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Problem definition: Developing estimators for delay distributions in a queueing network with a Fork-Join structure.

Academic / Practical Relevance: Delay announcements have become an essential tool in service system operations;

they influence customer behavior and network efficiency. Most current delay announcement methods are designed for

relatively simple call-center environments. Here we focus on a complex Fork-Join network of an Emergency Department.

Such systems are mostly in a transient state and although queues for each station are fairly short, delays are long. These

delays are the result of both resource scarcity and synchronization delays.

Methodology: We develop an exact analysis of the system. The analysis is based on recursively constructing the Laplace-

Stieltjes transform of the joint distributions, conditioning on customers’ movements in the network. We then examine the

accuracy of the proposed approach on data of an Emergency Department.

Results: Estimations are provided throughout the customer’s stay in the network under Markovian assumptions; we

then discuss (and provide) relaxations of both service time distribution and structural model assumptions. We provide

evidence that the methodology developed is better than Last-to-Enter-Service (LES) estimators (which are based on

snapshot principle arguments), reducing Root-Mean-Squared-Error (RMSE) by 25–30%. Our use case demonstrates the

importance of incorporating speedup effects of service rates into delay estimators, which are naturally captured by our

model, improving accuracy by 10%.

Managerial Implications: The results of our study allow management to implement delay announcements in complex

Fork-Join networks. We also highlight the power of using exact approaches instead of relying on approximations, though

the latter might be necessary for larger systems.

1. Introduction
Delay announcements have become an essential tool in service system operations. It has been

long known that delay announcements serve as a means to reduce customer anxiety and ambiguity

while waiting, thus shortening the perceived waiting time and increasing customer satisfaction

(Maister 1984, Munichor and Rafaeli 2007). It was further shown, both theoretically (Armony et al.

2009, Jouini et al. 2011) and empirically (Dong et al. 2018, Yu et al. 2016) that providing delay

estimations influences customer behavior, which in turn impacts system performance.

In order to provide delay announcements one needs accurate delay estimations. Methodologies

for delay estimations have been mostly developed for single station queues (Ibrahim and Whitt
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2009a,0,0,0), or for a predetermined route of queues in tandem (Gal et al. 2017). Those are able

to capture delays that stem from a lack of resources. However, in service networks, on which the

current paper concentrates, there are also synchronization delays that stem from coordination needs

in the network. The prediction of the combined effect of those two types of delay is the essence of

this paper.

Our primary motivation comes from healthcare systems, such as Emergency Departments (EDs);

these are complex queueing networks that involve multiple resource types (physicians, nurses,

etc.), multiple patient types (differentiated by severity and medical specialty), long and highly

variable processes, and a time-varying environment (Armony et al. 2015). Figure 1 presents a data-

based snapshot of real patient flow throughout an Israeli ED. One can clearly see that modeling the

ED process as a queueing network imposes a complex structure. Moreover, one of the basic features

of this network is the Fork-Join (FJ) structure. A FJ structure models two (or more) activities that

can be done in parallel, with different resources, both (or all) of which need to be completed in

order to continue the process. Consider, for example, a patient that needs to have an X-ray imaging

test, as well as a blood sample tested at the lab before a physician can decide on the rest of the

treatment. Those two processes, X-ray and blood test, can be (mostly) done in parallel; hence, the

processing times may overlap. FJ networks are prevalent in healthcare systems, but also in other

service systems such as the legal system (e.g. when a judge assigns several specialists to produce

their opinion before ruling). The goal of this paper is to develop delay estimations for such FJ

networks.

Patients in healthcare systems often experience long delays, which are accompanied by con-

fusion, stress and a sense of helplessness (Sullivan et al. 2012, Taylor 1979), as a result of the

ambiguity of their service processes and waiting durations. This stress inflicts high pressure on

personnel as well. It has often been claimed that providing real-time information for patients on

process development and durations may improve patient satisfaction and reduce patients’ stress

and its negative effects (Altman et al. 2016, Moriah et al. 2011, Rafaeli et al. 2014).

Within healthcare, estimating delays for EDs is especially challenging, first and foremost since

the system is small and mostly in transient state. As an example, we present in Figure 2 the average

queue length during the day in three stations within an Israeli ED: nurse admission, doctor admis-

sion, and lab tests. It is clear that the queue size varies throughout the day, which suggests that

a steady-state analysis will not be adequate, and a transient analysis would in fact be necessary.

We also observe that queue lengths are fairly small; on average, up to 10 patients are waiting for
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Figure 1 A snapshot of patient flow throughout an Israeli ED. Nodes represent ED processes, and each

colored disc moving along an edge represents a patient who completed the process at the edge

origin, and is waiting for, or currently undergoing, the process at the edge destination.

An animation of the data is available on: https://youtu.be/HP au996Ffw

doctor admission, and no more than 6–7 patients are waiting for nurse admission, or for their lab

test results. This suggests that approximation methods may not be accurate either, which led us to

develop exact delay estimators for transient-state queueing networks.

Figure 2 Average number of patients in queue (April, 2014 - August, 2016, Weekdays)

The fact that queues for each stage in the treatment process seems to be short, does not mean that

waits and sojourn times are short too. Average lengths of stay in EDs are typically long (Armony

https://youtu.be/HP_au996Ffw
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et al. 2015), and our use case ED is no different, suffering 7 hours of average delay. Figure 3

presents the sojourn time (waiting time + service time) distribution at the nurse admission station,

given the number of patients already in the station (either waiting or undergoing service) at the time

of arrival. This provides yet another incentive to consider real-time estimators, as it clearly shows

that the sojourn time distribution, as well as its mean and standard deviation, changes significantly

with the different queue lengths seen upon patient arrival.

Figure 3 Sojourn time at nurse admission, as a function of the number of patients already in the station

(April, 2014 - August, 2016, Weekdays.) (bars represent histograms in 1-minute resolution, and bold

lines show smoothed Bspline functions of relative frequencies )

.

Some attention also must be given to the amount of information provided to customers. Yom-

Tov et al. (2017) showed that delay announcements which are given as a range (e.g. “your wait will

be between 45 and 60 minutes”) influence customer patience differently than announcing expected

wait or a lower bound; and it contributes in reducing customer abandonment. In addition, in a pre-

liminary study of ED announcements, Efrat and Parush (2017) found that customers perceive such

range-based delay announcements as more understandable and credible than delay announcements

which refer to a single point (“your wait will be approximately 45 minutes” or “your wait will be

at least 45 minutes”). Sun et al. (2012) developed a quantile regression model to provide delay
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estimations in ED as a range—between the median and the 95th percentile. It was claimed that due

to the great variability in patients’ waiting time (in this case, between triage and first encounter

with a physician) it is extremely challenging to provide a single point estimation (e.g. the mean

waiting time), and patients are more satisfied when they receive overestimations rather than under-

estimations. Jouini et al. (2015) also discussed the importance of estimating a different quantile

of the delay distribution, as a means for utility maximization. Therefore, our goal is to provide an

estimate for the entire delay distribution, and not just for a specific function of it.

1.1. Contributions

The main contributions of this paper are the following:

1. Developing delay, or sojourn time, estimators for service networks which include FJ struc-

tures, focusing on individual, real-time, state-dependent estimation, as opposed to the average,

steady-state waiting time of all customers. In this work, we first focus on a network of one single

server service station followed by an FJ structure, assuming exponential service times and First-

Come-First-Served (FCFS) priority policy. The model is specified in §2. We then relax some of

those assumptions in §5.

