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Abstract

Proactive service systems permit a controllable arrival rate managed by the service
provider, which is different from classic service systems. Conceptually, some (or all) of the
customers are invited to the system, so as to allow for a better control over operational
indicators and profitability. Such a proactive service system is used, for example, to
model an online chat service system, or for planning preventive care strategies for health
care service providers.

Through an empirical study of a proactive chat service system, the validity of
customer ranking information is elaborated for optimizing invitation control. It is also
shown that service level measures can be formulated in terms of penalty for abandonment
and cost of waiting. Hence, an infinite-time-horizon multiclass multiserver queueing
system has been developed with impatient customers. We find an asymptotically
optimal policy using a fluid approximation, by solving a linear programming problem
that maximizes revenues. The asymptotic optimal invitation policy we developed
invites customers by their ru ranking in decreasing order until there are no idle servers.
Then, an equivalent threshold policy is proposed that is easy to implement in practice.
Numerical simulations were performed to demonstrate the performance of the policy
and identify its limitations. We show that the fluid policy has a good performance but
is also crude.

In order to refine the fluid policy, we analyzed a fluid approximation of the system
under a more flexible threshold policy. The equilibrium is found to strongly depend on
system parameters. In particular, it depends on the threshold value. It is also shown that
the equilibrium is globally asymptotically stable via trajectory and Lyapunov analysis.
Furthermore, in order to propose an invitation policy for proactive service systems that
balances revenues and service level, the probability of implementing admission control
is approximated, and several approximations of performance metrics are calculated.
Simulations are performed to examine the performance of these approximations. All of

them perform well especially in large-size systems.






Abbreviations and Notations

A : Minimal Computation Signal

\Y : Maximal Computation Signal
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MDP : Markov Decision Process
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1CT :  Information Collection Time

LP :  Linear Program

CSC : Customer Service Chat
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Chapter 1

Introduction

Classic service models mostly consider cases in which the customers autonomously seek
service from companies. Thus, the arrival rate is highly variable and exogenous to the
system. Decision makers then make strategic decisions on how to cope with that stream
of arrivals, regard service level and decide whether to serve all customers and what
resource to assign. In contrast, new technology allows companies to control arrivals.
We refer to service systems that can do so as proactive service systems. The new
technology we refer to provides service system access to historical information regarding
potential customers prior to their arrival to the system, for example, through their surf
information on the internet. The companies use such information to classify potential
customers, assess their current value, and invite them to the system for personalized
assistance. In this type of system, the company has sound information indicating that
the invited customer is likely to require or benefit from service. The agents are able
to access the profile and data of the current customers they are serving, which helps
them provide a meaningful interaction with their customers, so as to both promote
the revenue and to improve the customer experiences. Proactive service systems are
becoming more and more common. We give three examples from internet—based contact
centers, law—enforcement systems, and healthcare systems.

Our first example is an internet—based proactive chat system. Many banks and
retail companies encourage the use of internet or mobile platforms for providing self
services. In addition, these companies usually provide other service channels by which a
customer can reach them — either by phone, chat or mail. Such channels are required
in order to solve problems or to complement the self service. Such a combination is
beneficial both to companies and customers, as self services have the benefit of flexible
timing, visualization and low cost, while a personal connection through other service
channels is sometimes needed to solve more complicated problems or to enhance customer
experience. The decision of how to combine correctly the platforms and when to move
from one to another is an important strategic decision. These days, many companies
adopt an online customer service chat (CSC) system as an attractive complement for

the online self services, for its economy and immediacy. The chat can be initiated by the



customer, for example, by pressing a ‘contact us’ button or by the company that extends
an invitation for a chat on the customer’s screen. We concentrate on the latter. In
order to decide to which customers to offer service, the company collects the customers’
browsing behavior on their website and additional historical data. Then, the company
evaluates that consumer’s ‘service value’; for example, if the end-user seems to have
a problem we might infer that he can benefit from personal help greatly, while if he
is ‘doing fine’, no chat is needed. The high-value visitors may then be invited to the
chat based on the current service availability. From the customer’s perspective, once an
invitation was offered, during browsing the website, they are free to accept the invitation
or alternatively decline it anytime before leaving the website. Note that after accepting
the invitation customers enter a queue. They may abandon that queue at any time. The
service itself is composed of interactions between the agent and customers. The number
of interactions vary. An interaction can include for example a customer question and
an agent answer. While the customer types the question, the agent is waiting. Hence
it is customary that each agent, in such contact centers, manages multiple customers
simultaneously. This might create a second in-service queue, in which customers wait for
answers and may abandon if it is too long. The dynamics of such a system is described
in Figure 1.1. The company needs to decide how many customers to invite. Too many
customers can lower the service level (waiting and abandonment) and increase the
staffing cost; on the other hand, low capacity is also unwelcome since the company
may miss valuable customers. Hence, when discussing the invitation strategies, decision

makers need to balance customer value, costs and service levels.

Figure 1.1: Proactive chat system description
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Our second example is from law-enforcement systems in Israel, specifically a traffic

speed-control system. Many countries use a camera-based automated system to enforce
speed limit laws. In such countries, the authorities decide on the minimal speed they
want to enforce (which may be and usually is higher than the maximal speed allowed
by law). One of the considerations when deciding on enforcing a speed limit is the load
on the enforcing system, as some of the drivers who were caught passing the speeding

limit may want to go to court and not just pay a fine. Hence, the lower the enforcing



limit, the higher the load on the court system. The speed limits can be considered as
a proactive control policy to regulate the system’s load. Each ticket is viewed as an
invitation to engage a trail. The customer may decide to decline the invitation by not
appealing for a trial and simply paying the fine ticket. Unlike the chat system, once
appealing, one cannot abandon the system until the trial is over.

Our last example is a proactive healthcare system in which patients are invited for a
periodic or a followup medical examination. Such preventive care policies aim to identify
health problems before they become severe. Screening all people is wasteful. Therefore,
the decision makers invite only an appropriate number of high—risk patients for the
preventive checkup. This will both reduce the cost of further treatment, and improve
health. However, even though the methodologies for evaluating which patient is more
likely to need such services are improving, operational and economical considerations
limit the implementation of such preventive care policies. One such limiting factor is
the number of physicians who can do that checkup. A certain capacity should be kept
available, at all times, for the regular patients who come with unexpected health issues.
The dynamics of such a system is described in Figure 1.2. The challenge is to balance
the two groups properly and plan the invited patients in a manner that will not overload

the system but will take into account their medical risk properly.

Figure 1.2: Proactive health care system description
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This research explores invitation policies for a proactive service system that balance

revenue and service levels.

1.1 Literature Review

1.1.1 Admission Control

An invitation problem can also be considered as an admission control problem, because
it can be interpreted as whether to accept or reject each potential arrival. There
are many purposes that discuss admission control problems; we focus on those that
consider also service levels (e.g. abandonment). Koole and Pot (2011), motivated by
an inbound call center, discussed the admission control problem to maximize profit of

an M/M/s/n+ M queueing system by controlling its trunk and agent number. They



assumed Poisson arrival and exponential servers. Later on, Ward and Kumar (2008)
extended it into the general distribution arrival and service rates case in a conventional
heavy-traffic regime. Kogaga and Ward (2010) tried to minimize the infinite horizon
expected average cost associated with customer blocking, abandonments and server
idleness of the Elrang-A queueing system. They used the Markov decision process
(MDP) to show the optimal admission control policy in a threshold form. An efficient
iterative algorithm was developed under certain constraints, which can guarantee the
optimal solution to minimize the infinite horizon expected average cost. Then, by
solving the diffusion control problem (DCP) in a Quality and Efficiency-Driven (QED)
regime, an asymptotically optimal policy is obtained. Weerasinghe and Mandelbaum
(2008) considered the G/M/n/B + GI queueing system for the finite horizon cost
minimization under QED regime. They developed a static control policy, in the form
of a constraint on the system capacity. They showed by using DCP analysis that the
solution asymptotically minimizes the cost that trades off blocking and abandonment
over a finite time horizon. All the above papers assume blocked customers to have the
same value while we assume otherwise.

