in this case, we propose implementing

an admission control policy (§6.3). We show that while a higher load sensitivity increases the occur-

rence of ED performance, a higher abandonment rate decreases such occurrences. We also show

that large systems converge to the ED performance with an exponential rate. Sensitivity increases

the rate of convergence, and abandonment rate decreases this rate of convergence. Two interesting

observations follow from our analysis. Firstly, under SRS, the performance of the modified Erlang-

A queue, both the probability of waiting and the probability of abandonment, deteriorates with

system scale. This is in contrast to the traditional Erlang-A model in the QED regime. Secondly,

firms should encourage customers to abandon when having load-sensitive service rate. This can be

done in real applications by, for example, providing delay announcements.

4) The model we analyze captures agent driven service slowdowns. In addition, we show, using

numerical examples (§7), that this model is robust and the main insights carry over to a larger

class of models. This includes settings in which the service rate deterioration is customer-driven

(i.e., longer waiting results in longer service requirement for that specific customer), in which it

is agent-driven (i.e., agents change their service rate according to queue length), or in situations

where there is a delay in the slowdown effect on service rate (e.g., slowdown is caused by agent

fatigue).

2. Literature Review

In this paper, we study a modified Erlang-A model that accounts for the load-dependent service

rate. The Erlang-A (M/M/n+M) queue was first introduced by Palm (1957) to incorporate aban-

donments in the traditional Erlang-C (M/M/n) queue. Mandelbaum and Zeltyn (2007) showed

that abandonment is a significant factor in modeling service systems and making staffing decisions.

Garnett et al. (2002) conducted heavy traffic asymptotic analysis of the Erlang-A model in the

QED regime. They derived approximations for the probability of waiting and abandonment and

provided guidance for the design of large service systems. Our analysis differs from Garnett et al.

(2002) because we do not assume the service rate to be constant but load-dependent.

A few papers consider state-dependent service rates but most of them are in the single server

queue setting without abandonment. Whitt (1990) and Boxma and Vlasiou (2007) study the steady-

state behavior of the delay process (waiting time distribution) of a G/G/1 queue, where both the

service rate and the arrival rate depend linearly on the delay process. Mandelbaum and Pats (1998)

derived the fluid and diffusion limits of a network of single server queues with state-dependent

arrival rate, service rate and routing probability. Weerasinghe (2013) studies the fluid and diffusion

approximations of G/M/n+GI queues with state-dependent service rate, but they only analyze

convergence over finite time intervals (i.e. intervals of the form [0, T ]). Our work is also different
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from Zohar et al. (2002) and Armony et al. (2009) who analyzed how delay announcements affect

system performance by changing the strategic behavior of customers. This was done by combining

game theory analysis with queueing models.

The bi-stability phenomenon is studied in different contexts: ICU flows (Chan et al. 2014), com-

munication networks (Gibbens et al. 1990), multi-class stochastic networks (Antunes et al. 2009)

and many-server systems with retrials (Janssen and van Leeuwaarden 2014). The phenomenon is

also studied in statistical physics (e.g. Hollander (2004), Olivieri and Vares (2005)). The conjec-

tured trajectory of the system under bi-stability is that it fluctuates within one stable region for

a long time and then, due to some rare event it reaches the other stable region and remains there

for a while (Antunes et al. 2009). In this paper, we study the bi-stability phenomenon through

asymptotic analysis of the stationary distribution and sensitivity analysis of system parameters

(§6). We impose exponential assumptions on the service time and patience time distributions for

tractability reasons.

In terms of staffing and admission control policies, Bekker and Borst (2006) studied the optimal

admission control of an M/G/1 queue with service rate that is first increasing and then decreasing

as a function of the workload. Their objective is to optimize throughput and they show that under

certain conditions a threshold policy is optimal. Likewise, in §6.3, we also consider a threshold

admission control policy, but our objective is to maintain a certain performance level. Admission

control in the QED regime has also been studied in Janssen et al. (2013), Daley et al. (2013) and

references therein. We also consider staffing policies in face of load-dependent slowdown effect. A few

papers considered dynamic staffing (e.g., Green et al. (2007), Yom-Tov and Mandelbaum (2014))

to cope with time-varying arrivals. They allow the staffing level to change over time according to

a predictable offered load function. In our model, the fluctuations in performance arise because

of the bi-stability phenomenon. The system alternates between two equilibria in an unpredictable

stochastic way. Therefore, we cannot propose a predetermined policy whereby the staffing levels

change in a predictable fashion. Instead, we propose static policies that mitigate the effect of the

unpredictable system behavior.

3. Model Setup
3.1. The Load-dependent Erlang-A model

We analyze a modified Erlang-A (M/M/n+M) model which incorporates the dependence of service

rate on workload through the queue length process. Specifically, we consider an M/MQ/n+M

queue with the following assumptions: Customers arrive to the system according to a Poisson

process with rate λ. The system has n identical servers; each server can serve only one customer at

a time. If a customer arrives and finds a server free, she starts service with that server immediately.
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Otherwise, she waits in the queue. Customers are served on a First-Come-First-Served basis. The

service requirement is exponentially distributed with a state-dependent rate function µ(·)∈C2 (we

denote these facts in Kendall’s notation by the second MQ). We also assume that customers have

finite patience. The patience time of each customer is exponentially distributed with rate θ, which

we refer to as the abandonment rate. If a customer does not get into service before her patience

time expires, she abandons the queue.

We denote the queue length process by Q ≡ {Q(t) : t ≥ 0}, where Q(t) counts the number of

customers in the system (waiting and in service) at time t. Motivated by the empirical findings

on slowdowns, we assume that the service rate of each server is a function of the scaled queue

length process, µ((Q−n)+/n), where (x)+ = max{0, x}. This scaling makes the workload process

((Q(t)−n)+/n) of the same order as the delay process (waiting time of an imaginary arrival at time

t) (Whitt 2004). It is essential when considering scaling for approximations. From a practical point

of view, one can also interpret this scaling as agent sensitivity to individual future load—queue

length divided by number of servers.

We are interested in service systems in which the service rate deteriorates as the congestion

level grows. We measure the level of load sensitivity by µ′(x) and let µ(i)(0) := limx→0+ µ
(i)(x) for

i= 1,2. We further assume that the service rate function maintains a minimum positive level, thus

exhibits a diminishing decreasing rate. Formally:

Assumption 1. µ′(x)≤ 0 and µ′′(x)≥ 0 for all x≥ 0. limx→∞µ(x) = µ(∞)> 0.

In our numerical demonstrations, we use a specific form of the service rate function: µ(x) =

c+ a exp(−bx) with parameters a, b, c > 0, which clearly satisfies Assumption 1. To demonstrate

changes in load sensitivity, we change the values of b while keeping all other parameters fixed. We

refer to b as the load sensitivity parameter.

Under our assumptions on the service rate function, Q(t) is a Birth-and-Death (B&D) process

with birth rate λ and state-dependent death rate µ((Q−n)+/n)(Q∧n)+θ(Q−n)+, where x∧y=

min{x, y}. As θ > 0, Q(t) admits a unique steady-state distribution. We denote the steady-state

distribution, by π(q), where

π(q) := P (Q(∞) = q);

π(q) measures the long run average proportion of time the system spends at q.

3.2. The QED heavy-traffic regime

For a sequence of M/M/n + M queues indexed by n, the QED regime is obtained by holding

the service rate and abandonment rate fixed while letting the aggregate arrival rate, λn, and the
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number of servers, n, grow to infinity such that the utilization rate ρn := λn/(nµ) approaches 1 at

rate 1/
√
n. Specifically, we assumed that

√
n(1− ρn)→ β as n→∞ (1)

for some β ∈ R, or, equivalently, that the number of servers is set by the SRS formula—n =

Rn +β
√
Rn, where Rn = λn/µ.

Garnett et al. (2002) proved that when a sequence of Erlang-A systems satisfies Equation (1)

(i.e., operates in the QED regime), the probability of waiting, P (W ), is non-degenerate and the

probability of abandonment, P (Ab), converges to zero at rate 1/
√
n. Thus, systems that operate in

this regime achieve both good performance and high efficiency. However, as Figure 1 illustrates, in

the modified Erlang-A model, square-root staffing does not always guarantee similar performance.

In the absence of workload sensitivity, (i.e., b= 0), a system with the following parameters: n=

523, λ = 500, µ(q) = 0.6 + 0.4exp(−b(q − n)+/n) and θ = 0.3, operates in the QED regime with

P (W ) = 0.1882 and P (Ab) = 0.0018. The upper diagrams in Figure 1 show that when the load

sensitivity is low (b= 0.5), the queue length process fluctuates around 500 and the system operates

with low probabilities of waiting and abandonment (P (W ) = 0.2050 and P (Ab) = 0.0023). However,

the performance is worse than the one obtained without sensitivity. The lower diagrams in Figure

1, show that when the load sensitivity is high (b= 1.5), the queue length process can alternately

fluctuate around two regions (one in which the number of customers in the system, Q, is around

500 and the other in which Q is around 920). The sample path in Figure 1c illustrates how the

queue length process fluctuates in one region for a while before it “unexpectedly” moves to the

other region and vise versa. The system performance is quite different in the two regions. The

lower region results in the QED regime performance (P (W ) ≈ 0.22 and P (Ab) ≈ 0.02) while the

upper region leads to the ED regime performance (P (W ) ≈ 1 and P (Ab) ≈ 0.21). The average

performance is P (W ) = 0.9090 and P (Ab) = 0.2008. We refer to this phenomenon as bi-stability

(see Definition 3 for a more precise definition of bi-stability).