2. Providing estimations of the waiting (sojourn) time distribution, rather than merely means

or medians. Such distribution estimation enables announcing delays as a range rather than as a

single point. In §3, we use an exact analysis approach to compute the Laplace-Stieltjes Transform

(LST) of the sojourn time in each of the stations, and the LST of the total sojourn time, given the

real-time system state at the time of arrival to the first station. The corresponding distributions can

then be derived by inverting the LST (for example, by numerical inversion as in Abate and Whitt

(1995), Witkovskỳ (2016)).

3. Providing waiting (sojourn) time estimations for all stations in a service network, at the time

of arrival to the first station in the network. This approach can provide answers to questions such

as: “when will a customer arrive at the next station? What will be her waiting time once getting

there?” Predicting delays at some future point in time is important, and could be used to overcome

synchronization problems that stem from providing lagged information (see Dong et al. (2018)

for a discussion on the impact of time-lagged delay estimations in networks). This approach has

further implications in other domains, too; for example, in project planning and management. One

can use our approach to estimate, at the project starting point, when the next stages of the project

will start and end, given the current state of all other assignments.
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4. Empirical validation. We validate our approach in an empirical case study of an Emergency

Department, using a unique transaction-level database. This database was established and devel-

oped as one of the first steps in our research. It allowed us to test our method’s performance

in an actual healthcare system. The results are specified in §4. It was found that, although most

of the model microscopic assumptions do not hold in reality—that is, service durations are not

exponential at all stations, priority policy is not FCFS, and even the model structure itself may

not accurately represent the actual processes—still in many cases, and specifically for the FJ part

tested, our model approximates the actual sojourn time distribution well and better than current

approaches. Moreover, this case study revealed some interesting features that influence both system

performance and accuracy of estimators. For example, we found that it is essential to incorporate

the ‘speedup’ phenomenon in which service rate grows with the queue length (Chan et al. 2014,

Kc and Terwiesch 2009).

5. Modeling strength. We expand our basic model to include far more general systems. For

example, we show that the ‘speedup’ phenomenon can be easily incorporated into the model, and

by doing so the estimator accuracy is improved by almost 10% (§4.2). We also expand the model

to include general service times in the first station (§5.1 and EC A). We further show that one of

the FJ stations could be an infinite-server service station, having general service times (see §5.2

and EC B). This means that several activities may be replaced with one single delay node, hence

substantially reducing the network complexity. The idea was implemented successfully for ED

staffing problems by Yom-Tov and Mandelbaum (2014). We claim it is appropriate here too, and

provides a way to address the “curse of dimensionality” common with this type of exact analysis.

Furthermore, this approach may be adopted where there is some ambiguity regarding the role of

one of the stations in the model—considering it as a delay node may provide the required gener-

alization in order to account for such ambiguity. For example, the lab in our case study provides

services to the whole hospital, not just the ED, hence may be considered as a delay node instead

of multiple-server station with Exponential service durations.

1.2. Literature review

There is ample literature on waiting time and sojourn time estimators in service systems, mostly

concentrating on steady-state behavior. An extensive survey of such results is given by Boxma and

Daduna (1990). Our goal, on the other hand, is to provide real-time (state-dependent) estimators

for delay distributions, that capture the transient state of the system. Specifically, as explained,

we analyze FJ networks. An additional survey on sojourn times in FJ networks is provided by
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Boxma et al. (1994). Ko and Serfozo (2004) provided a closed-form approximation for the sojourn

time distribution in an FJ network consisting of m M/M/s nodes, in steady state. The sojourn

time distribution is approximated as a mixture of the sojourn time distributions in each of the

FJ stations. In Ko and Serfozo (2008) the model was extended to an FJ network of m M/G/1

nodes. Qiu et al. (2015) suggested a Phase-Type representation of the waiting time distribution and

the sojourn time distribution in an FJ network, relying on steady-state assumptions and assuming

the difference between the longest queue and the shortest queue is bounded. Rizk et al. (2015)

developed computable bounds on the steady-state cumulative distribution functions of the waiting

and sojourn time, having both renewal processes and non-renewal processes as an input. All of

the above used steady-state analysis to derive expressions for the required distributions. However,

healthcare systems, which are the motivation for our work, are rarely in steady state, as is also

evident through the data of our ED case study (see for example Figure 2).

Reiman (1982) studied conventional heavy-traffic diffusion approximations for sojourn times in

Jackson networks with K single server stations. One of his main results is the snapshot principle:

“It is as if the customer takes a snapshot of the network when he enters and all queues remain

at the same value during the customer’s sojourn through the network.” Snapshot principle-based

estimators follow the assumption that changes in queue lengths are negligible during a customer

visit within the system; this gave rise to the Last-to-Enter-Service (LES) and Head-of-the-Line

(HOL) estimators which basically approximate the waiting time of an arriving customer by the

waiting time of the last customer to enter service, or the elapsed waiting time of the customer who

is currently at the head of the queue. Huang et al. (2015), for example, used the snapshot principle

to approximate queue length, virtual waiting time and sojourn times in a single server multi-class

queue, specifically, an ED physician treating both newly arrived patients and in-process patients.

Nguyen (1993) studied heavy-traffic limits of FJ networks, and showed that under the snapshot

principle assumptions, the sojourn time of an arriving customer, in each of the FJ stations, is the

average service time in that station times the minimal number of customers in all the station queues.

The total sojourn time of an arriving customer can be then regarded as a function of the longest

path. We compare our methodology to snapshot-based estimators, though it can only be compared

to the average delay, not the whole distribution (§4.2). Note however that the snapshot principle-

based estimators are appropriate in critically loaded systems (ρ≈ 1) and when the priority policy

within each class is FCFS. These criteria may not hold in healthcare systems, which often alternate

between overloaded and underloaded periods, and in which the priority policy is rarely FCFS.
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Ibrahim and Whitt (2009a,0,0,0) proposed a series of real-time waiting time estimators for a

single queue with abandonments, time-varying arrival rate and capacity, general service durations,

and general inter-arrival and patience distributions. Their predictors could be categorized as two

types: queue-length-based (QL) predictors, and delay-history-based predictors (or snapshot prin-

ciple predictors). Thiongane et al. (2016) expand the delay-history-based predictors to a weighted

average form that can cope with multi-class queues. Although these real-time predictors cover a

wide range of service systems, they only account for single stations and provide solely an estima-

tion for the average waiting time. Nakibly (2002) focused on estimating waiting time distributions,

given the system state at the time of arrival, but this was again for single station service systems,

albeit considering skills-based-routing (the motivation came from call centers).

Sun et al. (2012) and Ang et al. (2016) focused on predicting the “time-to-treatment” in an ED.

This is the time elapsed between the patient registration or triage and the first encounter with a

physician or a nurse practitioner. In both papers it was shown that incorporating information about

the ED state (the number of patients in queue, the processing rate or the number of providers), as

well as estimators such as given in Ibrahim and Whitt (2009a,0), with statistical learning methods

(e.g. regularized linear regression) significantly improves the accuracy of the time-to-treatment

estimator. In Gal et al. (2017) process-mining techniques were used to predict bus traveling times

given a scheduled bus journey. It was also shown that enriching statistical learning methods with

queueing perspective variables, such as snapshot-based predictors, results in better prediction mod-

els. Similarly to our approach, in Sun et al. (2012) an estimation for a waiting time range (50th−

90th percentile) was given, however only for a single station. In Gal et al. (2017) the focus was on

delay prediction in networks; yet they do not provide an estimation for the delay distribution, but

rather for the mean delay.