There are several studies that discuss a control policy which not only controls
admission but also some other operational parameters. Such hybrid control mechanisms
(especially joint admission and service rate control) had been considered by Ata and
Shneorson (2006) (adjustable arrival and service rates for the M/M/1 system), Ghosh
and Weerasinghe (2007) (queue capacity and service rate control for the M/M/n
system), Ghosh and Weerasinghe (2010) (extend the system in Ghosh and Weerasinghe
(2007) with impatient customers) and Lee and Kulkarni (2014) (controllable arrival
and service rates for the M/M/n system). Chan and Yom-Tov (2015) studied the
admission control problem of a multi-server queueing system which allows speedup.
They used dynamic programming to prove that a threshold policy is optimal. They
first analyzed the system equilibrium under the fluid level and then used it to deduce
the parameters in order to approximate the system into an existing stochastic model.
Furthermore, a heuristic algorithm is explored to determine thresholds for admission
control and speedup. Especially, they assumed a concave cost function, which means
that each blocked customer may have a different value or impact. We will take a similar
approach in our analysis but would like to maximize revenue instead of minimize costs.
In addition,, they do not consider abandonment which is an important feature in our
model.

Early work on the admission control in a nonidentical customer system can be found
in Miller (1969), where an optimal threshold policy for a multi-server loss system was
explored. In such a system, new arrivals will balk without entering the system if there
are no free servers available. Hence, the system administrators would like to reject some
arrivals in order to keep some strategic idleness for the higher value customers, so as to
lift the total reward. Such a study develops by concerning different aspects of the system

characters. For instance, some references tried to extend it into the non-stationary case



(Yoon and Lewis 2004), whereas some others mentioned the patience of each customer
(Zayas-Caban and Lewis 2016). Nevertheless, Zayas-Cabdn and Lewis (2016) discussed
the policy in a two-class loss system, in which abandonment happens both during
queueing and service instead of while in queueing. This may happen in a health care
system. Also, we are more interested in a service system with a queue, which has more

general applications.

1.1.2 A Multi-class Customer Queueing System

Customer ranking is usually a typical feature of the proactive service system, thus yielding
multi-class customer types. When we have the class information, it is meaningful to
choose an appropriate queueing policy according to different aim, such as the cost /reward
objective or service level requirement. The well-known cu rule is a very important
priority policy for a multi-class queueing system, in order to minimize system cost. This
policy was proven optimal in both deterministic (Smith 1956) and stochastic (Pinedo
1983) environments to minimize linear cost criteria. Van Mieghem (1995) generalized
this rule by using heavy traffic analysis to minimize more general nondecreasing convex
cost structures. He proved that this policy is asymptotically optimal for minimizing
cumulative delay cost.

Atar et al. (2004), Atar et al. (2010) and Atar et al. (2013) studied the multi-server
system with several classes of impatient customers. Atar et al. (2010) investigated
a linear program (LP) that leads to a lower bound on the long run average holding
cost. Then, it was shown that a routing policy, which is referred to as the cu/6 rule,
asymptotically attains the lower bound in both preemptive and non-preemptive cases.
Both rules are independent of the arrival rates of the customers.

De Véricourt and Zhou (2005) extended the cu rule to a multi-server system with
return. Huang et al. (2015) studied this further in the context of emergency departments.
In their research, the patients can either exogenously arrive or are in-process (IP).
The performance measure, i.e., the cumulative costs, can be asymptotically minimized
prioritizing new patients according to their triage score and IP patients by their progress.

Perry and Whitt (2011) also considered two-class arrivals, but in an overloaded X
system, where each class of customers has its own queue and service pool, but service is
on a first-come, first-serve basis. The private severs are only activated to help another
class when an unexpected overload occurs. As a continuation of their work, Perry
and Whitt (2009) proposed a threshold for the weighted queue-ratio to trigger the
temporary routing for maintaining a certain queue ratio. One should notice that the
authors focused on the fluid approximation of the system and developed the ordinary
differential equation (ODE) of the system dynamic. Then, based on the fluid analysis,
the steady-state queue lengths were approximated. Such a methodology is also used in
Chan et al. (2014) and Chan and Yom-Tov (2015). In all cases, this approximation was

proven effective.



In our research, we have to decide on the policy for invitation. We currently focus
on the static ranking information for both decisions, namely, the queueing policy will
follow the priority of the invitation policy. All the above papers discuss the routing
policy for a multi-class system, whereas we are exploring its invitation policy. In other
words, all customers within their service system are served through the cu/6-type policy.
We concentrate on the decision of who we want to let into our system. Therefore, our
study is more focused on maximizing the revenue of the system, which is a different

objective than the references discussed.

1.1.3 Contact center

Proactive systems, in many cases, incorporate endogenous arrivals into the system
so as to raise system efficiency. For example, in the contact center, the organization
sometimes initiates service, termed ‘outbound’ calls. The balance between endogenous
and exogenous customers was investigated previously. In order to achieve server efficiency,
namely, reducing idleness, decision makers prefer to initiate new calls by an automatic
dialer system even when all agents are occupied with other calls (Sarraf 1989). However,
the consequent abandonment is not welcomed either customers or decision makers.
Samuelson (1999) used queueing theory to maximize the number of dialing under an
abandonment proportion constraint. Pang and Perry (2014) presented a logarithmic safe
staffing policy for a large pool of agents who provide service to inbound and outbound
calls, namely, blending call service. However, this system gives priority to the inbound
calls; in addition, outbound calls are immediately lost if there is no agent available.
That setting is significantly different from ours. As in all the examples discussed in the
introduction there is no strict priority between in/out services. If the out-services are
more valuable, then we might prioritize them instead.

A different type of call blending is balancing cross-selling opportunities. By cross-
selling, we mean that during a customer initiated call, the agent proposes extra services
the customer did not ask for. Hence, they increase the call length, but also take
advantage of the customer’s availability. Conceptually, the tradeoffs between whether
or not to offer cross-selling opportunities is similar to the ones we consider here. The
difference is that in such a system customers do not need to wait in queue. Armony
and Gurvich (2010) found an asymptotically optimal threshold to balance the staffing
requirement and the cross-selling opportunities, so as to maximize the profit while
meeting a certain service level.

Even though proactive service systems can be applied in many service environments,
our main motivation and data comes from contact centers. The main applications
we address is the Customer Service Chat (CSC) system. The emerging CSC system
has some unique features, which were discussed in several papers. For example, chat
systems have a lower operational cost than telephone service support systems (Andrews

and Haworth 2002); they show better performance, including average speed to answer
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and user satisfaction, and allow for multitasking (namely one agent can serve multiple
customers) (Shae et al. 2007)

Tezcan and Zhang (2014) addressed the implication of simultaneous service which
results in service rates that depend on the number of customers each agent is serving.
The customers may be impatient when waiting for the service to begin or for each
answer while in service. In order to minimize the staffing level under a certain service
level goal, they used a routing problem LP to minimize the abandonment probability.
Then, a closely-related staffing LP was formulated, for which the corresponding number
of agents was proven asymptotically optimal. Note that the same structure is also
used when considering the staffing of an emergency department, where the service is
given in a discontinuous manner (Yom-Tov and Mandelbaum 2014, KC 2013). However,
in most literature, their systems have only exogenous customers and concentrate on
optimizing either staffing or routing. In the next chapter, we introduce a case study
of a CSC system, and show that an invitation policy is applicable and promotes the
system reward. This shows that optimizing an invitation policy is a promising direction

to study for CSC systems.