Figure 2 shows how the probabilities of waiting and abandonment change with the load sensi-

tivity parameter, b. We observe that the effect of load sensitivity is nonlinear. The performance

deteriorates drastically as the sensitivity parameter grows beyond a certain level (e.g., at around

b= 1.5 for the parameters in Figure 2).

This implies that the SRS rule may not be an adequate policy to achieve a QED performance in

service systems that have load-sensitive service rates. In the next section, we use the many-server

heavy traffic analysis to characterize the dynamics of such systems.
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Figure 1 Sample path and approximated stationary distribution of the number of people in the system for

M/MQ/n+M queues with different load sensitivity parameter values, b (n= 523, λ= 500, µ= 0.6 +

0.4 exp(−b(q−n)+/n) and θ= 0.3)
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Figure 2 Performance measures for M/MQ/n + M queues as a function of the load sensitivity parameter, b

(n= 512, λ= 500, µ= 0.6 + 0.4 exp(−b(q−n)+/n) and θ= 0.5)
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4. Fluid Analysis

In this section, we establish the fluid limit of the queue length process of the modified Erlang-

A model. This deterministic model serves as an approximation for the corresponding stochastic

system when the system scale is large. We then conduct an equilibrium analysis of the fluid model

to characterize the stationary performance of the modified Erlang-A model.
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4.1. Fluid approximation

To develop the fluid limit, we consider a sequence of M/MQ/n+M queues indexed by n, where the

arrival rate λn→∞ as n→∞. For the n-th system, we denote the queue length process (number

of people in the system) by Qn ≡ {Qn(t) : t ≥ 0}. The abandonment rate does not scale with n

and the service rate function takes the same form when applied to the scaled queue length process

((Qn(t)−n)+/n). As we are interested in the QED asymptotic regime, we assume that there exists

a β such that limn→∞
√
n(1−λn/(nµ(0))) = β.

Let A ≡ {A(t) : t ≥ 0}, S ≡ {S(t) : t ≥ 0} and R ≡ {R(t) : t ≥ 0} be three independent Poisson

processes, each with unit rate.A, S andR generate the arrival, service completion and abandonment

processes, respectively. Then, the pathwise construction of Qn is:

Qn(t) =Qn(0) +A(λnt)−S
(∫ t

0

µ

(
(Qn(u)−n)+

n

)
(Qn(u)∧n)du

)
−R

(∫ t

0

θ(Qn(u)−n)+du

)
.

We define the fluid-scaled process as

Q̄n(t) =
Qn(t)

n
.

Let D :=D([0,∞),R) denote the functional space of all right-continuous real-valued functions on

the interval [0,∞) with left limit everywhere in (0,∞), endowed with Skorohod (J1) topology.

Theorem 1. Assume limn→∞
√
n(1−λn/(nµ(0))) = β. If Q̄n(0)⇒ Q̄(0) in R+, then Q̄n⇒ Q̄ in

D as n→∞. The limit process Q̄ is the unique solution satisfying the following integral equation

Q̄(t) = Q̄(0) +µ(0)t−
∫ t

0

µ
((
Q̄(u)− 1

)+
)(
Q̄(u)∧ 1

)
du−

∫ t

0

θ
(
Q̄(u)− 1

)+
du.

The proof of Theorem 1 and all subsequent results can be found in Appendix A.

Let f(q) be the flow rate function of the fluid system at state q. That is, f(q) = µ(0)− µ((q−

1)+)(q ∧ 1) − θ(q − 1)+. Then we can write Q̄(t) as the solution to the following autonomous

differential equation with initial value Q̄(0):

˙̄Q= f(Q̄), (2)

where ˙̄Q denotes the derivative of Q̄ with respect to t.

4.2. Equilibrium analysis

Next, we analyze the limiting behavior of the fluid model, i.e., the state of the system as t→∞. To

make the dependence of the flow, Q̄(t), on its initial value, Q̄(0), explicit, we write Φ(q0, t) = Q̄(t)

with an initial value q0. We start with the definitions of equilibrium and stability.

Definition 1 (Equilibrium). A point q̄ is an equilibrium of the dynamic system (2) if

Φ(q̄, t) = q̄, for all t≥ 0.
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By Definition 1, q̄ is an equilibrium of the system if when the trajectory of the flow defined by

(2) starts at q̄, it stays there. In our model, q̄ can be computed by solving f(q) = 0. However, it

is unclear where the trajectories of the flow converge to, if the initial value q0 6= q̄. We therefore

analyze the stability of the equilibrium points.

Definition 2 (Stability of equilibrium). Let q̄ be an equilibrium of the dynamic system.

q̄ is said to be stable if for any ε > 0, there exist δ > 0, such that if |q − q̄| < δ, |Φ(q, t)− q̄| <

ε for any t ≥ 0. Otherwise, q̄ is unstable. If δ can be chosen such that not only is q̄ stable, but

also limt→∞Φ(q, t) = q̄ for |q− q̄|< δ, then q̄ is said to be asymptotically stable.

By Definition 2, q̄ is asymptotically stable if when starting close enough to q̄, trajectories defined

by (2) converge to q̄ as t→∞. An equilibrium may also be semistable. For a semistable equilib-

rium, trajectories that start on one side of the equilibrium converge to it, whereas trajectories that

start on the other side do not. Note that a semistable equilibrium is unstable by Definition 2.

We define bi-stability of a stochastic model based on its fluid limit (assuming it exists).

Definition 3 (bi-stability). A stochastic system is bi-stable if its corresponding fluid limit

has two (semi-)stable equilibria.

To characterize the equilibria of the fluid model in (2), we analyze the function f(q) (as illustrated

in Figure 3). When q≤ 1, f(q) = µ(0)−µ(0)q is a linearly decreasing function that starts at f(0) =

µ(0)> 0 and ends at f(1) = µ(0)−µ(0) = 0. When q≥ 1, under Assumption 1, f ′(q) =−µ′(q−1)−θ

and f ′′(q) = −µ′′(q − 1) ≤ 0. Therefore, f(q) is concave on [1,∞). Let q̂ = arg maxq∈[1,∞) f(q).

Depending on the actual form of f(q), we distinguish between the following two cases (as shown

in Figure 3):

Case I (Low Sensitivity): −µ′(0)≤ θ.

Case II (High Sensitivity): −µ′(0)> θ.

Under Case I, the case with low sensitivity, we have q̂ = 1 and under Case II, the case with high

sensitivity, q̂ is the root of f ′(q) = 0 for q > 1. The following theorem summarizes the stability

analysis of the equilibria for the two cases.

Figure 3 Flow rate function under two cases

(a) Case I—Low sensitivity

f (q)

q q̂ = 1

µ(0)

(b) Case II—High sensitivity

q q̂1

µ(0)

f (q)
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Theorem 2. Under Assumption 1, the fluid approximation (2) has the following equilibria:

i) If −µ′(0)≤ θ (Low Sensitivity), there is a unique equilibrium, q̄, with q̄ = 1. Furthermore, q̄

is asymptotically stable.

ii) If −µ′(0)> θ (High Sensitivity), there are two equilibria, q̄1 and q̄2, with q̄1 = 1 and q̄2 > q̂.

Furthermore, q̄1 is a semistable equilibrium and q̄2 is an asymptotically stable equilibrium.

Observation 1. The dynamics of the load-sensitive Erlang-A model depend on the relative

value of the load sensitivity around zero and the abandonment rate.

Following the results in Theorem 2, we expect different system dynamics under the two cases.

In the low sensitivity case, q̄= 1 is the unique equilibrium of the fluid model. It is asymptotically

stable. Therefore, the fluid model will converge to that value. In the original queueing system, we

would expect to see the trajectory of the queue length process fluctuate around n. We analyze its

performance in more detail in §51.

In the high sensitivity case, there are two equilibria, q̄1 and q̄2. The fluid model may converge

to either one, depending on the starting point. In the original stochastic model, the queue length

process may alternate between the two equilibria. This drives the bi-stability phenomenon observed

in Figure 1c. However, q̄1 is a semistable equilibrium. Therefore, we expect the queue length process

to eventually spend most of the time around the higher equilibrium level as the system scale grows

large. We explore how the scale parameter n and other system parameters affect the bi-stability

phenomenon under High Sensitivity in §6.

5. Performance Analysis under Low Sensitivity

In this section, we conduct asymptotic analysis for the modified Erlang-A model under low load

sensitivity (−µ′(0) < θ). We establish closed-form approximations for the performance measures

(P (W ) and P (Ab)), which can be used to determine the corresponding square-root staffing param-

eters. We then present numerical results to demonstrate the quality of the approximations.

Let Yn denote the normalized steady-state queue length process. In particular,

Yn =
Qn(∞)−n√

n
.

We then have the following result about the limiting distribution of Yn.

Theorem 3. Under low sensitivity (−µ′(0)< θ) and SRS with parameter β, Yn converges weakly

to a random variable with the following probability density function

g(y) =


C1√
2π

exp
(
− (y+β)2

2

)
if y≤ 0

C2√
2πσ2

exp
(
− (y+βσ2)2

2σ2

)
if y > 0,

1 Section 5 does not analyze the boundary condition in which −µ′(0) = θ.
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where

σ=

√
µ(0)

µ′(0) + θ
, C1 =

h(βσ)

σφ(β)

(
1 +

h(βσ)

σh(−β)

)−1

, C2 =
h(βσ)

φ(βσ)

(
1 +

h(βσ)

σh(−β)

)−1

and h(·) denotes the hazard rate function of the standard normal distribution. Specifically, h(z) =

φ(z)/Φ̄(z), where φ(z) = (2π)−1/2 exp(−z2/2) and Φ̄(z) =
∫∞
z
φ(z)dz is the complementary cumu-

lative distribution function.