From a performance analysis perspective, the most closely related to our work is the literature

on closed service networks of two tandem queues, using exact analysis. Stadje (1996) derived a

closed-form solution for the total sojourn time within a closed network of two single server queues

in tandem with Exponential service durations, given the number of customers in each of the queues

at the time of arrival. Boxma (1983), Daduna (1986), and Boxma and Daduna (2014) yielded

expressions for the joint LST of the sojourn time in the two tandem queues. In those papers, the

analysis starts with the assumption that there is a total of N customers in the system, and there

are k customers in the first queue, right after a customer departure from the second queue (hence
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there are N − k customers in the second queue). The results are then multiplied by the steady-

state probabilities of having k customers in the first queue after a departure from the second one.

Boxma (1983) considered the case of one queue with Exponential service times followed by a

queue with general service times. It was also shown that reversing the order of the queues will yield

a different expression for the joint LST. Daduna (1986) generalized the service times distribution

to an Erlang-mixture, and Boxma and Daduna (2014) derived an expression for the joint LST of

the sojourn times in both queues, having first general service times and then Exponential service

times. In our analysis we shall follow that approach and extend it to FJ queues, adding concurrency

to the system, which is prevalent in healthcare systems, thus providing an additional important

layer to the analysis.

2. The fork-join network model

We consider an open queueing network (see Figure 4) with two parts. The first part consists of

a single server queue, followed by the second part with two queues in an FJ structure. We refer

to these queues as the ‘upper FJ’ station (UFJ) and the ‘lower FJ’ station (LFJ). We assume that

service times in the first part are Exponentially distributed with rate λ. The FJ stations can be

either single server or multiple server queues, having Exponential service times with rates µ1 and

µ2, respectively. We assume FCFS service policy throughout the network. From here on we shall

assume that both stations in the FJ part have a single server, but this is only in order to simplify

notations, and is not a constraint in any way.

We use the following notation to describe the system state at the time of arrival of a target cus-

tomer (for which we would like to provide the delay announcement): k is the number of customers

in the first single server station (including customers in queue and in service), h1 is the number of

customers in the UFJ station, and h2 is the number of customers in the LFJ station. Let S0 be the

target customer sojourn time in the first station, and S1 (S2) be her sojourn time in the UFJ (LFJ)

station. Let SFJ be the target customer total sojourn time in the FJ part. See Figure 4 for illustra-

tion. Note that: SFJ = max{S1, S2}. Since we are assuming FCFS policy, and the first part queue

has a single server, customers entering the system after the target customer will not influence her

time in the system. It can therefore be assumed that no customers enter the system after the target

customer, and her total sojourn time in the system is actually the time it will take the system to

drain.
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Figure 4 Two queues in tandem; a single server queue followed by a fork-join queue.

Let Ψk,h1,h2(w0,wFJ) be the joint Laplace-Stieltjes transform of S0 and SFJ given k customers

in the first station, h1 customers in the UFJ station and h2 customers in the LFJ station. If the target

customer arrives and finds customers in all three stations, that is, k,h1, h2 > 0 then,

Ψk,h1,h2(w0,wFJ)≡Ek,h1,h2
[
e−w0S0−wFJSFJ

]
=

∞∫
0

e−w0tXk,h1,h2λe
−λt dt, (1)

where Xk,h1,h2 is given by (see the derivation below):

Xk,h1,h2 =

h1−1∑
r1=0

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,h2−r2+1(w0,wFJ)

+

h1−1∑
r1=0

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,1(w0,wFJ)

+
∞∑

r1=h1

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,h2−r2+1(w0,wFJ)

+
∞∑

r1=h1

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,1(w0,wFJ). (2)

From the memory-less property of the Exponential distribution, the residual service time of the

customer currently in service in the first station is also Exponential with rate λ. (The assumption

that service times at the first station are Exponential can be relaxed; an analysis for general service

times at the first station is given in §5.1 and EC A).

In order to derive Xk,h1,h2 , we condition the distribution according to changes happening in the

FJ part while the first station completed one service. For this, we track the number of customers

potentially who completed their service by the time that the customer, who is currently in service

at the first station, completed service there. We add the term ‘potentially’ to emphasize that we
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account for the number of service completions that could have taken place, if there was an infinite

number of customers waiting to be served. There are generally four possible scenarios for the state

of the FJ part by the time the customer in service at the first station leaves that station:

1. There are still customers in queue (or in service) in both the UFJ and the LFJ stations. The

probability of this scenario is

h1−1∑
r1=0

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
=

(
h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)(
h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
.

2. There are still customers in queue (or in service) in the UFJ station, but the server at the LFJ

station completed service of all customers that were present at his station when the target customer

arrived. Hence, there are no customers in the LFJ station, except for the one who just joined after

completing service at the first station. The probability of this scenario is

h1−1∑
r1=0

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
=

(
h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)(
1−

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
.

3. There are still customers in queue (or in service) in the LFJ station, but the server at the

UFJ station completed service of all customers that were present at that station when the target

customer arrived. Hence, there are no customers in the UFJ station, except the one who just joined

after completing service at the first station. The probability of this scenario is

∞∑
r1=h1

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
=

(
1−

h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)(
h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
.

4. Both the UFJ and the LFJ servers finished serving all customers that were present at their

stations when the target customer arrived. Hence, there are no customers in both stations, except

for the one who just joined after completing service at the first station. The probability of this

scenario is

∞∑
r1=h1

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
=

(
1−

h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)(
1−

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
.

Note that the number of potential service completions in the UFJ station and the LFJ station are

independent given t—the service duration of the customer in service in the first queue. Thus, we

derive Xk,h1,h2 as in (2).
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3. Laplace-Stieltjes transform computation
Based on Equations (1) and (2) the joint LST will now be computed recursively. Each iteration

corresponds to the number of remaining customers in the first station, until it has no customers,

except for the target customer. That is, in the first iteration there are k customers in the first station;

in the next iteration there will be k− 1 customers in the first station, and so on. The joint LST in

each iteration is conditioned on the number of potential service completions in the FJ part, by the

time the current customer in service in the first station leaves this station. In order to efficiently

compute recursively the joint LST, we use the following notation:

a(r1, r2)≡
∞∫
0

e−(w0+µ1+µ2)t
(µ1t)

r1

r1!

(µ2t)
r2

r2!
λe−λt dt,

b(r1, h2)≡
∞∑

r2=h2

a(r1, r2) =

∞∫
0

e−(w0+µ1+µ2)t

∞∑
r2=h2

(µ1t)
r1

r1!

(µ2t)
r2

r2!
λe−λt dt,

c(h1, r2)≡
∞∑

r1=h1

a(r1, r2),

d(h1, h2)≡
∞∑

r1=h1

b(r1, h2).