1.2 Research Objectives and Thesis Structure

We aim to find an inviting policy capable of optimizing certain performance measures.
Several questions are of interest: Which performance measures should be taken into
account when constructing the model? Which type of invitation policy should one use?
When should the system invite customers? What is the tradeoff between system reward
and service level?

Hence, the objective of this work is to develop an invitation policy for a multi-server
system with impatient non-identical customers, so as to maximize revenue, taking into
account customers’ value, service level and system efficiency. By capturing the setting
of a chat service system, the service level could be expressed in term of penalty for
abandonment and cost of waiting. The system efficiency could be expressed by the
operating cost of available agents in the system. We start with analyzing the fluid
approximation of such a system, whose optimal policy leads us to a threshold policy.
This policy is very simple, basically stating that customers should only be invited if an
available agent appears. This is not a very realistic policy since customers do not enter
the system immediately, and many customers reject invitations. Also, we show through
simulation that this policy is not optimal. Hence, we refine the fluid model to allow
for a larger variety of the thresholds to be considered. We continue by analyzing the
fluid model equilibrium and approximate performance measures of the system operating
with different thresholds. Under a certain service level requirement, the decision maker
can then evaluate the revenue of different invitation thresholds to propose a better one.
This study has the following contributions:

e We construct our model and revenue function based on an empirical study (Chapter

11



2). By using real data, we elaborate the importance of classifying the customers according
to their values, the fact that indeed, providing service to the right customers enhance
revenue, and the impact of different metrics of service levels. In particular, the case study
provides justification for the use of small data information in optimizing operations.
Such small data are collected by automated systems on potential customers, which
sometimes is more effective than the big data (Lam et al. 2017).

e By solving a linear programming problem of a fluid model for our multi-server
system with impatient non-identical arrivals, we determine an optimal invitation policy
that ranks customers by the product of revenues multiplied by the service rate. We
discuss its limitations in Chapter 3.

e Based on the fluid analysis, we propose a threshold policy for invitation control.
Under this control, we leverage the fluid equilibrium result and develop a stochastic
approximation of performance levels using the Filipov method (Filipov 1988). Such
an approximated result provides an evaluation of various threshold controls. Those
approximations are presented in Chapter 4.

e In Chapter 5, we develop more approximations based on the fluid equilibrium for
both revenue evaluation and service level indication. All the acquired approximations

perform well in the simulation.
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Chapter 2

An Empirical Study of a

Proactive Chat Service System

Before constructing the model for theoretic analysis, we first investigate an existing
proactive service system, in order to sketch the most important features of such systems.
To that end, we explore empirically the sensitivity of the revenue to some selected

operational parameters.

2.1 System Overview

The customer dataset comprises of more than a half million chats of an airline company
over one month. This company website provides both service and sales, through its
contact center. Anyone who is interested in the business can visit this website at anytime.

Customer flow in the system is described by Figure 2.1. The system traces all online

Figure 2.1: Customer perspective process description
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customers and computes scores by an analysis of their browsing behavior and personal
information (browser, location, etc.). According to customer score and chat service
capacity, the system sends invitations to high-score customers. The invitations are sent
by either a button displayed on the webpage or as a pop-up window. The customers,

who receive the invitation, make a decision on whether to accept it. Once accepting
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the invitation, a customer starts to wait in the outer queue until the system detects an
available server and assigns this customer to that server. Note that every server can
manage up to 3 customers simultaneously; therefore, the number of “in service” chats
can be larger than the number of online servers. Customers have finite patience, hence,
they may abandon the outer queue before they are assigned to a server. We may not
know that a customer abandoned till the service began. Then, the chat service starts
in the form of an alternate server and customer line. Since agents manage multiple
customers simultaneously, customers may need to wait in the inner queue for the server
during their dialog. In Figure 2.2, an example is demonstrated on the perspective of
an agent who serves three customers simultaneously. Upon customer assignment, the
customer and server talk one after the other continuously. The agent may wait for the
customer entry (e.g. from 12:01 to 12:03, this server is idle). Because the maximal
multi-task level is 3, from 12:09, this agent cannot get any extra customer. A customer
may also wait for the busy server who is replying to some other parallel customer (e.g.
from 12:12 to 12:15, customer 1 is waiting in the inner queue, because the server is busy

serving customer 3).

Figure 2.2: Server perspective process description
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After the service is finished, the system receives the information that the corre-
sponding service load is released and it starts to assign a new customer. After the
chat, the customer may stay or leave the website. Before leaving, some customers may
purchase commodities in this website, which we will refer to conversion in this context.
In this analysis, we consider the conversion rate, which is the proportion of customers
purchasing commodities, as the main output of the service. The aim is to investigate

how the customer properties as well as operational decisions can impact this rate.
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2.2 Data Description

The above chat system records information of each invited customer, The data include:
personal information (browser, location, etc.), score, time stamp of all important events
described in customer flow, conversion, and some other interested indicators. We
collected 520,727 chats that were served during January 2016 (Figure 2.3). Each of
them stands for an invited visit customer on this website. By screening the data, 154

error chats are excluded because of a technical failure.

Figure 2.3: Selection of chat sample

Total chat: 520,727

Technical failure: 154

\ 4

Score>0 | 343,413 Invitation
Score=0 | 177,160 Rejected:
496,113 (95.3%)

Score>0 | 20,467

Score=0 | 3,973 Abandonment:
4,238 (17.3%)

A 4

Served: 20,202

Score>0 | 16,655

Score=0 | 3,547

It can be noticed that there are three crucial events in the process: sending the
invitation, accepting/rejecting the invitation and assigning a server. One can classify
all invited customers into more specified groups: the accept/reject customer and
the served/abandoned customers. Figure 2.3 shows that 95.3% customers ignore the
invitation. Out of those who accepted an invitation, 17.3% abandon the queue. Finally,
there are only 20,202 customers entering service, which is 3.88% out of all the invited

customers.

2.2.1 Descriptive Analysis of Customer Score

Customer score is the most unique characteristic of this system that maps all the
information on customer activity on the website into a single value. Before going deeper
into the service procedure, we want to initially verify the validity of the score as value
representative. In other words, does the high score result in a higher income? Meanwhile,
we also consider the following questions: How to characterize the score? How can we
use the score in the analysis? How does the score relate to other indicators/features of

the customer?

15



Customers scores range from 0 to 0.6. By checking the distribution of all customer
scores (Figure 2.4a), one can notice that there is a large proportion (around 1/3) of
customers with a score equal TO 0. A Zero score might be due to low value or lack
of information. In order to identify if indeed the zero score customers are low value
customers, we examine the information collect time (ICT), defined as the time interval
between customer entering the website and receiving the invitation. The average ICT
of all customers is 197.8 seconds. However, among all zero score customers, the average
ICT is only 0.59 seconds, which is much lower than the average ICT among non-zero
score customers — 299.6 seconds. Furthermore, there are around 71.6% zero score
customers with 0 ICT, which means that they are invited on entering the website. This
can happen when the customer arrives at a non-peak hour. During ICT, the system is
collecting the customer information especially their online behavior. If the ICT is very
short, one has reason to believe that the zero score is such due to the lack of information
but not the lack of value. Therefore, we will consider the scored zero and non-zero score

customers, separately, in our analysis.