Theorem 3 shows that the limiting distribution of the scaled process has normal tails but it is not

symmetric around zero unless (µ′(0)+θ)/µ(0) = 1, and the left tail decays slower as the sensitivity

level |µ′(0)| increases.

From Theorem 3, we have the following asymptotic results about the performance measures.

Corollary 1. Under low sensitivity (−µ′(0)< θ) and SRS with parameter β,

lim
n→∞

Pn(W ) =

(
1 +

h (βσ)

σh(−β)

)−1

and

lim
n→∞

√
nPn(Ab) =

(
h(βσ)

σ
−β
)(

1 +
h(βσ)

σh(−β)

)−1
θ

µ′(0) + θ
,

where σ=
√
µ(0)/(µ′(0) + θ).

Corollary 1 implies that the performance measures deteriorate with the load sensitivity level

µ′(0), and it leads to the following approximations of the system performance measures:

Pn(W )≈
(

1 +
h (βσ)

σh(−β)

)−1

(3)

and

Pn(Ab)≈
(

1− h(βσ)

h(βσ+ 1/(σ
√
n))

)(
1 +

h (βσ)

σh(−β)

)−1
θ

µ′(0) + θ
. (4)

Figure 4 demonstrates the precision of these approximations (denoted by dashed lines) compared

to the actual performance measures (marked by ‘+’ signs), derived by simulation for different

system parameters. Specifically, we choose three evenly spaced values of load sensitivity, measured

by µ′(0), and the values of the square-root staffing parameter β between −3 to 3.

We observe that (3) provides a good approximation for P (W ) for a wide range of load sensitivity

levels and β values. On the other hand, (4) provides a good approximation of P (Ab) for only lower

levels of load sensitivity (|µ′(0)| ≤ 0.3). In other words, the precision of (4) deteriorates as the load

sensitivity level approaches abandonment rate, |µ′(0)| → θ; in that case the approximation tends to

overestimate the system performance measures. Practically speaking, however, when applying QED

staffing, people generally aim at achieving small abandonment rates (less than 10%). Restricting
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Figure 4 Approximations for P (W ) and P (Ab) at three different load sensitivity levels: a: µ′(0) = 0, b: µ′(0) =

−0.3, c: µ′(0) =−0.6
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attention to the range of β’s which result in P (Ab)< 10% (i.e. β >−1 when µ′(0) =−0.6), (4) is

a good approximation, with a maximum gap of only 0.025.

We also observe that for a fixed β, system performance (P (W ) and P (Ab)) deteriorates

with the load sensitivity level µ′(0). Therefore, neglecting to account for load sensitivity would

underestimate system performance. Put differently, fixing a target system performance, a load

sensitive service system requires more staffing to achieve the same level of performance. One

can use (3) and (4) to find the appropriate square-root staffing parameter to achieve certain

performance measures in the QED regime.

Observation 2. We conclude this section by drawing some connections to the ordinary Erlang-

A model. We notice that the limiting distribution of Yn, in Theorem 3, is the same as the limiting

distribution of the normalized queue length process of a sequence of ordinary Erlang-A model with

the same arrival rate λn, constant service rate µ(0) and reduced abandonment rate µ′(0) + θ in

stationarity (Garnett et al. 2002). This is because, under the low sensitivity conditions, the two

systems have the same arrival rate and very similar death rates. When q < n, the death rates of

the two systems are equal; when q > n, the death rate of the modified Erlang-A queue is:

µ

(
q−n
n

)
n + θ(q−n) = µ(0)n+ (µ′(0) + θ)(q−n) +µ′′(η)

(q−n)2

n
for some η ∈ (0, (q−n)/n)

≈ µ(0)n+ (µ′(0) + θ)(q−n) when (q−n)2/n is small, i.e. when q−n=O(
√
n).

The reduced abandonment rate in the corresponding ordinary Erlang-A model suggests that the

load sensitivity effectively lessens the stabilizing effect of abandonment. We also notice that as

µ′′(·) ≥ 0, µ( q−n
n

)n + θ(q − n) ≥ µ(0)n + (µ′(0) + θ)(q − n), the ordinary Erlang-A model with

reduced abandonment rate is stochastically larger than the modified model (Lemma 3). Therefore,
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the stationary queue length process, Qn(∞), of our modified model is within n±O(
√
n) with high

probability.

6. Bi-Stability Analysis: Performance Analysis under High Sensitivity

In this section, we analyze the system dynamics when sensitivity is high and, in particular, the

factors that affect the bi-stability phenomenon. We start with the scale parameter n. We then

keep n fixed and analyze the effect of other system parameters, specifically, the square-root staffing

parameter β, the sensitivity of the service rate function and the abandonment rate θ. We also

propose an admission control policy to eliminate the bi-stability effect and avoid ED performance.

6.1. The effect of the scale parameter n

We begin by characterizing the peaks (local maxima) of the stationary distribution. When bi-

stability occurs there are two peaks, as was shown in Figure 1d. Naturally, there is a one-to-one

correspondence between these peaks and the (semi-)stable equilibria of the fluid model. To see

this, recall that Qn = {Qn(t) : t ≥ 0} is a B&D process with birth rate λn and state-dependent

death rate µ((q − n)+/n)(q ∧ n) + θ(q − n)+, where Qn(t) = q. Let πn(·) denote the steady-state

probability density function of Qn. Motivated by the fluid analysis, we also define the following

flow rate function

fn(q) = λn−µ
(

(q−n)+

n

)
(q ∧n)− θ(q−n)+.

From the detailed balance equation λnπn(q) = (µ((q−n)+/n)(q ∧n) + θ(q−n)+)πn(q+ 1), we get

πn(q+ 1)−πn(q) =

(
λn

µ((q−n)+/n)(q ∧n) + θ(q−n)+
− 1

)
πn(q).

As a result, if λn ≥ µ((q−n)+/n)(q∧n) + θ(q−n)+ (fn(q)> 0), then the stationary distribution is

increasing in q, i.e. πn(q+1)≥ πn(q); otherwise, if fn(q)< 0, then the the stationary distribution is

decreasing in q, i.e. πn(q+ 1)<πn(q). Hence, we can find the values of peaks of πn(·) by analyzing

the function fn(q). We distinguish among three different cases, as illustrated in Figure 5, depending

on the number of the roots of fn(q) (one to three). We analyze fn(·) in two regions separately:

[0, n] and [n,∞).

Region [0, n]: fn(q) is linearly decreasing on [0, n] with fn(0) = λn > 0, fn(n) = λn−µ(0)n. When

β < 0 (case (a) in Figure 5), fn(n)> 0 and the function fn(·) does not have a root in this region.

When β > 0 (case (b) and (c) in Figure 5), fn(n)< 0 and there exists a root q̄n,1 = λn/µ(0)< n,

i.e. fn(q̄n,1) = 0.

Region [n,∞): For q > n, if we let xn = (q−n)/n, then we have

fn(q)

n
=
λn
n
−µ(xn)− θxn.
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Let

ν(x) := µ(x) + θx

for x≥ 0. We denote x̂ > 0 as the root of ν ′(x) = 0. Under Assumption 1 and High Sensitivity, ν(·)
is convex and attains its minimum at x̂. Thus fn(q) is increasing on [n,n(x̂+ 1)] and decreasing

on (n(x̂+ 1),∞). When β < 0 (case (a) in Figure 5), as ν(0)<λn/n, there exists a unique x̄n > x̂,

such that λn/n= ν(x̄n). This implies that there is a root in this region: (x̄n + 1)n. When β > 0,

since ν(0)> λn/n, we have two cases: if ν(x̂)> λn/n (case (b) in Figure 5), then fn(q)< 0 for all

q > n, hence, there is no root in this region; otherwise, ν(x̂)<λn/n (case (c) in Figure 5) and there

exists a unique 0< x̃n < x̂, such that λn/n= ν(x̃n), and a unique x̄n > x̂, such that λn/n= ν(x̄n).

This implies that there are two roots in this region:(x̃n + 1)n and (x̄n + 1)n.

Based on the above analysis, we draw connections to the value of the peaks of the stationary

distribution for the three cases accordingly.

Figure 5 fn(q) with positive or negative βs

(a) β < 0

fn (q)

qn (xn +1)n0

(b) β > 0, ν(x̂)>λn/n

fn (q)

qn0 λn

µ(0)

(c) β > 0, ν(x̂)<λn/n

λn

µ(0)

fn (q)

q
n

 ( !xn +1)n
(xn +1)n

0

(a) when β < 0, fn(q)≥ 0 for q≤ (x̄n + 1)n, and fn(q)< 0 for q > (x̄n + 1)n. Therefore, πn(·) has

only one peak, q̄n,2 = b(x̄n + 1)nc;
(b) when β > 0 and ν(x̂) > λn/n, fn(q) > 0 for q ≤ λn/µ(0), and fn(q) < 0 for q > λn/µ(0).

Therefore, πn(·) has only one peak, q̄n,1 = bλn/µ(0)c;
(c) when β > 0 and ν(x̂)<λn/n, πn(·) has two peaks, one at q̄n,1 = bλn/µ(0)c (because fn(q)≥ 0

on [0, λn/µ(0)], fn(q) < 0 on (λn/µ(0), (x̂n + 1)n)) and the other at q̄n,2 = b(x̄n + 1)nc (because

fn(q)≥ 0 on [(x̂n + 1)n, (x̄n + 1)n] and fn(q)≤ 0 on ((x̄n + 1)n,∞)).