Using the above notation, and a shorthand notation in which we omit the w0, wFJ , the recur-

sive formula of Ψk,h1,h2(w0,wFJ)≡Ψk,h1,h2 , given via Equations (1) and (2) (for the case where

k,h1, h2 > 0), will yield

Ψk,h1,h2 =

h1−1∑
r1=0

[
h2−1∑
r2=0

(Ψk−1,h1−r1+1,h2−r2+1 · a(r1, r2)) + Ψk−1,h1−r1+1,1 · b(r1, h2)

]

+

h2−1∑
r2=0

(Ψk−1,1,h2−r2+1 · c(h1, r2)) + Ψk−1,1,1 · d(h1, h2). (3)

By simple algebraic manipulations we get

a(r1, r2) =
λ

λ+w0

∞∫
0

(λ+w0)e
−(w0+λ)te−µ1t

(µ1t)
r1

r1!
e−µ2t

(µ2t)
r2

r2!
dt (4)

=

(
r1 + r2
r1

)
λ

λ+w0 +µ1 +µ2

(
µ1

λ+w0 +µ1 +µ2

)r1 ( µ2

λ+w0 +µ1 +µ2

)r2
,

b(r1, h2) =
λ

λ+w0

∞∫
0

(λ+w0)e
−(w0+λ)te−µ1t

(µ1t)
r1

r1!

(
1−

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
dt,
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c(h1, r2) =
λ

λ+w0

∞∫
0

(λ+w0)e
−(w0+λ)te−µ2t

(µ2t)
r2

r2!

(
1−

h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)
dt,

d(h1, h2) =
λ

λ+w0

∞∫
0

(λ+w0)e
−(w0+λ)t

(
1−

h1−1∑
r1=0

e−µ1t
(µ1t)

r1

r1!

)(
1−

h2−1∑
r2=0

e−µ2t
(µ2t)

r2

r2!

)
dt.

These integrals can also be evaluated in the same way as the integral expression for a(r1, r2).

Furthermore, note that if we define X to be a Poisson process with rate µ1, Y as a Poisson process

with rate µ2, and Ω∼ exp(λ+w0), then,

a(r1, r2) =
λ

λ+w0

P (X(Ω) = r1, Y (Ω) = r2) ,

b(r1, h2) =
λ

λ+w0

P (X(Ω) = r1, Y (Ω)≥ h2) ,

c(h1, r2) =
λ

λ+w0

P (X(Ω)≥ h1, Y (Ω) = r2) ,

d(h1, h2) =
λ

λ+w0

P (X(Ω)≥ h1, Y (Ω)≥ h2) .

3.1. Stopping conditions

The recursive computation of the joint LST ends when there are no customers in the first station

except for the target customer, that is, when k = 0. In this case, the target customer sojourn time

in the first station will only be her service time, which is Exponential with rate λ. We define

Zx,y(wFJ) as the LST of the total sojourn time of the target customer in the FJ part given that there

are x customers in the UFJ station, and y customers in the LFJ station, as follows:

Zx,y(wFJ) :=E
[
e−wFJSFJ | h1 = x,h2 = y

]
=

∞∫
0

e−wFJ t dFSFJ |x,y(t). (5)

The sojourn time in the UFJ (LFJ) station, of a target customer arriving to that station, and finding

x (y) customers there, will be the sum of x (y) service durations, each Exponentially distributed

with rate µ1 (µ2). Therefore, (S1|h1 = x)∼Gamma (x,µ1) ((S2|h2 = y)∼Gamma (y,µ2)), and

from the Gamma-Poisson relationship, we get:

FSFJ |x,y(t) = P (SFJ ≤ t | h1 = x,h2 = y) = P (S1, S2 ≤ t | h1 = x,h2 = y)

= P (S1 ≤ t | h1 = x,h2 = y)P (S2 ≤ t | h1 = x,h2 = y)

= P (S1 ≤ t | h1 = x)P (S2 ≤ t | h2 = y)

=

(
1−

x∑
m=0

e−µ1t
(µ1t)

m

m!

)(
1−

y∑
n=0

e−µ2t
(µ2t)

n

n!

)
.
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It follows that once k= 0, the recursive formula is done, since it is only left to calculate Zx,y(wFJ)

for all possible values of x and y, and the probabilities of having h1 = x and h2 = y by the time

the target customer ends service in the first station.

We shall now review the four possible cases in which k= 0, and the resulting recursive formula

(again, for notation simplicity we omit wFJ ):

1. k= 0, h1, h2 > 0:

Ψ0,h1,h2 =

h1−1∑
r1=0

[
h2−1∑
r2=0

(Zh1−r1+1,h2−r2+1 · a(r1, r2)) +Zh1−r1+1,1 · b(r1, h2)

]

+

h2−1∑
r2=0

(
Z1,h2−r2+1 · c(h1, r2)

)
+Z1,1 · d(h1, h2). (6)

2. k= 0, h1 = 0, h2 > 0:

Ψ0,0,h2 =

h2−1∑
r2=0

Z1,h2−r2+1 · c(0, r2) +Z1,1 · d(0, h2). (7)

3. k= 0, h2 = 0, h1 > 0:

Ψ0,h1,0 =

h1−1∑
r1=0

Zh1−r1+1,1 · b(r1,0) +Z1,1 · d(h1,0). (8)

4. k= 0, h1, h2 = 0:

Ψ0,0,0 =
λ

λ+w0

Z1,1. (9)

Here the LST Zx,y ≡Zx,y(wFJ) is defined in Equation (5), and a(·, ·), b(·, ·), c(·, ·), and d(·, ·) are

defined in Equation (4). Note that (SFJ |1,1) is the maximum of two Exponential random variables

with rates µ1 and µ2, ergo,

FSFJ |1,1(t) = P (S1 ≤ t | h1 = 1)P (S2 ≤ t | h2 = 1) =
(
1− e−µ1t

) (
1− e−µ2t

)
.

Therefore,

Z1,1 =

∞∫
0

e−wFJ t
[
µ1e

−µ1t
(
1− e−µ2t

)
+µ2e

−µ2t
(
1− e−µ1t

)]
dt

=
µ1

µ1 +wFJ
− µ1

µ1 +µ2 +wFJ
+

µ2

µ2 +wFJ
− µ2

µ1 +µ2 +wFJ
.

For completeness, we shall also review the special cases in which k > 0 and h1 or h2 (or both)

equal zero:
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1. k > 0, h1 = 0, h2 > 0:

Ψk,0,h2 =

h2−1∑
r2=0

Ψk−1,1,h2−r2+1 · c(0, r2) + Ψk−1,1,1 · d(0, h2).

2. k > 0, h1 > 0, h2 = 0:

Ψk,h1,0 =

h1−1∑
r1=0

Ψk−1,h1−r1+1,1 · b(r1,0) + Ψk−1,1,1 · d(h1,0).

3. k > 0, h1, h2 = 0:

Ψk,0,0 = Ψk−1,1,1d(0,0) = Ψk−1,1,1 ·
λ

λ+w0

.

3.2. Recursive formula calculation

The recursive formula can be easily and efficiently calculated if written in compact matrix form.

We define the following two matrices: The first matrix is Ψ̄k−1,h1+1,h2+1, given by

Ψ̄k−1,h1+1,h2+1 =


Ψk−1,h1+1,h2+1 Ψk−1,h1+1,h2 . . . Ψk−1,h1+1,1

Ψk−1,h1,h2+1 Ψk−1,h1,h2 . . . Ψk−1,h1,1
...

... . . . ...

Ψk−1,1,h2+1 Ψk−1,1,h2 . . . Ψk−1,1,1

 ,

and its dimensions are (h1 + 1)× (h2 + 1). The second matrix, Φh1,h2 , is defined as

Φh1,h2 =



a(0,0) a(1,0) . . . a(h1− 1,0) c(h1,0)

a(0,1) a(1,1) . . . a(h1− 1,1) c(h1,1)
...