Figure 2.4: Customer score distribution

(a) All customer score distribution

x10%
15 1
4
[0}
£
o
]
310 .
k]
9]
£
S 51 1
f=
0 L o, I I I I I
0 0.1 0.2 0.3 0.4 0.5
Score

(b) Non-zero score customer distribution

10000

8000 b

6000

4000

number of customers

2000

0.2 0.3 0.4 0.5 0.6
Score

After excluding the zero score customers, the score distribution is scaled (shown
in Figure 2.4b). It can be observed that scores are concentrated in four regions. By

following that observation, it is natural to divide customers into four groups based on
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their score distribution pattern. How to define such division is not clear. One way, is to
fit a mixture distribution for that distribution. Such a fitting is presented in Figure 2.5.
We observe that a good fit results from mixing 4 log normal distributions. The relative
proportion of each group is given by the weight 8.33%, 26.33%, 54.52% and 10.83%.
The problem with this approach is that it does not provide a clear classification for
specific customers, i.e., to which group that customer belongs. Hence, we take a simpler
approach in which we use the local minima of the score distribution to determine three
breakpoints (0.0082, 0.0208 and 0.082) that separate the non-zero scores into 4 groups
(see the first two columns of data in Table 2.1). As a robustness check we repeat all the

analysis by considering both score and group level.
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information to overview the relationship between score and system output, so as to take
the first step towards validating score as a representative value. The output information
we have is an indicator of the conversion behavior, namely, whether the customer spent
money or not during that visit to the website. Hence, we check the conversion rate, i.e.,
the proportion of the conversion customers out of the total group population, in each

group. The results are listed in Table 2.1.

Table 2.1: Conversion rates among groups

All Served Non-Served

Customer | Percent of all | Conversion | Conversion | Served | Conversion | Conversion | Conversion | Conversion
Number Population Number Rate Number Number Rate Number Rate
Score = 0 177160 34.03% 4557 2.57% 3547 260 7.33% 4297 2.48%
Groupl 43955 8.44% 144 0.33% 3542 12 0.34% 132 0.33%
Score | Group2 60792 11.68% 545 0.90% 4454 46 1.03% 499 0.89%
>0 | Group3 203243 39.04% 7526 3.70% 6688 535 8.00% 6991 3.56%
Group4 35423 6.80% 10662 30.10% 1971 611 31.00% 10051 30.05%

For all non-zero score customers, the conversion rate has consistent growth as shown

by their higher score. Especially in the highest-scored group, customers express 100
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times more willingness to consume on this website compared to the lowest-scored group.
Meanwhile, after considering the customers who get service and who do not get service
separately, the effect of the service can also be identified. The conversion rate of the
customers who receive service is generally higher than those who do not. Notably, for
group 3 customers, which holds around 40% of the total population, their conversion
rate soars twice after service. To sum up, the initial analysis suggests that it is worthy
to provide proactive service to customers, in particular to high-scored customers.
Meanwhile, some operational parameters also show differences among groups (Table
2.2). Generally speaking, as scores increase, customers are more likely to reject the invi-
tation, and their probability of abandonment decreases. The highest-scored customers
(around 7%) show opposite behavior, which is worthy for further study. The average

length of stay has some fluctuations (around 5%) among groups.

Table 2.2: Operational parameters among groups

Accept | Accept Serve | Abandon Average Average
Number
Number | Rate | Number Rate Abandon Time | Length of Stay
Score = 0 177160 3973 2.24% 3547 10.72% 110.2 680.6
Groupl 43955 4569 10.39% 3542 22.48% 195.5 747.3
Score | Group2 60792 5801 9.54% 4454 23.22% 181.2 749
>0 | Group3 | 203243 7787 3.83% 6688 14.11% 150.9 726.2
Group4 35423 2310 6.52% 1971 14.68% 153.5 765.6

2.3 Three Level Logistic Regression Mode

In order to draw a conclusion on customer behavior, a more robust statistic analysis is
needed. We build a logistic model to explain how customer value and operational deci-
sions impact conversion. Since the output, conversion is a binary indicator representing
a purchasing / non-purchasing event, we use logistic regression for the analysis. Note
that the majority of customers ignore the invitation; hence, most of their information
do not exist. This also happens to the customers that abandon in the outer queue.
Therefore, we built models in three levels of analysis: (1) all invited customers, (2)

invitation accepted customers, and (3) served customers, separately.

2.3.1 Parameter and Data Selection

The predicted variable, as explained, is the conversion indicator. The explanatory
variables we choose are listed in Table 2.3.

These variables are chosen from three categories: general control variables, customer
indicators and system operational indicators. The first group includes the hour of day
(HOUR) and day of week (DAY). The second group covers customer preference and
characteristics. This includes the parameters mentioned before (SCORE, GROUP), The
ACC_RECO and SEV_RECO are the indicators of invitation acceptance and receiving
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Table 2.3: List of parameters

Type Name Explanation Mean STD Levels

Predicted

CONVER Conversion 1: 4913/No conversion 0: 139692 / All
variable
GENERAL HOUR Hour of day (3~17) / All
DAY Day of week (7 days) / All
SCORE Customer score 0.0125 ‘ 0.0243 All
ivi + score: G T 91 43955 < < . 9735
GROUP Divided by score: GROUP1 (0,0.0082]: 43955 / GROUP2 (0.0082,0.0208]: 27357 / / All
GROUP3 (0.0208,0.082]: 67346 / GROUP4 (0.082, 0.6): 5947
ACC_RECO Accept the invitation 1: 14141 / Reject 0: 307624 / All
Customer SEV_RECO Served 1: 11658 / Abandon 0: 2483 / All
indicators SKILL Different service types: Service 1: 5139/ Sales 2: 6519 / Sev
AVG_SENT Average sentiment score for all customer line 0.1104 0.3836 Sev
END_SENT Average sentiment for the last 10% cutomer line 0.2307 0.7356 Sev
rease 1: 3417 . 549 se -1: 275:
SENT_TREND Increase 1: 3413 /Nonchange 0: 5492/Decrease -1: 2753 / Sev
sentiment between the last/first 10% customer line
LOS Chat duration between exit queue and chat end in seconds 726.8876 | 558.8086 Sev
NO_WORDS Number of words given by the agent during chat 162.7651 | 136.1779 Sev
Syst INV_TYPE Button invite 1: 60626 or Window invite 2: 261139 / All
ystem
QUEUE_SEC Waiting time for the outside queue 71.0063 | 163.5771 Acc
operational N

PROP_INNERQ ‘Waiting time for the inner queue / LOS 0.1870 0.2101 Sev

indicators
MULTI Average multi-task level 2.4258 0.5797 Sev

service, respectively. We define SKILL as the purpose of the visit (seeking service or
sales). The length of stay (LOS) is defined as the chat duration and NO_-WORDS
counts the number of words the agent wrote during one chat, which reflects the service
workload of that specific chat. Apart from the score, the system also traces customer
sentiment on sentence level while they are in service. Several emotion indicators were
included in the model. We sum up the sentiment score (range from -10 to 7) to the chat
level by average sentiment (AVG_SENT), the sentiment at the end of the conversation
(END_SENT), and the sentiment change during the whole chat (SENT_TREND). In
the last group, some operational parameters are selected, including the invitation type
(INV_TYPE) (button displayed on the webpage or a pop-up window), the queueing
time for outside (QUEUE_SEC), the proportion of inner queueing time in the total
length of stay (PROP_INNERQ) and the average multi-task level of the server during
that chat (MULTI). The last column in Table 2.3 describes to which level of analysis

this variable is relevant.