As limn→∞ λn/n= µ(0), when β > 0, the stationary distribution, πn(·), may have a unique peak

for small values of n, but will eventually have two peaks as n grows large.

Let x̄ be the root of µ(0)− ν(x) = 0 on (x̂,∞). The following lemma characterizes the value of

x̃n and x̄n.

Lemma 1. Assume β > 0 and λn/n> ν(x̂) (this ensures the existence of x̃n and x̄n),

lim
n→∞

√
nx̃n =− βµ(0)

µ′(0) + θ
and lim

n→∞
x̄n = x̄.
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Lemma 1 implies that the distance between the λn/µ(0) and (x̃n + 1)n is O(
√
n), which is why

there are only two equilibria in the fluid limit.

We now characterize the relative magnitude of the two peaks (q̄n,1 and q̄n,2) as the system scale

grows.

Theorem 4. Under High Sensitivity (−µ′(0)> θ) and SRS with β > 0

lim
n→∞

1

n
log

πn(q̄n,2)

πn(q̄n,1)
= I(x̄),

where I(x̄) =
∫ x̄

0
log µ(0)

ν(x)
dx> 0 is called the rate function.

Theorem 4 indicates that πn(q̄n,2)≈ πn(q̄n,1) exp(nI(x̄)). This means that the difference in magni-

tude between the two peaks (πn(q̄n,1) and πn(q̄n,2)) grows exponentially in n. Figure 6 demonstrates

how the stationary distribution of the system with β > 0 evolves with the scale parameter, n. For

small values of n (n≤ 200), πn(·) has a unique peak (q̄n,1). As n increases, a “second peak” (q̄n,2)

emerges and its magnitude compared to the first peak increases. For very large n, only q̄n,2 remains.

Observation 3. Theorem 4 suggests that unlike the traditional Erlang-A model that uses SRS,

where a larger system provides better performance levels (e.g. smaller abandonment rate, shorter

waiting times), the performance of our modified model with high service rate sensitivity deteriorates

as the system scale grows.

Figure 6 Approximated stationary distribution of the number of people in the system for M/MQ/n+M queues

with scale parameter values n (n= dRn +
√
Rne, µ= 0.6 + 0.4 exp(−1.5(q−n)+/n) and θ= 0.3).
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(c) n= 215 (Rn = 200)
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We next analyze factors that affect the value of the rate function I(x̄). To facilitate the compar-

ison, we restrict our analysis to the following ordering of load sensitivity.
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Definition 4. For two service rate functions µi(·) and µj(·), with µi(0) = µj(0), we say that µj

is more load-sensitive than µi, if µj(x)≤ µi(x) for all x> 0.

The next lemma examines the effect of the system parameters on the value of the higher level

fluid equilibrium, q̄2, and the value of the rate function, I(x̄).

Lemma 2. Under High Sensitivity (−µ′(0)> θ) and SRS with β > 0,

i) the more load-sensitive the service rate function µ is, the larger the value of the higher level

fluid equilibrium q̄2 and the rate function I(x̄);

ii) the larger the abandonment rate θ is, the smaller the value of the higher level fluid equilibrium

q̄2 and the rate function I(x̄).

Observation 4. Lemma 2 indicates that as the load sensitivity increases, the distance between

the two equilibria increases, and with it the rate of convergence to the upper equilibria (I(x̄)).

Hence, we observe bi-stability in smaller systems only. Abandonment rate has the opposite effect—

as θ increases, the convergence to the upper equilibria is slower and, therefore, we observe bi-

stability in larger systems.

6.2. The effect of other system parameters

For a fixed system scale parameter, n, in this section, we analyze the effect of the square-root

staffing parameter, β, the service rate sensitivity and the abandonment rate, θ, on the bi-stability

phenomenon. As the existence of the two peaks only arises for β > 0 and large n, we restrict

attention to these parameter ranges.

We begin by giving a formal definition for the time around the lower/upper equilibrium level.

Define the threshold q̃n = bn(x̃n + 1)c. Then, the region around the lower equilibrium level is [0, q̃n]

and the region around the upper equilibrium level is (q̃n,∞). As x̃n is the root of λn/n−ν(x) = 0 on

[0, x̂), fn(q)< 0 for q ∈ (q̄n,1, q̃n) and fn(q)> 0 for q ∈ (q̃n, q̄n,2). Thus, πn(q) is decreasing on (q̄n,1, q̃n)

and increasing on (q̃n, q̄n,2), i.e. q̃n is the valley of πn(q) (see for example the valley around 600 in

Figure 6f). Let Pπn denote the steady-state distribution of Qn. Then the proportion of time the

system spends around the lower (upper) equilibrium can be define as Pπn(Qn ≤ q̃n) (Pπn(Qn > q̃n)).

The next lemma provides the basis for the main comparison results (Theorem 5) in this subsec-

tion.

Lemma 3. For two positive recurrent B&D processes, Y (1) and Y (2), defined on the same state

space Z+, denote γi and ξi(·) as the birth rate and state-dependent death rate of Y (i), for i= 1,2.

If γ1 = γ2 and ξ1(y)≥ ξ2(y) for every y ∈Z+, then

P (Y (1)(∞)> y)≤ P (Y (2)(∞)> y).
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From Lemma 3 we have the following theorem that studies the effect of the system parameters

on the proportion of time the system spends around each equilibrium.

Theorem 5. Under High Sensitivity (−µ′(0)> θ) and SRS with β > 0,

i) if µ(∞) ≥ θ, then the proportion of time the system spends around the upper equilibrium

decreases with the square-root staffing parameter, β;

ii) under Definition 4, the more load-sensitive the service rate function is, the larger the propor-

tion of time the system spends around the upper equilibrium;

iii) the proportion of time the system spends around the upper equilibrium decreases with the

abandonment rate, θ.

Figure 7 demonstrates how the value of the peaks and proportion of time the system spends

around each peak changes with the square-root staffing parameter β, the sensitivity parameter, b,

and the abandonment rate, θ. We notice that the value of the second peak (the larger one) increases

with the load sensitivity parameter b and decreases with the abandonment rate θ, as was proved in

Lemma 2. In addition, we notice that the value of the second peak decreases with the square-root

staffing parameter β, but the difference is much smaller when compared to the effect of b and θ.

(The change associated with β is not apparent in the fluid level and, hence, less significant.)

Figure 7 Approximated stationary distribution of the number of people in the system for M/MQ/n+M queues

with different system parameters (n= λ+β
√
λ, λ= 500, µ= 0.6 + 0.4 exp(−b(q− s)+/s) and θ).
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(b) b (β = 1, θ= 0.3)
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(c) θ (β = 1, b= 1.5)
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The effect of β on the performance measures of our load-sensitive model is similar to that of

the traditional/nonsensitive Erlang-A model; P (W ) and P (Ab) both decrease with β. The effect

of load sensitivity is also straightforward. The system with a less sensitive service rate function

has on average a higher service rate. The performance measures hence improve. In contrast, the

effect of the abandonment rate, θ, is quite counterintuitive. In the traditional Erlang-A model, it

is well established that if customers are less patient (i.e., θ increases), P (W ) decreases but P (Ab)

increases (Garnett et al. 2002), while in our modified Erlang-A model with high sensitivity, both
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the probability of waiting and the probability of abandonment decrease with θ. This is because the

load-sensitive system reaches the high equilibrium less frequently as θ increases.

The analysis implies that the abandonment rate and the load sensitivity of the service rate func-

tion affect system performance differently when service rates exhibit slowdowns due to congestion.

While a high load sensitivity level negatively affects system performance, a high abandonment rate

may actually improve performance by alleviating the deterioration in service rate. Hence, managers

are advised to encourage customers to abandon in a load-sensitive environment. This can be done,

for example, by providing delay announcements when the system is loaded, as it was shown that

announcements increase abandonment rate (Mandelbaum and Zeltyn 2007, Huang et al. 2014).

6.3. An admission control policy to avoid bi-stability under High Sensitivity

We next introduce an admission control policy to eliminate the bi-stability phenomenon and avoid

ED regime performance under high sensitivity. If we want to eliminate the higher-level equilibrium

by increasing the staffing level, then the new staffing level should be such that λn/n̄≤ ν(x̂). Suppose

we set n̄= λn/ν(x̂). Then we have

n̄−n
n

=
λn/n

ν(x̂)
−

(
λn/n

µ(0)
+

β√
n

√
λn/n

µ(0)

)
→ λ

ν(x̂)
− λ

µ(0)
as n→∞.

This implies that we need to increase staffing by O(n) servers, which may be very costly. Another

potential drawback of this approach is that by raising the staffing level to n̄, a service provider may

“overstaff” the system to operate in the QD regime. We thus consider an alternative admission

control policy. Specifically, we block the incoming arrivals or reroute them to other service facilities

once a certain threshold, c, is reached, thereby preventing the system from reaching the higher level

equilibrium. To implement this policy, the system provider needs to characterize the appropriate

threshold level, and the cost that such a policy entails on the system in terms of the proportion of

customers blocked/rerouted.

The “right” threshold could again be chosen based on our bi-stability analysis. Basically, any

choice of cn, satisfying n< cn ≤ (x̃n+1)n, eliminates bi-stability, but the choice presents a tradeoff

between the level of performance and the proportion of customers blocked: Setting a small cn

improves performance (P (W ) and P (Ab) are low), but increases the proportion of customers that

are blocked (P (Bl)).