... . . . ...
...

a(0, h2− 1) a(1, h2− 1) . . . a(h1− 1, h2− 1) c(h1, h2− 1)

b(0, h2) b(1, h2) . . . b(h1− 1, h2) d(h1, h2)


.

and its dimensions are (h2 + 1)× (h1 + 1). We now observe that

Ψk,h1,h2 = trace

(
Ψ̄k−1,h1+1,h2+1 ·Φh1,h2

)
.

If there are k customers in the first station, h1 customers in the UFJ station, and h2 in the LFJ

station, by the time the target customer completes service in the first station, there could be up
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to h1 + k customers in the UFJ station, and up to h2 + k customers in the LFJ station. Thus, to

recursively compute Ψk,h1,h2 we start with the (h1 + k)× (h2 + k) matrix:

Ψ̄0,h1+k,h2+k =


Ψ0,h1+k,h2+k Ψ0,h1+k,h2+k−1 . . . Ψ0,h1+k,1

Ψ0,h1+k−1,h2+k Ψ0,h1+k−1,h2+k−1 . . . Ψ0,h1+k−1,1
...

... . . . ...

Ψ0,1,h2+k Ψ0,1,h2+k−1 . . . Ψ0,1,1

 ;

each of its elements can be easily computed using Formulas (6)–(9). As a basis for all iterations it

will be of use to define the following four (h1 + k− 1)× (h2 + k− 1) matrices:

Ah1+k,h2+k =


a(0,0) a(0,1) . . . a(0, h2 + k− 2)

a(1,0) a(1,1) . . . a(1, h2 + k− 2)
...

... . . . ...

a(h1 + k− 2,0) a(h1 + k− 2,1) . . . a(h1 + k− 2, h2 + k− 2)

 ,

Bh1+k,h2+k =


b(0,1) b(0,2) . . . b(0, h2 + k− 1)

b(1,1) b(1,2) . . . b(1, h2 + k− 1)
...

... . . . ...

b(h1 + k− 2,1) b(h1 + k− 2,2) . . . b(h1 + k− 2, h2 + k− 1)

 ,

Ch1+k,h2+k =


c(1,0) c(1,1) . . . c(1, h2 + k− 2)

c(2,0) c(2,1) . . . c(2, h2 + k− 2)
...

... . . . ...

c(h1 + k− 1,0) c(h1 + k− 1,1) . . . c(h1 + k− 1, h2 + k− 2)

 ,

Dh1+k,h2+k =


d(1,1) d(1,2) . . . d(1, h2 + k− 1)

d(2,1) d(2,2) . . . d(2, h2 + k− 1)
...

... . . . ...

d(h1 + k− 1,1) d(h1 + k− 1,2) . . . d(h1 + k− 1, h2 + k− 1)

 .

The elements of these matrices are computed by Equation (4).

We shall also use the following notation: let X be a matrix, then X[l :m,n : p] is the resulting

matrix by taking all the elements of X in rows l up to m, and columns n up to p.

In the first iteration we compute the matrix Ψ̄1,h1+k−1,h2+k−1. Each of its elements,

Ψ1,m,n, ∀1≤m≤ h1 + k− 1, 1≤ n≤ h2 + k− 1
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will be calculated as follows:

Ψ1,m,n = trace

(
Ψ̄0,m+1,n+1 ·Φm,n

)
,

where

Ψ̄0,m+1,n+1 = Ψ̄0,h1+k,h2+k

[
h1 + k−m : h1 + k , h2 + k−n : h2 + k

]
,

and Φm,n is composed of the matrices A, B, C, and D, in the following manner:

Φm,n =

A[1 :m,1 : n]T C[m,1 : n]T

B[1 :m,n]T D[m,n]

 .
In the second iteration we calculate Ψ̄2,h1+k−2,h2+k−2. Each of its elements,

Ψ2,m,n, ∀1≤m≤ h1 + k− 2, 1≤ n≤ h2 + k− 2,

can be calculated as follows:

Ψ2,m,n = trace

(
Ψ̄1,m+1,n+1 ·Φm,n

)
.

We continue this process, until we reach the kth iteration, in which the desired LST will be:

Ψk,h1,h2(w0,wFJ)≡Ψk,h1,h2 = trace

(
Ψ̄k−1,h1+1,h2+1 ·Φh1,h2

)
.

Assigning w0 = 0 (wFJ = 0) will yield the LST of the sojourn time at the first (FJ) part, assign-

ing wFJ =w0 will yield the LST of the target customer total sojourn time in the system. From the

LST we obtain the Fourier-Stieltjes transform, and then use the numerical inversion of Witkovskỳ

(2016) to retrieve the sojourn time distribution.

4. ‘All models are wrong, but some are useful’ (George Box)
As this known quote states any model, ours included, is constrained by its assumptions on the

reality; assumptions that are mostly wrong. In this section, we will demonstrate via a case study,

that despite this fact the proposed method is robust enough to be practical in real, complex, chal-

lenging service networks, such as healthcare systems. To do so, we compare estimations based on

the model to over two years of data (from April 2014 to August 2016) taken from an Israeli ED.

We shall first describe the ED environment focusing on the gaps between the model assumptions

and the data. Then, we shall compare and evaluate our estimators accuracy, and discuss the reasons

for such accuracy. The structure of the ED process was first established by depth interviews with
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various ED personnel—the ED manager, physicians, nurses, and administrators—and then verified

by obtaining transaction-level data on all treatments provided throughout the patient’s stay.

On average, 150 patients arrive to the ED per day. The ED classify them into two groups non-

severe independent walking patients (47%), and acute patient groups in which each patient is

assigned a bed (53%). The average length of stay in the ED for walking patients is approximately

5 hours, for acute patients, the average length of stay is approximately 9.5 hours. As previously

mentioned, Figure 1 presents a snapshot of real-time patient flow through the entire ED process;

the following case study will focus on part of that network, including the following three sta-

tions: nurse admission, doctor admission and lab tests. The first assumption we use is the model

structure—based on interviews with nurses and physicians we assumed that these three stations can

be modeled by an FJ network. During the nurse admission stage, for most patients, the nurse will

also draw blood to be tested. In some cases, the test results will arrive before the doctor admission

phase, and in others afterwards. Therefore, the blood tests and the doctor admission are done in

parallel, and can be modeled as an FJ network (see Figure 5 for illustration). This description was

also verified via the data we collected. However, we also note that unlike the FJ network assump-

tions, sometimes the doctor will wait for the lab tests to arrive before examining a patient, even

though he is available. In those cases, the right model shall be two queues in tandem. Therefore,

the assumption that the “true” model has an FJ structure is only approximately accurate in this

particular ED application.

Figure 5 Modeling the beginning of an ED process as a single server queue followed by a fork-join queue.

Other model assumptions are also violated in reality. For example, service duration is not Expo-

nential, but rather fits quite well a Log-normal distribution, as can be seen in Figure 6. This fig-

ure presents the sojourn time distribution at the nurse admission station, given that there were
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no patients in the station upon a patient arrival. In that case, the patient sojourn time equals ser-

vice time. To overcome this gap between assumptions and reality, we expand our results to non-

exponential service times in the first station in §5.1, where we also discuss the influence of this

assumption on all parts of the network via simulation.

Figure 6 Fitting Log-normal distribution to nurse admission service time distribution (April, 2014 - August,

2016, Weekdays)

One of our model assumptions is that each station operates according to a FCFS priority pol-

icy. However, in healthcare systems, particularly in EDs, patients are assigned different priorities

according to their medical condition. Our data analysis revealed that in each of the three stations

considered, less than 40% of the patients maintained their place in queue between arrival to queue

and departure from service. This means that the FCFS policy does not hold. Note that the patients

order may be violated while waiting in queue or during service, if there is more than one service

provider.