The current invitation policy prioritize customers according to their score; hence
the data is biased and includes a higher proportion of Group 3 and 4 than the general
population. Meanwhile, the system invites customers also according to the system load,
which is independent of the score distribution and, therefore, can be considered as a
nature experiment. In order to eliminate the data bias, we use an importance sampling
approach (Kroese and Rubinstein 2008) by which we sample our data according to the
score distribution of all customers on the website (including both invited and non-invited
customers, see Figure 2.6). From the distribution we can see that the customers still can
be divided into the same 4 groups according to their score. After importance sampling,

our sample includes 144605 chats.
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Figure 2.6: Customer score distribution of all customers on website
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2.3.2 Level 1: All Customers
In this level of analysis, we build the first model to check the validity of scoring, as
predicting conversion.

Logit (P (CONVER;)) = Bo+ b1 - SCORE; + €. (2.1)

Model 2.1 predicts the probability of conversion using a logistic regression. The
results are shown in Table 2.4. In the logistic model, the e to the power of the coefficient
is the amplifier of the odds ratio of this variable. Hence, the result shows that the

customer score has a significant positive effect on conversion.

Table 2.4: All customers fit logit Model 2.1

Pr(>|z)
<2e-16 ***

z value

93.83

Std. Error
0.3015

Estimate

28.2951

SCORE

In Section 2.2.1, we classified the customers according to their score-group. Such
approach is the one we use in our theoretical study. Therefore, we repeat the analysis

with score-based class information to check its robustness:

Logit (P (CONVER;)) = fo + 81 - GROUP; + ;. (2.2)

By fitting all customer data to Model 2.2, the result shows consistency with the
result of Model 2.1 (see Table 2.5).

Table 2.5: All customers fit logit Model 2.2

Estimate | Std. Error | z value | Pr(>|z|)
GROUP2 | 0.91192 0.10728 8.501 <2e-16 ***
GROUP3 | 245334 0.08594 28.547 | <2e-16 ***
GROUP4 | 5.08883 0.0878 57.961 | <2e-16 ***
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Next, we want to add more control variables to improve the prediction and the
inter-operational decision impact on conversion. According to Table 2.3, only several
variables are available for all customers. Thus, the next model is built to confirm the

validity of scoring and the utility of service.

Logit (Pr (CONVER;)) = B + 1 - SCORE; + 2 - ACC_RECO;
+083-SEV_RECO; + B4- INV_TYPE; + 85 - GENERAL; + ¢;.

(2.3)
The result (see Table 2.6) shows that as before the customer score has a significant
positive effect on conversion. More important is the fact that providing service also
has a positive effect. However, the acceptance does not impact conversion in a positive
way, which means receiving an invitation is not enough to increase conversion, whereas
reaching service is crucial. From the fact that acceptance and service show opposite
effects, we conclude that the abandonments have a negative influence on conversion.
Therefore, an abandonment penalty should be added when discussing the system revenue.
Such a penalty can be considered as opportunity-loss costs. In addition, conversion is
also significantly different between the two invitation types. Button invitation seems to
perform better — it could be because a pop-up window may interrupt browsing. This

phenomena is interesting and should be investigated in future research.

Table 2.6: All customers fit logit Model 2.3

Estimate | Std. Error | z value | Pr(>|z|)
SCORE 24.8488 0.3115 79.772 <2e-16 ***
INV_TYPE2 | -2.11885 0.03697 -57.308 | <2e-16 ***
ACC_RECO1 | -0.58604 0.16918 -3.464 | 0.000532 ***
SEV_RECO1 0.44623 0.17991 2.48 0.013129 *
GENERAL included

Moreover, we plot the Receiver Operating Characteristic (ROC) curve for the
predictors of both Model 2.1 and 2.3 on conversion, in Figure 2.7. The value of the area
under the ROC curve is the statistical measure of how much better that model can
rank a randomly chosen positive instance higher than a randomly chosen negative one
(Fawcett 2006). The larger area under the curve shows that the model is more accurate.
The model with the operational variables predicts better, which means that pre-service
information, although very good, does not include all impacts on conversion. Indeed

having service is essential for explaining conversion accurately.

2.3.3 Level 2: Customers Who Accept the Invitation

After invitation acceptance, customers are waiting in the outer queue until they are

assigned to an available server. In this step, we investigate whether waiting in the outer
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Figure 2.7: ROC curve for predicting conversion
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queue affects conversion rate. For that purpose we propose the following model:

Logit (P (CONVER;)) = By + 81 - SCORE; + 35 - QUEUE_SEC;

. 2.4

According to the statistical result (in Table 2.7), the longer a customer waits in
the outer queue, the less chance a purchase will be made during the visit. In numbers,
waiting 1 more minute (60 seconds) will decrease the odd ratio of the probability of
conversion by 9.15%. Hence, it is reasonable to include holding cost, when discussing

system optimization.

Table 2.7: Customers who accept the invitation fit logit Model 2.4

Estimate | Std. Error | z value | Pr(>|z|)
SCORE 22.9123 1.0441 21.9450 | <2e-16 ***
INV_TYPE2 -1.7984 0.1585 -11.3440 | <2e-16 ***
QUEUE_SEC -0.0016 0.0006 -2.7260 | 0.006412 **
SEV_RECO1 0.2903 0.1835 1.5820 0.1137
GENERAL included

2.3.4 Level 3: Served Customers

On the service level, both customer and server characteristics are examined. From the
point of view of the customer, we check: Is the inner queue waiting also negatively
correlated with conversion? What is the impact of service time and how is customer
sentiment during the chat associated with conversion rates? From the aspect of the

server, we check the impact of workload and multi-task level on conversion. We thus
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check the following model:

Logit (P(CONVER;)) = o + 1 - SCORE; 4 32 - INV_TY PE; + 3 - SKILL;
+B4-GENERAL; + 35 - NO.WORDS + - MULTI;
+B7 - AVG_SENT; + 37 - END_SENT; + By - SENT_TREND;
+p10 - log (LOS;) + p11 - PROP_INNERQ; + ¢;
(2.5)
Table 2.8 presents the model results. It seems that the sentiment factors have no
significant effect. A surprising effect is observed in the inner waiting queue. While
waiting in the outer queue had a negative impact on conversion, waiting in the inner
queue is positively associated with conversion. This means that the customers with a
larger proportion of wait during their total length of stay, have a higher probability of
conversion. Note that waiting in an inner queue is practically waiting while being served,
and the customers are less aware of such waiting. Hence, it may be that such a wait
is reflected to customers as being served longer and not necessarily as waiting longer.
This finding fits similar observations made in restaurants (Tan and Netessine 2014). It
implies that the longer the perceived service, the higher probability of conversion. Last,

as expected, the sales skill is associated with higher conversion.