Under the admission control policy, the system becomes a multi-server queue with finite waiting

room. To gain more insight on its performance, we conduct some asymptotic analysis on its perfor-

mance. Specifically, we consider a sequence of M/MQ/n/cn+M queues indexed by n. System n has

arrival rate λn, state-dependent service rate µ((q−n)+/n), abandonment rate θ and a finite system

capacity cn, so that incoming customers are blocked once the number of customers in the system
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reaches cn. We denote the queue length process of the n-th system by Qc
n(·). We next develop an

diffusion approximations for Qc
n for cn ≤ (x̃n + 1)n.

A pathwise construction of Qc
n is

Qc
n(t) =Qc

n(0)+A(λnt)−S
(∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
(Qc

n(u)∧n)du

)
−R

(
θ

∫ t

0

(Qc
n(u)−n)+du

)
−Ln(t),

where Ln(t) =
∫ t

0
1{Qc

n(s) = cn}dA(λnt). Ln counts the number of arrivals that are blocked from

the system in [0, t]. We define the diffusion-scaled process

Q̂c
n(t) :=

Qc
n(t)−n√

n
.

Theorem 6. Assume
√
n(1 − ρn)→ β as n→∞, where ρn = λn/(nµ(0)) and cn/

√
n→ c ≤

−βµ(0)s/(µ′(0) + θ) as n→∞. If Q̂c
n(0)⇒ Q̂c(0) in R as n→∞, then Q̂c

n⇒ Q̂c in D as n→∞.

The limit process Q̂c is the unique process satisfying the stochastic integral equation:

Q̂c(t) = Q̂c(0)−βµ(0)t+
√

2µ(0)B(t)−
∫ t

0

[
µ(0)(Q̂c(u)∧ 0) + (µ′(0) + θ)Q̂c(u)+

]
du− L̂(t), (5)

where {B(t) : t ≥ 0} is a standard Brownian motion. L̂ is the unique nondecreasing nonnegative

process in D satisfying equation (5) and
∫∞

0
1
{
Q̂c(t)< c

}
dL̂(t) = 0.

Qc
n is an irreducible Markov chain with a finite state space. Thus, Q̂c admits a unique stationary

distribution, π. As Eπ[Q̂c(t)] = Eπ[Q̂c(0)], by Theorem 6 and the Basic Adjoint Relation (Chen

and Yao 2001),

Eπ[L̂(t)] =
(
−βµ(0)−µ(0)Eπ[Q̂c(0)∧ 0]− (µ′(0) + θ)Eπ[Q̂c(0)+]

)
t

and the proportion of customers that are blocked from the n-th system, Pn(Bl), satisfies

Pn(Bl) ≈
√
nEπ[L̂(t)]

λnt

=
1√
n

(
−βµ(0)−µ(0)Eπ[Q̂c(0)∧ 0]− (µ′(0) + θ)Eπ[Q̂c(0)+]

)
µ(0)

.

The probability of blocking is of O(1/
√
n). This implies that for large systems, the proportion

of customers blocked and the proportion of time the system is blocked are very small. As the

system is restricted to fluctuate around the lower equilibrium q̄1, we expect QED regime perfor-

mance for P (W ) and P (Ab), i.e. non-degenerate probability of waiting and O(1/
√
n) probability

of abandonment.

Table 1 compares the performance of a load sensitive queue with admission control and without

(Base) for different load sensitive parameters (b). We observe that the admission control policy keeps
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the performance measures within the QED regime characteristics for all sensitivity parameters

tested. The performance measures are much improved—the probability of waiting is reduced from

98–100% to 20–50%, the probability of abandonment is reduced from 20–40% to 0.1–0.9%, and

the “cost” of such policy, measured by the proportion of customers blocked, is quite low (at most

1.51% for the parameters tested in Table 1). Note that the total proportion of lost customers, i.e.

P (Ab) +P (Bl), is significantly lower than the base line—reduced from 20–40% to 0.13–0.16%.

Table 1 Performance comparison of systems with different load sensitivity parameter, b.

(µ(q) = 0.6 + 0.4 exp(−bi(q−n)+/n), λ= 500, n= 511 and θ= 0.3)

Base Admission control
b P (W ) P (Ab) cn P (W ) P (Ab) P (Bl) P (Ab) +P (Bl)

1.25 0.9830 0.2021 579 0.4873 0.0090 0.0057 0.0147
1.75 1 0.3199 541 0.3426 0.0031 0.0107 0.0138
2.25 1 0.3562 530 0.2583 0.0016 0.0135 0.0151
2.75 1 0.3718 525 0.2056 0.0010 0.0151 0.0161

7. Extensions

The model in Section 3 is the most befitting to explain agent-driven slowdowns, where the effect

of the load of the system on service rates is applied instantly and to all agents simultaneously.

Such a model fits situations where agents observe the current load and adjust their working rates

accordingly. The exact same model cannot be directly applied to capture all various sources of the

slowdown effect described in the introduction. In this section, we modify the base model to better

fit other sources of slowdown effects. In particular, we study: a) Customer-driven slowdowns, where

each customer’s waiting time affects only her own service rate, and b) Agent-driven slowdowns

with a time lag, which can explain slowdowns caused by fatigue and hence takes time to take

effect. Utilizing numerical approaches, we find that the primary insights (the existence of the two

equilibria and the stochastic fluctuations between them) from our original model remain.

7.1. Customer-driven slowdown

In this section, we assume that a customer’s service time is positively correlated with his own

waiting time. In particular, the service time of customer i is distributed as an exponential random

variable with rate µi = µ(wiλ/n) where wi is the waiting time of customer i (the total amount

of time customer i waits before entering service). Note that in this setting, the service time does

not change once the customer is taken into service. Chan et al. (2013) analyze a model similar in

spirit by establishing a more tractable upper bound system. However, as their model doesn’t allow

abandonments, they must put a bound on the slowdown effect and bi-stability doesn’t arise there.

We expect the customer-driven model to exhibit similar behavior to our modified Erlang-A

model, because if we denote the number of people in the system when customer i enters service
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by qi, then by Little’s law, we have E[(qi − n)+] = λE[wi]. We test this intuition via simulation.

Figure 8 plots the sample paths of the queue length process for the customer-driven slowdown

model for different values of the load-sensitivity parameter b. The solid horizontal lines are the

equilibrium levels predicted by the modified Erlang-A model with load-dependent service rate

function µ((Q− n)+/n). For b= 1.5, we only have one equilibrium point for the M/MQ/n queue

(see Figure 5 (b)). We observe the bi-stability still exists in this case and as the load-sensitivity

parameter b increases, the system spends more time around the upper equilibrium level. But we

also notice that the bi-stability phenomenon occurs for smaller values of b than the corresponding

M/MQ/n+M model (Figure 8 (a)). Moreover, while the lower equilibrium levels are about the

same in both models, the upper equilibrium level is larger in the customer-driven slowdown model

than in the corresponding M/MQ/n+M model (Figure 8 (b) and (c)).

Figure 8 Sample paths of the number of people in the system with different sensitivity parameters, b (n= 214,

λ= 200, θ= 0.3 and µi = 0.6 + 0.4 exp(−bwiλ/n).)
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7.2. Agent-driven slowdown with a lag

Another possible cause for the slowdown effect is due to fatigue of agents. Under high congestion

levels, agents are working under pressure and without proper rest, which may eventually lead

to deterioration in productivity. One way to model a slowdown effect caused by fatigue is to

incorporate a time lag between the occurrence of high congestion levels and the deterioration in

productivity. To capture this, we set the service rate as a function of the average queue length

process over a time interval of length l, where l is of the same order as the service times. Specifically,

the service rate at time t is

µ

(∫ t

t−l

(Q(u)−n)+

n
du

)
.

We observe that bi-stability still exists in this case. We find that the length of the time lag, l,

affects the frequency at which the system moves between the two equilibria. When l is relatively

small, the system moves “easily” from one equilibrium to the other; as l increases, it becomes

“harder” for the system to move between the two equilibria. Figure 9 illustrates how the bi-stability
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phenomenon evolves as the sensitivity parameter, b, increases, for a relatively small time lag (e.g.,

l = 5). The solid horizontal lines are the equilibrium levels predicted by our modified Erlang-A

model with service rate function µ((Q−n)+/n). We observe that the proportion of time the system

spends around the higher equilibrium grows with b and the equilibrium levels are about the same as

the corresponding M/MQ/n+M model. In contrast, for a large time lag (e.g., l= 30), the trajectory

of the system depends largely on its initial position, and tends to stay around the initial equilibrium

level for a very long period of time (potentially forever), regardless of the value of b. Figure 10

demonstrates the sample paths commonly observed in this case. If the system starts around the

lower equilibrium, it keeps fluctuating around that level (Figure 10 (a)), whereas if the system

starts around the higher equilibrium, then it stays there (Figure 10 (b)). These observations have

operational implications—whereas systems with short lags will move from the upper equilibrium

to the lower equilibrium on their own, systems with long lags may need external interventions to

move from the upper equilibrium to the lower one.

Figure 9 Sample paths of the number of people in the system with time lag of length l = 5 and different

levels of the sensitivity parameter, b (n= 214, λ= 200, θ = 0.3 and µ
(∫ t

t−l(Q(u)−n)+/ndu
)

= 0.6 +

0.4 exp
(
−b
∫ t
t−l(Q(u)− s)+/sdu

)
.)
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Figure 10 Sample paths of the number of people in the system with time lag of length l = 30 and

different initial queue lengths (s = 214, λ = 200, θ = 0.3 and µ
(∫ t

t−l(Q(u)− s)+/sdu
)

= 0.6 +

0.4 exp
(
−2
∫ t
t−l(Q(u)− s)+/sdu

)
.)
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8. Concluding Remarks

Motivated by empirical findings in service systems, we modified the Erlang-A model to account

for the effect of workload-dependent service rates. When the load sensitivity is low relative to

the abandonment rate, we observe a small gap between the performance of the standard Erlang-

A model and the load-sensitive model, though the latter has lower quality of service. We show

that this reduction in quality measures can be fixed by adjusting the square-root staffing rule

parameter. When the load sensitivity is high, we observe a bi-stability phenomenon where the

system alternates between two equilibria: one equilibrium results in QED performance and the

other equilibrium results in ED performance. We conduct a sensitivity analysis on the proportion

of time the system spends around each equilibrium and propose an admission control policy to

achieve QED performance in this case. Lastly, we illustrate via numerical experiments that the

bi-stability phenomenon persists in a broader class of load-sensitive service systems which extend

to different sources of the slowdown effect.