Another concern is that the number of people in queue is uncertain. This stems from several

reasons. First, the lab provides service not just for ED patients but also to the entire hospital. The

number of open orders to the lab is unknown. Second, physicians are providing treatment both to

newly arrived patients (who are waiting for doctor admission), as well as patients at later stages

of their ED process, i.e., both activities are done by the same resource. Hence, by isolating this

sub-network, we underestimate the number of patients in queue, and ignore effects of other parts

(both within the ED and outside the ED) on it. Still, assuming the lab commits the same amount

of resources to ED patients over time, and since physicians give priority to patients waiting for

admission over patients in later stages, we still can provide accurate enough results.
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Current wait time estimation models assume either constant service rates or time-varying ser-

vice rates. Yet, it was shown that service rates may also be a function of the load in the system

(Berry Jaeker and Tucker 2016, Kc and Terwiesch 2009), which is expressed via the length of the

queues; also known is that such dependency between load and service rates can impact the network

equilibrium and stability (Chan et al. 2014, Jing Dong and Yom-Tov 2015). This is indeed the

case in our data. Incorporating such phenomena into our model is actually straightforward, simply

by changing service rates to be state-dependent. We demonstrate in this case study that such an

adjustment is essential to obtain accurate delay predictions.

4.1. Service time estimation

In order to check the influence of queue length on service rates, we first need to evaluate service

durations. Our data include completion times for each patient’s activity. We do not have data of

activity starting times; hence, an approximation was needed in order to determine the duration

of each activity. We explain our service duration estimation methodology for nurse admission.

Note that all patients’ first activity in the ED is administrative reception and the second is nurse

admission. Let Patient x be our target customer, and let Patient y be the last patient to go through

nurse admission prior to Patient x. We distinguish between two cases; see Figure 7 for illustration.

Case 1 in which Patient x reception time was before Patient y nurse admission time. In that case

when Patient x arrived to the station the nurse was busy, hence, Patient x service duration (in the

nurse admission stage) will be ‘Patient x nurse admission time’ minus ‘Patient y nurse admission

time’. Otherwise Case 2 applies, in which the nurse is assumed to be idle. In that case Patient

x service duration (in the nurse admission stage) will be ‘Patient x nurse admission time’ minus

‘Patient x reception time’.

Figure 7 Estimating service duration, an example.

Figure 8 presents the service rate in the three stations we examined as a function of the queue

length. It is clear that in all three stations, there is a speedup phenomenon; as queue length



21

increases, the service rate increases. This may be due to service providers accelerating their work

in order to mitigate the load in the system, or simply due to extra staffing in loaded times. In any

case, one must acknowledge this phenomenon when using real-time estimation methods. In the

next section we explore the importance of using such service rates, rather than simply considering

the average service rates over all cases.

Figure 8 Service rates as a function of queue lengths

4.2. Case study results

In this section, we compare our model results with actual patient sojourn times in the ED data.

A patient sojourn time at the first station (S0) is considered as the time between administrative

reception and nurse admission. A patient sojourn time at the doctor admission phase starts at nurse

admission and ends at the doctor admission. For most of the blood test (70%) the hospital tracks

the time of blood test order, which is considered as the entering time to that station. Hence, the

sojourn time at the blood test phase is defined as the time between the blood test order and the

arrival of the last blood test result. In cases where there was no record of a blood test order (about

30% of the cases), we assumed that a blood test was ordered at the time of nurse admission. This

is based on our interviews and process observation. Consequently, the sojourn time at the FJ part

(SFJ) is defined as the maximum of the doctor admission sojourn time and the blood test sojourn

time. The total sojourn time was then calculated as the summation of the sojourn time at the first

station and the sojourn time at the FJ part. See Figure 9 for illustration.

As explained, the ED is divided into two sections: walking vs. urgent patient areas. We focus

our analysis on walking patients; these patients may benefit the most from delay information, as
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Figure 9 Sojourn times at the different stations - a scheme.

they can form decisions based on this information (for example, decide to wait at the cafeteria if

they are expecting a long waiting time). Moreover, data records of acute patients are less reliable,

as some patients are treated first, and records may be updated at a later stage; this is mainly due to

their urgent medical condition at the beginning of their ED stay.

Recall that the inputs for our model are the three queue sizes observed at the patient arrival

time (denoted by k, h1, and h2), and the service rates at the three stations (denoted by λ, µ1, and

µ2). From now on, we shall refer to each combination of k, h1, and h2 as a “scenario”. We have

examined a total of 105 scenarios with sample sizes larger than 50 observations.We removed 5%

of the observations in which the nurse admission sojourn time was equal to 0, and a negligible

number of observations (less than 1%) in which one of the sojourn times was larger than 5 hours,

as we assume this resulted from data corruption and does not reflect reality. Thus, including in our

examination a total of 10,000 observations.

As a benchmark for our method we use the Last-to-Enter-Service (LES) estimator. This estima-

tor is easy to implement and fairly robust, hence, widely used (Gal et al. 2017, Huang et al. 2015).

The LES method is based on the snapshot principle, which was proven to hold also for FJ networks

(Nguyen 1993). Consider a target patient entering the administrative reception. The LES estimator

states that this target patient sojourn time in any of the three following stations (nurse admission,

doctor admission and lab tests) can be estimated by the sojourn time of the last patient to enter

service in that station, prior to the target customer reception time. To estimate the sojourn time of

every patient in the FJ part, using an LES estimator, we first compute that patient’s LES estimators

for the doctor admission and the lab test stations separately, and then take the maximal value of the

two.

We examined our model in two versions (a) using constant service rates and (b) using state-

dependent service rates. We shall denote the model with the constant service rates by MFJC
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Table 1 Comparing performance of LES, MFJC, and MFJV, in estimating sojourn times in the first station,

the FJ station and the total sojourn time.

First station FJ station Total

Average (min) 20.45 52.61 73.06

Standard Deviation (min) 14.15 31.47 34.49

LES - RMSE (min) 18.04 45.82 49.06

MFJC - RMSE (min) 14.00 34.39 37.93

MFJV - RMSE (min) 13.49 31.98 34.03

(Markovian, FJ, Constant rates), and the latter by MFJV (Markovian, FJ, Varied rates). The input

service rates for the MFJC model were the average service rates among all observations. The input

state-dependent service rates, per each scenario in the MFJV model, were the average service rates

among all observations with the same queue length combinations.

A summary of results is provided in Table 1. The columns correspond to the first station (nurse

admission), the FJ part (doctor admission and lab tests), and the total of the two. The top two

rows present statistics of the average sojourn time and its standard deviation. We then present the

Root-Mean-Squared-Error (RMSE) of the LES estimator and the RMSE of our two models (MFJC

and MFJV). Note that our models provide an estimation for the entire distribution, while the LES

only provides a single point estimation; hence, for ‘fair’ comparison, we present here RMSE with

respect to expected sojourn times.

Clearly both the MFJC model and the MFJV model outperform the LES estimator in all three

cases, reducing RMSE by 25–30%. This gap is probably due to the fact that the ED is in transient-

state most of the day, which violates the snapshot principle assumptions upon which the LES

estimator is based. Furthermore, the RMSEs of both models are very close to (and even lower than)

the actual standard deviation of our data, which is also affected by the natural variability in the

personal and medical condition of different patients. As expected, the MFJV model provides more

accurate results than the MFJC model, as its input service rates fit better the real-time service rates.