Table 2.8: Customers who get service fit logit Model 2.5

Estimate | Std. Error | z value | Pr(>|z|)

SCORE 13.329468 1.203909 11.072 | <2e-16 ***
INV_TYPE -1.865105 0.169444 -11.007 | <2e-16 ***
NO_WORDS -1.69e-03 6.20e-04 -2.73 0.00634 **

MULTI -0.102772 0.123616 -0.831 0.40576
AVG_SENT 0.278269 0.267378 1.041 0.298
END_SENT 0.065398 0.176364 0.371 0.71078

SENT_TREND20 | 0.110879 0.201034 0.552 0.58126
SENT_TREND21 | 0.143322 0.288031 0.498 0.61877

LOS 0.187859 0.118506 1.585 0.11292
PROP_INNERQ | 0.956183 0.295775 3.233 0.00123 **
SKILL 3.740796 0.367691 10.174 | <2e-16 ***
GENERAL included

To sum up, through the above empirical study:

e We show that the customer ranking information is acquirable and valid for
optimizing invitation policy. Not all customers should be invited. The distribution of
such information allows us to classify all customers into a limited number of groups
which may simplify the theoretical analysis in the following chapters.

e Operational factors such as load results in waiting and abandonment. Both factors
have negative correlation with conversion. Hence, the cost of waiting, as well as the
penalty of abandonment should be considered when maximizing revenue of the system.

Another option is to maximize revenue under some performance measure constraints
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that will limit the negative effect of overload.
e The operation factors that are unique to the chats, i.e. parallel service and inner

wait, should not be consider as costs.
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Chapter 3

Model of a Proactive service

System

Following the idea of classification, we group customers with similar characteristics
together and start the analysis by finding the optimal invitation policy at the group
level. Since all group information is available to the system, it is natural for the system
to use customer value in the routing policy. Hence, from now on, we discuss a multi-
server, multi-class queueing service system (Figure 3.1) that operates over a infinite-time

horizon.

Figure 3.1: Equivalent system description
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The system has several customer classes that differ in their customers’ value. All
potential class ¢ customers arrive to the system according to a Poison process with rate
A;, where i € K = {1, ..., k}. Following a predetermined invitation policy, system invites
class i customers according to a Poison process with rate \; < A;. Customers wait in a
class-dedicated queue with infinite capacity until they are assigned to a server. During

waiting, customers may abandon the queue due to their exhausted patience. Class ¢
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customer patience is exponentially distributed with rate 6;. Each arriving customer
requires a random amount of service. The customers’ service times are exponentially
distributed with mean 1/u;, for customer class i. Every service provided to class i
customers brings a reward with a value of r;. However, waiting time and abandonment
execute a penalty with positive cost c? per unit of waiting time and cgb per renege
customer, respectively. Aiming to maximize revenue—the difference between system
reward and cost—a dynamic control policy was developed, to determine the effective

invitation rates.

The above stochastic model can be described as a continuous time Markov process
denoted by {X(¢),Q(t),Z(t)} = ({X; (t),Q:i(t), Zi (t)},t > 0): X;(t) and Q; (t) are
the total headcount of class 7 customers in the system and in the queue at time ¢,
respectively, and Z; (t) is the number of servers that serve class ¢ customers at time
t. All servers share a server pool with a total of m statistically identical servers who
cater to all types of customers. Apparently, all stochastic variables are defined on the

non-negative quadrant and for all ¢ € K satisfy

Xi(t)=Qi(t)+ Zi(t);

€K

(3.1)

Denote A; as the arrival Poisson process with rate A\;, and D; and R;, as the departure
processes from service and abandonment, respectively. We denote the initial condition of
the system by X; (0). The dynamics of the process of the number of each class customer
can be characterized by Equation (3.2). Any proposed invitation policy has to satisfy
the dynamics provided by Equations (3.1) and (3.2). Note that the system does not

permit work conservation.

X; (t) =X; (0) + A; (t) —D; (t) — R; (t) ,1 € K. (3.2)

By using the system state variables, the instantaneous cost of class ¢ customers at

time ¢ can be computed by
Ci(t)dt =l - Qi (t)dt + 2 - dR; (t). (3.3)

Because the patience of any class of customer is exponentially distributed with rate 6;,
at time ¢, the expected abandonment rate of the class ¢ customer can be written as
;- Qi (t) (Atar et al. 2010). Hence, the above cost function can be modified to Equation
(3.4). For computational simplicity, ¢; = c?’ +0; - cfb is used as a unified cost parameter
of class i from now on. According to the definition of cost parameters, it is clear that ¢;
is positive.
Ci(t) =} - Qi (t) + ¢ (0; - Qi (1))
= (P +0; - ) - Q; (t) . (3.4)
=ci Qi (t)

26



Meanwhile, the system is rewarded by each customer who finishes service. As the
service process is exponentially distributed with rate u;, respectively among classes, the

customer service completion rate is
dD; (t) = i Z (1) (3.5)

Thus, the total instantaneous system revenue is the summation of the revenue of all

classes, that can be expressed by

Riotal (1) = 32 (ru - pi- Zi (t) — i - Qi (1)) (3.6)

i€
Furthermore, by considering the problem over an infinite time horizon, our objective
is to find an invitation policy satisfying system constraints (defined by Equation (3.1)
and (3.2)) that achieves the maximum average revenue defined by Equation (3.7). The

second equation is a result of the independence between customer class and time.

Riotal = Th_{H T foT <Z}C(Ti i Zi (1) — e Qs (t))>dt
o0 ic

=3 dim AT Zi(8) — e - Qi (1)) dt.

(3.7)

Next, we optimize the fluid scale of this stochastic model to acquire some under-

standing of the invitation policy.

3.1 The Optimal Fluid Policy

Denote z;,q; and z; as the long run fluid averages of the process X; (t), Q; (t) and Z; (t)
for class ¢ customers, ¢ € K. These fluid functions satisfy, in steady state, the following

set of equations

Ti = qi + Zi3
Ai = pizi +0iqi;
Ai < Ay (3.8)

>z <my
i€k
T4, 2iy @i > 0.

Under the above constraints, our objective is to maximize the total revenue over all sets

(Nis i, Giy 2;). After simplification, the corresponding linear program (LP) is

max » (rifizi — Cig;)

Vzidi ek
st. Y.z <m
ik (3.9)

pizi +0;q; < A, Vi e K
zi,q; > 0,Vi € K.
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Since the above LP includes several inequality constraints, we use Karush—Kuhn—Tucker
(KKT) conditions (Karush 1939) to determine the necessary optimality conditions of

this convex problem. The Lagrangian is

L (zi, qir @, Bi, Vi 03) = — > (Tiptizi — ¢iqi) + & (Z zi — m>

ekl i€k (3.10)
+ > Bi (izi + 0iqi — Ni) — Y- vizi — Y 0
i€ 1€ e
The KKT conditions are
—rifti + o+ Bips — v =0
Ci-l-ﬁiei—O'i:O
a <Z zi — m) =0
1€
,Vi e K. 3.11
Bi (mizi + 0ig; — Ai) =0 ' (3.11)
Yizi =0
0:q; =0
«, /Biv Yi, 04 S 0

Because ¢; is positive, and f;,0; are non-negative, all o; must be positive to keep
the second condition of Equations (3.11) holding. Therefore, according to the sixth
condition, any ¢; must equal 0. Because the KKT conditions are necessary conditions,
the above result means that the optimal fluid invitation policy does not permit a queue

for any class of customers.

Let ¢; = 0, then the original LP Equations (3.9) becomes

max Yy (15 ) - 2

Vzi ek

st. Y.z <m
i (3.12)
2 > O,VZ e K.