We would like to conclude with some remarks regarding the construction of the model. First, for

the sake of simplicity, throughout the manuscript, we assume a decreasing and convex service rate

function and a constant abandonment rate. These assumptions lead to the bi-stability results. We

notice that meta-stability (multiple (semi-)stable equilibria) can arise for more general forms of

the service rate function and load-dependent abandonment rate. Most of the analyses in this paper

(the fluid analysis and the asymptotic analysis of the stationary distribution) can be applied to

the more general cases as well. Our second remark is on the practical estimation of the service rate

function. From our analyses, it is apparent that to design service systems with a load-dependent

slowdown effect, it is sufficient to accurately estimate the service rate function around zero, for

most purposes. The derivative of the service rate function at zero is all that is needed to distinguish

between the low and the high sensitivity cases, and to approximate the performance measures in

the low sensitivity case. To implement the admission control policy in the high sensitivity case, it

is sufficient to estimate the service rate function up to O(1/
√
n).
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Appendix A: Proofs

Proof of Theorem 1. The proof follows from the method outlined in Pang et al. (2007). We write

Qn(t) = Qn(0) +A(λnt)−S
(∫ t

0

µ

(
(Qn(u)−n)+

n

)
(Qn(u)∧n)du

)
−R

(
θ

∫ t

0

(Qn(u)−n)+du

)
= Qn(0) +Mn,1(t)−Mn,2(t)−Mn,3(t)

+λnt−
∫ t

0

µ

(
(Qn(u)−n)+

n

)
(Qn(u)∧n)du− θ

∫ t

0

(Qn(u)−n)+du

where

Mn,1 = A(λnt)−λnt

Mn,2 = S

(∫ t

0

µ

(
(Qn(u)−n)+

n

)
(Qn(u)∧n)du

)
−
∫ t

0

µ

(
(Qn(u)−n)+

n

)
(Qn(u)∧n)du

Mn,3 = R

(
θ

∫ t

0

(Qn(u)−n)+du

)
− θ
∫ t

0

(Qn(u)−n)+du.

Let Q̄n(t) =Qn(t)/n and M̄n,i =Mn,i/n for i= 1,2,3. Then

Q̄n(t) = Q̄n(0) + M̄n,1(t)− M̄n,2(t)− M̄n,3(t)

+
λn
n
t−
∫ t

0

µ
(
(Q̄n(u)− 1)+

) (
Q̄n(u)∧ 1

)
du− θ

∫ t

0

(
Q̄n(u)− 1

)+
du.

Let d(q) =−µ((q− 1)+)(q ∧ 1)− θ(q− 1)+. As µ′(·)≤ 0 and µ′′(·)≥ 0, |µ′(x)| ≤ |µ′(0)|. It is easy to check

that

|d(q1)− d(q2)| ≤max{µ(0), |µ′(0)|+ θ}|q1− q2|.

Thus d(·) is Lipschitz. This implies that

q(t) = b+x(t) +

∫ t

0

d(q(u))du

has a unique solution and constitutes a function φ :D×R→D that is continuous (see Theorem 4.1 in Pang

et al. (2007)).

Let η(t)≡ 0. We next show that M̄n,i→ η in D w.p. 1 as n→∞ for i= 1,2,3.

Applying the Functional Strong Law of Large Numbers to Poisson processes, we have sup0≤t≤T

{
A(nt)

n
− t
}
→

0, sup0≤t≤T

{
S(nt)

n
− t
}
→ 0 and sup0≤t≤T

{
R(nt)

n
− t
}
→ 0 w.p. 1 as n→∞ for any T > 0. We thus have

M̄n,1→ η in D w.p. 1 as n→∞.

As Qn(t) < Qn(0) + A(λnt),
∫ t

0
Qn(u)du ≤ t (Qn(0) +A(λnt)). This implies that for any fixed T > 0 there

exists τ > 0, such that

P

(
µ(0)

n

∫ T

0

Qn(u)du> τ

)
→ 0 as n→∞.

Then,

P
(∥∥M̄n,2

∥∥
T
> ε
)
≤ P

(
µ(0)

n

∫ T

0

Qn(u)du> τ

)
+P

(∥∥∥∥S(nt)

n
− t
∥∥∥∥
τ

>
ε

2

)
.

This leads to

M̄n,2→ η in D w.p. 1 as n→∞.

Similarly we can show that

M̄n,3→ η in D w.p. 1 as n→∞.

By the Continuous Mapping Theorem (CMT) we have the fluid limit in Theorem 1. �
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Proof of Theorem 2. We prove asymptotic stability by the Lyapunov method. Specifically, a function

V (q) : R+ → R+ is called a Lyapunov function of (2) about its equilibrium q̄ if V (q̄) = 0 and V (q) > 0,

0 < |q − q̄| < δ for some δ > 0. We denote V̇ as the derivative of V (·) with respect to q. q̄ is locally

asymptotically stable, if there exists a Lyapunov function V (q), such that V̇ (q)< 0 for all 0< |q− q̄|< δ

for some δ > 0. q̄ is globally asymptotically stable, if the locally asymptotically stable conditions hold

for all δ ∈R+.

For the low sensitivity case, we use the following Lyapunov function

V (q) = |q− q̄|,

where q̄ is the specified equilibrium. Hence,

V̇ (q) = sign(q− q̄)f(q).

Recall that f(q) = µ(0)−µ((q− 1)+)(q ∧ 1)− θ(q− 1)+.

Under Assumption 1 and the assumptions of the low sensitivity case, f(·) is decreasing. q̄ = µ(0)/µ(0) = 1

and

V̇ (q) =

{
−µ(0) +µ(0)q <−µ(0) +µ(0)q̄= 0, q < q̄;
µ(0)−µ(q− 1)− θ(q− 1)<µ(0)−µ(0) = 0, q > q̄.

Therefore, q̄ is a globally asymptotically stable equilibrium.

Under Assumption 1 and the assumptions of the high sensitivity case, f(1) = 0; thus q̄1 = 1. f(q) is

increasing on [q̄1, q̂) and decreasing on [q̂,∞). Since f(q̂)> 0 and limq→∞ f(q) =−∞, there exists q̄2 > q̂ such

that f(q̄2) = 0.

As f(q)> 0 for q < 1 and f(q)> 0 for 1< q < q̂, q̄1 is semistable.

Let

V2(q) = |q− q̄2|.

For q ∈ (q̄1,∞),

V̇2(q) =

−µ(0) +µ(q− 1) + θ(q− 1)<−µ(0) +µ(0)q̄1 = 0, q̄1 < q≤ q̂,
−µ(0) +µ(q− 1) + θ(q− 1)<−µ(0) +µ(q̄2− 1) + θ(q̄2− 1) = 0, q̂ < q < q̄2,
µ(0)−µ(q− 1)− θ(q− 1)<µ(0)−µ(q̄2− 1)− θ(q̄2− 1) = 0, q > q̄2.

Therefore, q̄2 is a locally asymptotically stable equilibrium. �

In order to prove Theorem 3, we start with the following lemma.

Lemma 4. Assume
√
n(1−λn/(nµ(0)))→ β as n→∞. For any 0< y1 < y2 <∞,

lim
n→∞

log
πn(bn+

√
ny2c)

πn(bn+
√
ny1c)

=−
∫ y2

y1

β+
µ′(0) + θ

µ(0)
y dy

and

lim
n→∞

log
πn(bn−

√
ny1c)

πn(bn−
√
ny2c)

=−
∫ −y1
−y2

β+ y dy.
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Proof of Lemma 4. From the detailed balance equation of the B&D process, we have

πn(bn+
√
ny2c)

πn(bn+
√
ny1c)

=

bn+
√
ny2c∏

k=bn+
√
ny1c+1

λn
µ ((k−n)/n)n+ θ(k−n)

.

Then,

log
πn(bn+

√
ny2c)

πn(bn+
√
ny1c)

= b(y2− y1)
√
nc logρn−

b
√
ny2c∑

k=b
√
ny1c+1

log

(
1 +

µ( k
n

)−µ(0) + θ k
n

µ(0)

)

= −b(y2− y1)
√
nc(1− ρn)−

b
√
ny2c∑

k=b
√
ny1c+1

µ′(0) + θ

µ(0)

k√
n

1√
n

+O

(
1

n

)
→ −(y2− y1)β−

∫ y2

y1

µ′(0) + θ

µ(0)
ydy.

Likewise,

log
πn(bn−

√
ny1c)

πn(bn−
√
ny2c)

= b(y2− y1)
√
nc logρn−

b
√
ny2c∑

k=b
√
ny1c+1

log(1− k

n
)

= −b(y2− y1)
√
nc(1− ρn)−

b
√
ny2c∑

k=b
√
ny1c+1

− k√
n

1√
n

+O

(
1

n

)
→ −(y2− y1)β−

∫ y2

y1

−ydy.