To be exact, its RMSE is 10% lower than the RMSE of the MFJC model, for the total sojourn time.

One of the unique features of our proposed method is the fact that it can provide estimations

not just for the current station, but also for subsequent stations. Hence, it is more appropriate for

networks than LES methods. Still, note that significant differences were found even in the first

station.
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Next we examine our method’s performance in estimating sojourn time distributions for several

scenarios. Here we consider both walking and acute patients, as it provides a much larger sample

size. Figure 10 presents the sojourn time distribution in the FJ part according to the MFJV method

(in red) compared with a Kernel smoothing of the empirical sojourn time distribution (in blue).

The 12 graphs differ in their initial scenario (k,h1, h2), where k ∈ {0,1,2}, h1 ∈ {0,1,2,3} and

h1 = h2. We chose these scenarios as they had enough observations required in order to compare

distributions (as opposed to comparing averages which requires less data).

Figure 10 Comparing MFJV (red) distribution estimation with data (blue) of the FJ station sojourn times

We observe that in general there is an excellent fit of the theoretical distribution to the empirical

one. The scenario where all queues are empty seems to have the worst fit—our method clearly

underestimated sojourn times in that scenario. It seem that in the scenarios with higher queues in

the FJ part (e.g. h1 = h2 = 3) our method slightly overestimated the sojourn time. There could be

several reasons for such deviations, as stated before, many of the basic assumptions do not hold. In

addition, it could be that some bias resulted from our method of estimating service rates, or from

approximating a multi-server multi-queue network using a single-server multi-station network.

Either way, considering all limitations above, we find the results more than satisfactory for practical

use.
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5. Model extensions
In this section we provide some important extensions and robustness checks of our method; we

either relax or check the limitation resulting from some of the model’s assumptions.

5.1. General service durations

One of our main assumptions was that service durations, in all three stations, are Exponentially

distributed. In EC A, we partially relax this assumption by allowing a general service duration

distribution in the first station. The case of general service durations in the FJ part is not a triv-

ial extension of our model. However, we performed simulation experiments to validate that the

assumption of Exponential service durations does not reduce accuracy significantly. To this end,

we have compared estimated delays (mean and variance of the sojourn time at the first station,

the FJ part and the total sojourn time) with simulation in which the service time distribution in all

stations is Log-normal, as in our data (for example see Figure 6). Simulation results are presented

in Figure 11 for 2x6 scenarios. The parameters of the top two graphs are λ = 1, µ1 = 1, µ2 = 1,

h1 = 2, h2 = 2, while the queue in the first station, k, varies from 0 to 5. The parameters of the

bottom two graphs are λ= 1, µ1 = 1, µ2 = 1, k = 2, h2 = 2, while the queue in the UFJ station,

h1, varies from 0 to 5. We ran 50,000 iterations per each scenario. The graphs on the left (right)

present the mean sojourn time (sojourn time variance) at the first station in red, at the FJ part in

blue, and in yellow the total sojourn time. Solid lines represent the theoretical model results, hav-

ing Exponentially distributed service times, while the dotted lines represent the simulation results

having Log-normal service times. The simulation reveals that the estimated sojourn time expecta-

tion is accurate even when the actual service durations are not Exponential but rather Log-normal;

additionally there were only small deviations in the sojourn time variance.

5.2. Fork-Join network with a delay node

In the next extension, we relaxed some of the structural assumptions of our model by replacing

one of the service stations with a general delay node.

The FJ part of our network consists of two stations. It is possible to expand the network to

account for more stations; it is quite straightforward. However, it may become computationally

cumbersome. Alternatively, we propose to use a delay node within the FJ part to capture the joint

delay resulting from multiple stations. This approach was inspired by Yom-Tov and Mandelbaum

(2014) and van Leeuwaarden et al. (2017) who used it for making staffing decisions in the complex

ED environment. Those papers neglected the FJ structure inherited in ED services. Nevertheless,
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Figure 11 Comparison of simulation results with Log-normal service times vs. model results with Exponen-

tial service times.

the delay-station approach can bridge the dynamic structure so common in ED services. Patients

in EDs usually undergo several activities which are necessary for all patients while other activities

are only relevant for a portion of them. For example, all ED patients need to be seen by a doctor.

However, some of them will need to go through an X-Ray exam, CT scan, or Ultrasound exam,

and possibly more than one exam. Furthermore, it is not known in advance which of the exams,

if any, the patients will need, resulting in dynamic processes. Another uncertainty arises from the

fact that some of the resources provide service to patients which are not included in the specified

system. For example, the lab provides service to the entire hospital, not just for ED patients. We

propose to tackle such uncertainties by combining all those activities into a stochastic delay node,

positioned in parallel to a focal known activity (e.g. blood tests). A delay node is an infinite server

station with a generally distributed service time. The resulting model will then have one single

server queue (with either Exponential or general service time distribution), followed by an FJ part

consisting of one single (or multiple) server queue with Exponentially distributed service durations

and one infinite server queue with some general service durations.

This model can be reduced to a very similar model to the one presented in Boxma and Daduna

(2014) of a tandem network consisting of one queue with general service times followed by a
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Markovian queue. With the delay node, in each of the recursion iterations, the joint LST is condi-

tioned only on the number of potential service completions in one station with Exponential service

durations (and not on two such stations), in accordance with the recursion in Boxma and Daduna

(2014). However, the time each customer spends in the last station (FJ with one delay node and

one Markovian node), given that when he enters the station there are x customers in the Markovian

node, does not follow an Erlang distribution. Instead, it is the maximum of two independent ran-

dom variables, one with general distribution (corresponding to the sojourn time in the delay node)

and one with Erlang distribution. Formulas for this model are presented in EC B.

6. Discussion
Our research goal was to develop real-time, state-dependent estimations for delay distributions in

service networks. The motivation came from healthcare systems which are proved to be complex

queueing networks. We have developed a recursive formula to estimate sojourn times in a network

with one single server Markovian queue followed by an FJ part with two stations, each with Expo-

nentially distributed service duration. We derived an estimation for the sojourn time in the first part,

the sojourn time in the FJ part, and the total sojourn time—all are given at the time of a customer’s

arrival to the system, and are based on the state of the system at that arrival epoch.

We examined our methodology in a case study of an Israeli ED, based on unique transaction-

level data. This use case revealed that although essentially none of our model assumptions holds,

our methodology provides fairly accurate estimations for sojourn time distributions, and outper-

forms other commonly used estimators, such as the LES.

Then we relaxed some of the distributional assumptions, providing a natural extension for our

model with general service times in the first station. Furthermore, we have shown via simulation

that even when services in all stations are not Exponential, our methodology still provides accurate

results.

The main limitation of our methodology is the “curse of dimensionality”. For example, if we

wish to add explicitly more stations to the FJ part, computations may become cumbersome. We

approach this problem by suggesting another extension to our model in which one of the FJ stations

becomes a delay node. This delay node can represent, in an aggregative manner, all other stations

in the system. Computational problems may also occur when queue size grows large. In this case,

approximation methods may be more appropriate. We leave this for future research. One of the

basic assumptions of our model is the FCFS policy. However, as is evident through data, this may
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not hold, especially in healthcare systems in which priority is determined by medical condition.