Let’s relabel the classes according to a decreasing order of their rank, defined by the
product r;u;, i.e.:

L1 T o . > T [ (3.13)

Obviously, the optimal solution is to assign all the available servers, of which the number
equals A;/u;, to serve class i customers in decreasing order until all servers are occupied.
Assuming kg is the last class that invite all customers and * denotes the optimal result
of LP (3.9):

A A Ak Rty
* __ 1 2 0 _ i
zF = ul’uz""’uko’m igl ui70""’0 .

¢ =(0,0,...,0)

(3.14)

In other words, in the fluid scale, the optimal invitation policy is: rank customer by 7;u;,
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then use all system service capacity to invite customers with as high ranking customers

as possible, so that the system runs in the critical load regime. We call this policy ru.

3.2 Effectiveness of the Fluid Policy

Next, we examine the obtained fluid policy via simulation. Note that the optimal
invitation policy (3.14) categorizes the customer into three types: all invited, partially
invited and non-invited. We are not interested in the third type. Therefore, in the
following experiments, we simplify our model into a two-class system in which the higher-
ranked class customers are all invited and the lower-ranked customers are partially

invited.

We simulate both a large system with 200 servers (m = 200) and a medium size
system with 40 servers (m = 40), with non-preemptive prioritize queues. We assume that
for both class customers, the average patience is longer than the average service time.
The high-ranked customers have p; = 1 and #; = 0.5. For the low-ranked customers we
simulate two conditions that vary in their relative demand: a) pge = 0.8,620 = 0.4 — in
this case, the service demand of class 2 customers is lower and their patience is shorter.
b) po1 = 1.25,02; = 0.625, in which class 2’s service demand is higher and they are more
patient. For the large system, the potential arrival rate for high/low value customers
is 150 and 100, respectively. In the smaller system, the rate is 30 and 20, respectively.
Meanwhile, in order to capture the pattern of optimal policy, we test several sets of
reward /cost parameters. All simulated parameter sets are listed in Table 3.1. Generally
speaking, we use in total 6 types of reward/cost parameter sets. The pair of reward
parameters has 3 combinations: both high, class 1 high and class 2 low, and both low.

In each pair of reward parameters we test both high class 2 cost and low class 2 cost.

Table 3.1: Parameter sets for simulations of fluid policy

Set Number High-value customer Low-value customer Fluid
Number of Offered . B Fluid Offered . " Fluid Expected
servers A | load O || e | ¢ Expected | Ay L2 Load ) T2 | c3 | ¢3’ | Expected | Reward
m 1 Reward; 2 Reward; Total
5
1 6 61151 54000 144000
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3.2.1 The Original Fluid Policy

According to the first six parameter sets in Table 3.1, the fluid policy can be interpreted
as: inviting high-ranked customers by rate 30 and inviting low-value customers by rate
Ao = 8 (this is the result of equation: 40 — Ay /u1 = A2/u2). We also check the revenue
of the system for a range of Ao values around 8 — between 4.5 and 11.5, so as to examine
the policy performance. The system revenue for different sets of cost parameters are
illustrated in Figure 3.2. For each set of parameters, the optimal arrival rate (under

this policy) is marked by *.

Figure 3.2: System revenue with arrival rate control (m = 40, uo = 0.8)

(a) Parameter sets Case 1 — 4
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We can observe that for all cases, the fluid policy is not optimal. In particular, for
cases 3 and 4, the fluid policy deviates from optimality. Obviously, such inaccuracy of the

fluid policy is caused by the stochasticity of the system. On the fluid level, the system
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is always supposed to be critically loaded. However, in reality, all customers arrive
stochastically. Thus, the queues for both class customers are accumulated occasionally,

whereas the servers are sometimes idle as well.

Meanwhile, due to different parameter combinations, the optimal invitation policy
can be overestimated or underestimated. By comparing cases 3 and 4 (Figure 3.2a) to
cases 5 and 6 (Figure 3.2b), we observe that when decreasing the reward of high-ranked
customers, it is more beneficial to invite a higher rate of the low-value customers,
because the relative value of low-ranked customers. However, all optimal rates are
lower than the fluid optimal solution. It means that a queue is not welcome for those
cases. By comparing cases 5 and 6 to cases 1 and 2 in Figure 3.2a, in which all optimal
invitation rates shift higher, we learn that when the difference between cost and reward
of both classes is getting larger, inviting more customers to the system becomes more
and more profitable. Sometimes, we would rather keep an overloaded system to reduce
the probability that the server is idle. In addition, we find that case 6 has more welcome
low-ranked customers than case 5, which indicates that the invitation rate for low-value
customers negatively depends on its waiting penalty. This is because when the invitation

rate is getting higher, the expected queue length is also increasing.

Figure 3.3 demonstrates cases 7-10, where low-ranked customers have higher service
and impatience rates than the high-ranked customers. According to previous analysis,
customers are evaluated by ru. Therefore, an increase of us can be considered as the
increasing of the reward rate per server for low-value customers. Hence, the increase in

optimal invitation rates is not surprising.

5
15510

— — Case7
Case8
Case9

Casel0

Revenue

lambda2

Figure 3.3: System revenue with arrival rate control (m = 40, us = 1.25)

In addition, we check the same parameter sets as in Figure 3.2 for a large size
system with m = 200. From the result shown in Figure 3.4, we find that the fluid

policy becomes better for all cases, but is still not optimal. Apparently, in large systems
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the fluid approximation is better. In large systems, when the reward/cost parameters
change, the optimal invitation rate changes in the same way as in the medium size
systems. However, we can find that for the same set of reward/cost parameters, the
optimal rate moves close to the fluid policy invitation rate. Because in large systems,
the risks of both queue accumulation and server idleness are lower than the risks in

small systems.

Figure 3.4: System revenue with arrival rate control (m = 200, ug = 0.8)
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3.2.2 The Applicable Threshold Policy

In reality, the potential customers arrive to the system stochastically. Therefore, we need

to find realistic ways to implement this policy. The analysis suggests that a threshold
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policy is approximately optimal. In this case, the fluid policy can be interpreted as:
invite all potential high-ranked customers and stop inviting the low-ranked customers
when all agents are busy, namely, the admission thresholds for high-ranked customers is
infinity and z1 4+ x2 > m for the low-ranked customer. As in the last subsection, we
compare revenue under the fluid threshold to other policies with the same threshold
structure but in which the value of that threshold varies below/above the theoretical
one. By simulating both small and large systems with the same parameter sets listed in
Table 3.1, the revenue of a threshold policy with different values are obtained and an
optimal threshold is found. By comparing the revenue between different policies (see
Table 3.2), we can find that in general, the threshold policy (columns 6-9) performs
better than the original arrival rate control policy (columns 2-5). Moreover, for all
parameter sets, the revenue under the fluid policy’s equivalent threshold (column 6 and
7), though is not an optimal threshold (columns 8 and 9), is higher than the revenue
under the optimal arrival rate control policy (columns 4 and 5). This good performance
of the threshold policy is because the threshold control is a dynamic control. The
admission of low-value customers is adjusted by system state, and is able to achieve a

lower variance around the targeted load value, as we shall see in Section 4.