�

Proof of Theorem 3. The technique used in this proof follows from Fleming et al. (1994). We denote Gn as

the cumulative distribution function (CDF) of the scaled process Yn. We first prove the relative compactness

of Gn by a sandwich argument using stochastic comparison.

Let {Ql
n(t)} and {Qu

n(t)} denote the queue length processes of two sequences of ordinary Erlang-A queues:

both have n servers and arrival rate λn, which are the same as the original process Qn(t). We keep the service

rate and the abandonment rate fixed regardless of the system scale. The service rates of both systems are

fixed at µ(0). The abandonment rate of Ql
n(t) is θ whereas the abandonment rate of Qu

n(t) is θ+µ′(0).

As

µ

(
q−n
n

)
n+ θ(q−n)≤ µ(0)n+ θ(q−n)

and

µ

(
q−n
n

)
n+ θ(q−n) = µ(0)n+ (µ′(0) + θ)(q−n) +µ′′(η)

(q−n)2

n
for some η ∈ (0, (q−n)/n)

≥ µ(0)n+ (µ′(0) + θ)(q−n),

based on Lemma 3, we have

P (Qn(∞)> q)≥ P (Ql
n(∞)> q)

and

P (Qn(∞)> q)≤ P (Qu
n(∞)> q).
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Following the definition of Yn, we let Y l
n := (Ql

n(∞)−n)/
√
n and Y u

n := (Qu
n(∞)−n)/

√
n. We also denote Gl

n

and Gu
n as the CDFs of the scaled processes X l

n and Xu
n , respectively. Then both Gu

n and Gl
n converge uni-

formly to some limiting distributions (Fleming et al. 1994). We denote their limits as Gl and Gu respectively.

Since Gu
n(y)≤Gn(y)≤Gl

n(y), we have that for any ε > 0, there exists a small enough y such that

lim sup
n→∞

Gn(y)≤ lim
n→∞

Gl(y)< ε

and

1≥ lim
y→∞

lim inf
n→∞

Gn(y)≥ lim
y→∞

lim
n→∞

Gu
n(y) = 1.

Thus, Gn is relatively compact. The limit of Gn exists and is a well-defined CDF.

From Lemma 4, the distribution G is absolutely continuous with probability density function of the form

g(y) =


C1√
2π

exp
(
− (y+β)2

2

)
if y < 0,

C2√
2πσ2

exp
(
− (y+βσ2)2

2σ2

)
if y≥ 0,

where σ=
√
µ(0)/ (µ′(0) + θ), and C1 and C2 are the normalizing constants. Using the fact that

∫∞
−∞ g(y)dy=

1 and g(y) is continuous at 0, we have

C1 =
h(βσ)

σφ(β)

(
1 +

h(βσ)

σh(−β)

)−1

,

and

C2 =
h(βσ)

φ(βσ)

(
1 +

h(βσ)

σh(−β)

)−1

.

�

Proof of Corollary 1. As Pn(W ) = P (Qn(∞)≥ n) = P (Yn ≥ 0), and

lim
n→∞

P (Yn ≥ 0) =C2Φ̄(βσ) =

(
1 +

h(βσ)

σh(−β)

)−1

,

where σ=
√
µ(0)/ (µ′(0) + θ). We thus have the desired limit for Pn(W ).

For Pn(Ab), we have

√
nPn(Ab) = E[(Qn(∞)−n)+]

θ
√
n

λn

= E[Yn|Yn ≥ 0]Pn(W )
θn

λn
.

As limn→∞E[Yn|Yn ≥ 0] = σh(βσ)−βσ2,

lim
n→∞

√
nPn(Ab) =

(
σh(βσ)−βσ2

)(
1 +

h(βσ)

σh(−β)

)−1
θ

µ(0)

=

(
h(βσ)

σ
−β
)(

1 +
h(βσ)

σh(−β)

)−1
θ

µ′(0) + θ
.

�
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Proof of Lemma 1. For the first limit in the lemma, let ψn(x) = λn/n−µ(x)−θx for x≥ 0. Then x̃n is the

unique root of ψn(x) = 0 on [0, x̂]. Since λn/n→ µ(0) as n→∞ and ψn(·) is continuous and monotonically

increasing on [0, x̂], x̃n→ 0 as n→∞. Applying Taylor expansion to µ(·), we have

ψn(x̃) = λn/n−µ(0)− (µ′+ θ)x̃n +O(x̃2
n) = 0.

Then
µ(0)−λn/n

x̃n
→−µ′(0) + θ as n→∞.

As
√
n(1−λn/(nµ(0)))→ β, x̃n =O(1/

√
n). We then have

√
nx̃n =−

√
n(µ(0)−λn/n)

µ′(0) + θ
+O

(
1√
n

)
.

Thus,
√
nx̃n→−µ(0)β/(µ′(0) + θ) as n→∞.

For the second limit in the lemma, since λn/n− ν(x)→ µ(0)− ν(x) as n→∞ and ν(·) is continuously

increasing on (x̂,∞), x̄n→ x̄. It is also easy to check that x̄= q̄2 − 1, i.e. x̄ measures the distance between

the two fluid equilibria. �

Proof of Theorem 4. We first establish some asymptotic results about the value of the peaks, q̄n,1 and

q̄n,2.
n− q̄n,1√

n
=
√
n

(
1− λn

nµ(0)

)
+O

(
1√
n

)
→ β as n→∞.

As limn→∞ λn/n= µ(0) and ν(x) is continuously decreasing on (x̂,∞),

q̄n,2−n
n

= x̄n +O(
1

n
)→ x̄ as n→∞.

Using the detailed balance equation of the B&D process, we have

πn(q̄n,2) = πn(q̄n,1)

q̄n,2∏
k=q̄n,1+1

λn
µ((k−n)+/n)(k∧n) + θ(k−n)+

= πn(q̄n,1) exp

(q̄n,2− q̄n,1) log
λn
n
−

n−1∑
k=q̄n,1+1

log

(
µ(0)

k

n

)
−
q̄n,2∑
k=n

log ν

(
q−n
n

) .

Then,

1

n
log

πn(q̄n,2)

πn(q̄n,1)
=

q̄n,2− q̄n,1
n

log
λn
n
− n− q̄n,1

n
logµ(0) +O

(
1√
n

)
− n

n

x̄nn∑
k=0

log ν(
k

n
)

1

n

→ x̄ logµ(0)−
∫ x̄

0

log ν(x)dx.

As ν(x)<µ(0) for x∈ (0, x̄), x̄ logµ(0)−
∫ x̄

0
log ν(x)dx> 0.

�

Proof of Lemma 2. By Theorem 2, under high sensitivity conditions, q̄2 > 1 is the unique root of f(q) =

µ(0) − µ((q − 1)+) − θ(q − 1)+ on (1,∞) . We establish the results of this lemma by comparing pairs of

systems, (1) and (2); we denote the higher level equilibrium as q̄
(1)
2 and q̄

(2)
2 for the two systems, respectively.

For each part of the lemma we differ the two systems by two values of a specific system parameter.
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i) Keep all other system parameters equal and vary the service rate function µ(·), such that µ(2)(·) is more

sensitive than µ(1)(·). Then, we have

0 = µ(1)(0)−µ(1)

(
q̄

(1)
2 − 1

)
− θ
(
q̄

(1)
2 − 1

)
≤ µ(2)(0)−µ(2)

(
q̄

(1)
2 − 1

)
− θ
(
q̄

(1)
2 − 1

)
.

As µ(2)(0)− µ(2)(q − 1)− θ(q − 1) is nonnegative on [1, q̄
(2)
2 ] and strictly negative on (q̄

(2)
2 ,∞), q̄

(2)
2 ≥ q̄(1)

2 ,

which implies x̄(1) ≤ x̄(2). Then

I(1)(x̄
(1)) =

∫ x̄(1)

0

log
µ(1)(0)

µ(1)(x) + θx
dx≤

∫ x̄(2)

0

log
µ(2)(0)

µ(2)(x) + θx
dx= I(2)(x̄

(2))

ii) Keep all other system parameters equal and vary the abandonment rate θ, such that θ(1) < θ(2). Then,

0 = µ(0)−µ
(
q̄

(2)
2 − 1

)
− θ(2)

(
q̄

(2)
2 − 1

)
<µ(0)−µ

(
q̄

(2)
2 − 1

)
− θ(1)

(
q̄

(2)
2 − 1

)
.

Following the same rationale as in part i), we have q̄
(1)
2 > q̄

(2)
2 , which implies x̄(1) > x̄(2). Then

I(1)(x̄
(1)) =

∫ x̄(1)

0

log
µ(0)

µ(x) + θ(1)x
dx>

∫ x̄(2)

0

log
µ(0)

µ(x) + θ(2)x
dx= I(2)(x̄

(2)).

�

Proof of Lemma 3. We prove the theorem by first introducing a coupling, under which the entire sample

path of Y (1) and Y (2) are ordered, i.e.

P (Y (1)(t)≤ Y (2)(t) for all t≥ 0) = 1.

Fix Ỹ (1)(0) = Ỹ (2)(0) = y0 for any y0 ∈ Z+. The coupling argument uses the thinning property of Poisson

process and goes as follows. When (Ỹ (1)(t), Ỹ (2)(t)) = (y1, y2) We generate the next potential transition by

an exponential random variable with rate γ1 + ξ1(y1)∨ ξ2(y2). We then generate a uniform random variable

independent of everything else. If U ≤ γ1/(γ1 + ξ1(y1)∨ ξ2(y2)), we treat it as an arrival to both Ỹ (1) and

Ỹ (2); else if U ≤ (γ1 + ξ1(y1)∧ ξ1(y2))/(γ1 + ξ1(y1)∨ ξ2(y2)), we treat it as a departure for both processes;

else we impose a departure on Ỹ (i) with the larger departure rate only. As when y1 = y2, we always have

ξ1(y1) ≥ ξ2(y2), under this coupling Ỹ (1)(t) ≤ Ỹ (2)(t), for all t ≥ 0, path by path. Let Py0(·) := P (·|Y (1) =

y0, Y
(2) = y0). Then we have

Py0(Y (1)(t)> y) = Py0(Ỹ (1)(t)> y, Ỹ (1)(t)< Ỹ (2)(t))≤ Py0(Ỹ (2)(t))> y) = Py0(Y (2)(t)> y)

for any t≥ 0.