This may be one of the reasons for deviations between the sojourn time estimation provided by

the theoretical model and patients’ actual sojourn time. Incorporating priorities into such models

will also be an interesting future research direction. Another direction of future research could be

in combining the estimators developed here with machine-learning techniques, i.e., adding them

as features in statistical models. This was shown to be very promising in Senderovich et al. (2014)

and Ang et al. (2016), and may help in increasing accuracy for FJ networks too.
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Technical notes and model extensions
Appendix A: General service times at the first station

In this appendix we provide a formulation for estimating sojourn times in the FJ network when service time in the first

station has a general distribution.

Assume that a target customer arrives to the first station and finds k customers there. Let Rk be the remaining

service duration of the customer being served in the first station, at the time of that target customer’s arrival (i.e., given

that there were k customers in the first queue). Expressions for the expected value of Rk and for its LST are given in

Mandelbaum and Yechiali (1983), and Kerner (2008).

Let B (·) be the cumulative distribution function of service duration in the first station (i.e, S0|k = 0 ∼ B). As

before, we define Ψk,h1,h2
(w0,wFJ) as the joint Laplace-Stieltjes transform of S0 and SFJ given k customers in the

first station, h1 customers in the UFJ station and h2 customers in the LFJ station.

Ψk,h1,h2
(w0,wFJ)≡Ek,h1,h2

(
e−w0S0−wFJSFJ

)
=

∞∫
0

e−w0tXk,h1,h2
dP (Rk < t)

=

∞∫
0

e−w0t

[
h1−1∑
r1=0

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,h2−r2+1(w0,wFJ)

+

h1−1∑
r1=0

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,h1−r1+1,1(w0,wFJ)

+

∞∑
r1=h1

h2−1∑
r2=0

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,h2−r2+1(w0,wFJ)

+

∞∑
r1=h1

∞∑
r2=h2

e−µ1t
(µ1t)

r1

r1!
e−µ2t

(µ2t)
r2

r2!
Ψk−1,1,1(w0,wFJ)

]
dP (Rk < t) .

Here, Ψl,m,n (w0,wFJ) is the LST of the joint distribution of the target customer’s sojourn time in the first station and

in the FJ part, given that a new service starts right now in the first station, and that at this epoch the target customer

sees l customers in front of him in the first station, m customers in the UFJ station, and n customers in the LFJ station.

We now denote:

a(r1, r2,w0) =

∞∫
0

e−(w0+µ1+µ2)t
(µ1t)

r1

r1!

(µ2t)
r2

r2!
dB(t),

b(r1, h2,w0) =

∞∫
0

e−(w0+µ1+µ2)t

∞∑
r2=h2

(µ1t)
r1

r1!

(µ2t)
r2

r2!
dB(t),

c(h1, r2,w0) =

∞∑
r1=h1

a(r1, r2,w0),

d(h1, h2,w0) =

∞∑
r1=h1

b(r1, h2,w0).

Let X be a Poisson process with rate µ1, and let Y be a Poisson process with rate µ2. The above expressions are

reduced to:

a(r1, r2,w0) =

∞∫
0

e−w0tP (X(t) = r1, Y (t) = r2) dB(t),
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b(r1, h2,w0) =

∞∫
0

e−w0tP (X(t) = r1, Y (t)≥ h2) dB(t),

c(h1, r2,w0) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t) = r2) dB(t),

d(h1, h2,w0) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t)≥ h2) dB(t).

With these new notations, the recursive formula for calculating Ψk,h1,h2
(w0,wFJ) presented in Eq. (3) will not

change, nor does the rest of the analysis. There will be only minor differences in the formulas of the stopping condi-

tions. Let β(·) be the LST of the specified service duration (which can now be general). Thus, the stopping conditions

will now be: Ψ0,0,0(w0,wFJ) = β(w0)Z1,1(wFJ). In the same manner, we get

Ψk,0,0(w0,wFJ) = Ψk−1,1,1(w0,wFJ)β(w0).

We shall also define (using a shorthand notation in which we omit w0):

a∗(k, r1, r2) =

∞∫
0

e−w0tP (X(t) = r1, Y (t) = r2) dP (Rk < t) ,

b∗(k, r1, h2) =

∞∫
0

e−w0tP (X(t) = r1, Y (t)≥ h2) dP (Rk < t) ,

c∗(k,h1, r2) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t) = r2) dP (Rk < t) ,

d∗(k,h1, h2) =

∞∫
0

e−w0tP (X(t)≥ h1, Y (t)≥ h2) dP (Rk < t) .

Hence, define

Φ∗k,m,n =


a∗(k,0,0) a∗(k,1,0) . . . a∗(k,m− 1,0) c∗(k,m,0)
a∗(k,0,1) a∗(k,1,1) . . . a∗(k,m− 1,1) c∗(k,m,1)

...
...

. . .
...

...
a∗(k,0, n− 1) a∗(k,1, n− 1) . . . a∗(k,m− 1, n− 1) c∗(k,m,n− 1)
b∗(k,0, n) b∗(k,1, n) . . . b∗(k,m− 1, n) d∗(k,m,n)

 .

As before, for 1≤ l≤ k− 1:

Ψl,m,n = trace
(
Ψ̄l−1,m+1,n+1 ·Φm,n

)
,

and

Ψk,h1,h2
(w0,wFJ)≡Ek,h1,h2

(
e−w0S0−wFJSFJ

)
= trace

(
Ψ̄k−1,h1+1,h2+1 ·Φ∗k,h1,h2

)
.

Appendix B: Fork-join with delay node

We consider a model with one single server queue (with either exponential or general service time distribution),

followed by an FJ part, which consists of one single (or multiple) server queue with exponentially distributed service

durations and one infinite server queue with some general service duration. We denote the CDF of this distribution by

G(·). Assuming that the delay node (that is, the infinite server queue), is the UFJ station we get, as in the model of
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Boxma and Daduna (2014), that the joint LST of the sojourn times in the first station and in the FJ part is given by the

following recursive formula:

Ψk,h2(w0,wFJ) =

∞∫
0

e−w0t

{
h2−1∑
l=0

e−µ2t
(µ2t)

l

l!
Ψk−1,h2−l+1(w0,wFJ) +

∞∑
l=h2

e−µ2t
(µ2t)

l

l!
Ψk−1,1(w0,wFJ)

}
dB(t),

However,

Ψ0,h2
(w0,wFJ) =

∞∫
0

e−w0t

{
h2−1∑
l=0

e−µ2t
(µ2t)

l

l!
Zh2−l+1(wFJ) +

∞∑
l=h2

e−µ2t
(µ2t)

l

l!
Z1(wFJ)

}
dB(t),

and

Ψ0,0(w0,wFJ) = β(w0)Z1(wFJ).

Here β(·) is the LST of the general service times in the first station, and Zx(wFJ) is the LST of the maximum of two

independent random variables, one with general distribution (corresponding to the sojourn time in the delay node) and

one with Erlang distribution (corresponding to the sojourn time of a customer entering a Markovian multiple/single

server queue with x customers already there). Hence

Zx(wFJ)≡Ex
(
e−wFJSFJ

)
=

∞∫
0

e−wFJ t dFSFJ |x(t),

where

FSFJ |x(t) = P (SFJ ≤ t|h2 = x) = P (S1 ≤ t, S2 ≤ t|h2 = x)

= P (S2 ≤ t|h2 = x)P (S1 ≤ t) =

(
1−

x∑
m=0

e−µ2t
(µ2t)

m

m!

)
G(t).
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