As limt→∞Py0(Y (i)(t)> y) = P (Y (i)(∞)> y),i= 1,2, for all y0 ∈ Z+, is well-defined, and Y (1) and Y (2) live

on the same state space, P (Y (1)(∞)> y)≤ P (Y (2)(∞)> y). �

Before we prove Theorem 5, we first prove the following lemma as a preparation.

Lemma 5. Under High Sensitivity and SRS with β > 0,

i) the larger the value of the SRS parameter β is, the larger the value of q̃n;

ii) under Definition 4, the more load sensitive the service rate function is, the smaller the value of q̃n;
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iii) the larger the abandonment rate θ is, the smaller the value of q̃n.

Proof of Lemma 5. The proof of Lemma 5 follows the same strategy as the proof of Lemma 2. Specifically,

we compare pairs of systems, (1) and (2). For each part of the lemma, we differ the two system by two values

of a specific system parameter.

i) Keep all other system parameters equal and vary the staffing parameter β, such that β(1) <β(2). Denote

n(1) =Rn +β(1)

√
Rn and n(2) =Rn +β(2)

√
Rn. Then n(1) <n(2) and

0 = λn/n(1)−µ(x̃(1)
n )− θx̃(1)

n >λn/n(2)−µ(x̃(1)
n )− θx̃(1)

n .

As λn/n(2)−µ(x)− θx is increasing on [0, x̂] and is nonpositive on [0, x̃(2)
n ], x̃(2)

n > x̃(1)
n . Thus, q̃(2)

n = b(x̃(2)
n +

1)n(2)c> q̃(1)
n = b(x̃(1)

n + 1)n(1)c
ii) Keep all other system parameters equal and vary the service rate function µ(·), such that µ(2)(·) is

more sensitive than µ(1)(·). Then, we have

0 =
λn
n
−µ(2)

(
x̃(2)
n

)
− θx̃(2)

n ≥
λn
n
−µ(1)

(
x̃(2)
n

)
− θx̃(2)

n .

Following the same rationale as in part i), we have q̃(1)
n ≥ q̃(2)

n .

ii) Keep all other system parameters equal and vary the abandonment rate θ, such that θ(1) < θ(2). Then,

0 =
λn
n
−µ

(
x̃(1)
n

)
− θ(1)x̃

(1)
n >

λn
n
−µ

(
x̃(1)
n

)
− θ(2)x̃

(1)
n .

Following the same rationale as in part i), we have q̃(2)
n > q̃(1)

n .

�

Proof of Theorem 5. We prove Theorem 5 by comparing the death rates of pairs of systems denoted by

Q(1) and Q(2).

i) Keeping all other parameters equal, for β(1) < β(2), we denote n(1) = R+ β(1)

√
R, n(2) = R+ β(2)

√
R

where R= λ/µ(0). Then when q≤ n(1), the death rates of the two systems are equal; when n(1) < q≤ n(2),

µ(0)q−
(
µ

(
q

n(1)

− 1

)
n(1) + θ(q−n(1))

)
≥ (µ(0)− θ)(q−n(1))≥ 0;

when q > n(2) (
µ

(
q

n(2)

− 1

)
n(2) + θ(q−n(2))

)
−
(
µ

(
q

n(1)

− 1

)
n(1) + θ(q−n(1))

)
=

(
µ

(
q

n(2)

− 1

)
−µ

(
q

n(1)

− 1

))
n(2) +µ

(
q

n(1)

− 1

)
(n(2)−n(1))− θ(n(2)−n(1))

≥ −µ′
(

q

n(1)

− 1

)
(n(2)−n(1))q

n(1)

+ (µ(∞)− θ)(n(2)−n(1))≥ 0.

Then

P (Q(1)(∞)> q̃(1)
n )≥ P (Q(2)(∞)> q̃(1)

n )≥ P (Q(2)(∞)> q̃(2)
n ),

where the first inequality follows from Lemma 3 and the second inequality follows from Lemma 5.

ii) Keeping all other parameters equal, for system (2) more sensitive than system (1), we have µ(1)((q−
n)+/n)(q ∧ n) + θ(q − n)+ ≥ µ(2)((q − n)+/n)(q ∧ n) + θ(q − n)+ for all q ≥ 0. Then P (Q(1)(∞) > q̃(1)

n ) ≤
P (Q(2)(∞)> q̃(1)

n )≤ P (Q(2)(∞)> q̃(2)
n ).
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iii) Keeping all other parameters equal, for θ(1) < θ(2), we have µ((q − n)+/n)(q ∧ n) + θ(1)(q − n)+ ≤

µ((q−n)+/n)(q∧n)+θ(2)(q−n)+ for all q≥ 0. Then P (Q(1)(∞)> q̃(1)
n )≥ P (Q(2)(∞)> q̃(1)

n )≥ P (Q(2)(∞)>

q̃(2)
n ).

�

Proof of Theorem 6. The proof of Theorem 6 also follows from the method outlined in Pang et al. (2007).

We use both the Functional Central Limit Theorem (FCLT) and CMT. We again write

Qc
n(t) = Qc

n(0) +A(λnt)−S
(∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
(Qc

n(u)∧n)du

)
−R

(
θ

∫ t

0

(Qc
n(u)−n)+du

)
−Ln(t)

= Qc
n(0) +Mn,1(t)−Mn,2(t)−Mn,3(t)−Ln(t)

+λnt−
∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
(Qc

n(u)∧n)du− θ
∫ t

0

(Qc
n(u)−n)+du

where

Mn,1 = A(λnt)−λnt

Mn,2 = S

(∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
(Qc

n(u)∧n)du

)
−
∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
(Qc

n(u)∧n)du

Mn,3 = R

(
θ

∫ t

0

(Qc
n(u)−n)+du

)
− θ
∫ t

0

(Qc
n(s)−n)+du.

Let Q̂c
n(t) = (Qn(t)−n)/

√
n, Ŷn(t) = Yn(t)/

√
n and M̂n,i =Mn,i/

√
n for i= 1,2,3. As Q̂c

n(·)< cn, Q̂c
n(t) =

O(
√
n). Applying Taylor expansion, we have

Q̂c
n(t) = Q̂c

n(0) + M̂n,1(t)− M̂n,2(t)− M̂n,3(t)−Ln(t)

+
λn−µ(0)n√

n
t−
∫ t

0

µ(0)(Q̂c
n(u)∧ 0)du−

∫ t

0

µ′(0)Q̂c
n(u)+du−

∫ t

0

θQ̂c
n(u)+du+O

(
1√
n

)
.

Let d(q) =−µ′(0)(q ∧ 0)− (µ′(0) + θ)q+. Consider the integral representation

q(t) = b+x(t) +

∫ t

0

d(q(s))ds− l(t), (6)

where l(t) is a nondecreasing nonnegative function in D such that (6) holds and
∫∞

0
1{q(t) < c}dl(t) = 0.

As d(·) is Lipschitz, the integration (6) has a unique solution (q, y) and it constitutes a Bonafide function

(φ1, φ2) :D×R→D×D mapping (b, x) into (q, y). Moreover (φ1, φ2) is continuous (see Theorem 7.3 in Pang

et al. (2007)).

M̂n,i are square-integrable martingales with respect to the filtration

Fn,t := σ

{
Qn(0),A(λns), S

(∫ s

0

µ

(
(Qc

n(u)−n)+

n

)
(Qc

n(u)∧n)du

)
,R

(
θ

∫ t

0

(Qc
n(u)−n)+du

)
: 0≤ s≤ t

}
augmented by including all null sets. Also

〈Mn,1〉(t) =
λnt

n

〈Mn,2〉(t) =

∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
Qc
n(u)∧n
n

du

〈Mn,3〉(t) =
θ

n

∫ t

0

(Qc
n(u)−n)+du.



35

As
λnt

n
→ µ(0)t as n→∞ w.p. 1,

{〈Mn,1〉} is stochastically bounded. By the crude bound Qc
n(s)<Qc

n(0) +A(λnt), we have∫ t

0

µ

(
(Qc

n(u)−n)+

n

)
Qc
n(u)∧n
n

du≤ µ(0)t

(
Qc
n(0)

n
+
A(λnt)

n

)
.

Since {Qc
n(0)/n} and {A(λnt)/n} are stochastically bounded, {〈Mn,2〉} is stochastically bounded.

Similarly, we can show that {〈Mn,3〉} is also stochastically bounded. This implies that {Mn,i}’s for i= 1,2,3

are stochastically bounded, which in turn implies the stochastic boundedness of {Q̂c
n} in D. Thus,

Q̂c
n/
√
n⇒ η in D as n→∞

where η is the zero function defined above.

By FCLT for Poisson processes and CMT with composition map, we have

(Mn,1,Mn,2,Mn,3)⇒ (B1 ◦λω,B2 ◦ sµ(0)ω,B3 ◦ η)

where ω(t)≡ 1 for any t.

Finally, applying the CMT with the integral representation (6), we get the result in Theorem 6. �
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