Table 3.2: Comparison of the revenue between arrival rate and threshold control policy

Set Arrival Control | Arrival Control Threshold Control Threshold Control
Number Fluid Policy Optimal Fluid Policy Optimal

Rate | Revenue | Rate | Revenue | Threshold | Revenue | Threshold | Revenue

1 8 135116.011 9.7 136107.7 40 138839.7 42 139214.5
2 8 135937.43 9.7 137494 .4 40 138939.5 43 139490.8
3 8 121186.945 | 4.9 122488.9 40 123378.5 36 124180.3
4 8 122008.363 | 4.9 122762.4 40 123478.4 36 124280.1
5 8 48191.4448 | 7.1 48548.75 40 50404.75 40 50404.75
6 8 49012.8635 | 7.75 | 49145.54 40 50504.6 40 50504.6
7 12.5 146362.181 15.7 148387 40 149179 47 151554.2
8 12.5 | 147437.965 | 15.7 | 150417.5 40 149279 47 152503.9
9 12.5 | 125042.314 | 11.05 | 125566.4 40 127902.9 41 127916.8
10 12.5 | 126118.098 | 11.05 126372 40 128002.9 42 128052.2
11 40 280721.641 46 281454.5 200 285117.8 203 285699.9
12 40 281605.898 47 281605.9 200 285157.7 205 285935.4
13 40 251022.974 | 36.5 251834.6 200 253633.2 197 254176.7
14 40 251907.232 | 36.5 252372.4 200 253673.2 197 254216.7
15 40 102024.807 | 36.5 102261.2 200 104618.4 199 104742.5
16 40 102909.065 | 39.5 103035.7 200 104658.4 199 104782.4

Figure 3.5 presents the revenue when applying a threshold policy with identical
parameter sets as in Figure 3.2. The optimal thresholds are much closer to the corre-
sponding fluid one, while the changing pattern is still similar. Such accuracy of the
fluid policy is more obvious in large size systems (see the last six rows in Table 3.2).
However, though its accuracy improved greatly, unfortunately, in all parameter sets we
tested, none of the fluid policy is optimal.

In addition, in all cases, the difference between the simulation revenue of fluid arrival

rate or threshold control policy (columns 3 and 7 in Table 3.2 ) and fluid expected total
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Figure 3.5: System revenue with threshold control (m = 40, ue = 0.8)
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reward (last column in Table 3.1) is no more than 10% and 5%, respectively. This means
that though the fluid policy is not optimal, it performs well. However, in a practical
sense, 10% is usually a considerable loss, which promotes us to seek refinement.

To sum up, through the fluid level analysis:

e We determine an asymptotic optimal invitation policy: inviting customers by their
ru ranking in decreasing order until there is no idle server. Notice that the abandonment
rate does not seem to be a factor in the fluid optimal policy.

e We proposed an equivalent threshold policy, namely, setting a threshold for only
one partially invited customer class. Such a policy is not only easy to implement in
practice but also performs better than the original fluid arrival rate control policy.

e Using simulation, we show that the fluid optimal policy by the controlling threshold
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performs well also for stochastic environments. However, it is not optimal in such
situations. Especially for small size systems, it usually has some loss. Therefore, we

propose and analyze, in the next section, a refinement to the fluid policy.
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Chapter 4
Analysis of System Dynamics

Referring to the fluid result, the threshold policy can be considered as a promising type
of policy for invitations. Such a policy is easy to implement by setting a threshold to
some of the customer classes. We consider a possible refinement of the fluid policy in
which we optimize the threshold value. The fluid suggested that the threshold shall
only affect the partially-invited customer class. All customers of higher-ranked classes
should be invited and can be merged into one type. Hence, we need two classes: class 1
of high-ranking customers which we always invite and class 2 of low-ranking customers
which we partially invite. We classify all candidate customers based on the 7 policy that
we proposed in Chapter 3. We consider all the fully-invited customer classes together as
high-ranking customers, denoted as Class 1, and the partially-invited customer class as
low-ranking customers, denoted as Class 2. Thus we can reduce the multi-class model

into the following two-class system (Figure 4.1):

Class 1 .
rate 4,
Abandon
rate 0, | g
—p
m Servers

Class 2
rate 4,

Allow preemption
Service rate u, ,,

Abandon
rate 0, |

Not invited

Figure 4.1: The simplified 2 class model of threshold policy

Two classes of customers arrive according to 2 independent Poisson processes at
rates A1 and Ag. Class i (i = 1, 2) customers are served with rates p; and lose waiting
patience with rate ;. There are m identical servers in the system that serve both
classes. Class 1 customers have a higher ranking, i.e., r1puj is greater than rous. A

predetermined threshold N controls the admission of Class 2 customers. Namely, the
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system admits lower ranking customers only if the total number of customers in the
system is lower than the threshold. Note that the original fluid policy optimization
suggested that N = m (no queues). After entering the system, if all servers are busy, the
customers wait in a priority queue in accordance with their ranking. We assume that
preemption is permitted, which means that the higher-ranked customer can interrupt a
lower-ranked customer in service and get service first when the system is overloaded,
and the interrupted service of the lower-ranked customer resumes at a later time when
the service load is released. A Class i (i = 1,2) customer’s service completion brings
rewards 7; to the system. The penalty on waiting time is ¢; per unit of time waiting of
customer of type i. We assume all the reward/cost parameters are positive.

Let x; (t), z (t) and g; (t) denote the fluid contents of customer ¢ in the system,
service, and queue at time t, respectively. We aim to determine the optimal admission
threshold, N, to maximize system revenue over an infinite horizon. Such revenue is
influenced both by reward and penalty. Hence, we need to examine the effect of the
threshold on different performance metrics such as the expected number of customers of
class ¢ in the system, E (z;), and the proportion of uninvited customers, P (z1 + zo2 > N).

The dynamics of this model is captured by the following differential equations:

oy (t) = A1 — a2y () — 0141 ()

B2 (t) = I{(z, (t)+aa(t)) <N} A2 — 222 (t) — O2g2 (1)

a1 (1) =21 () — 21 (¢) 7 (4.1)
g2 (1) = z2 () — 22 (¢)

z1(t) =x1(t) Am

2 () = @2 () A (m — ()T

\
where Iy is a 0-1 indicator that represents whether condition x is true or false, the
symbol A is the minimal operator and ()™ means the larger value between the result

inside brackets and zero. Those equations can be simplified into:

&1 (t) = A1 — pa (21 (8) Am) = Ox(z1 (1) —m) "

9 (t) = I{(ey (t)ras i) <y A2 — Hi2 (22 () A (m — 21 (£)T) (4.2)
—92 (xg (t) ( — I (t) +)

The above dynamics (4.2) is discontinuous on the right-hand side of #9 when z1+x2 = N.
We want to examine the long-term behavior of the system in the fluid level and determine
the steady state of x(t) £ [z1(t), 22(t)]7, denoted as X = limy_,00 x(t) = (Z1, Z2).

In order to analyze this long-term behavior, several definitions are needed. Consider
a dynamic system that is represented by x = f(x). Denote x(¢) as the flow at time ¢.
Slotine and Li (1991) defined equilibrium state (or point), stability (and instability),
asymptotically stable and globally asymptotically stable in Definition 3.2 - 4, 6, as:

Definition 4.0.1. A state x* is an equilibrium state (or equilibrium point) of the system

if f(x*) =0
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Denote in state-space ball Bp = {x|||x|| < R}, and sphere Sg = {x|||x|| = R}.

Definition 4.0.2. The equilibrium state is said to be stable if for any R > 0, there
exists r > 0, such that if ||x(0)|| < r, then ||x(¢)|| < R for all t > 0. Otherwise, the

equilibrium point is unstable.

Definition 4.0.3. The equilibrium point X is asymptotically stable if it is stable, and
if in addition there exists r > 0, such that [|x| < r implies that x(t) — X as t — co.

Definition 4.0.4. If asymptotic stability holds for any initial states, the equilibrium
point is said to be globally asymptotically stable.

Before focusing on this discontinuous system, we start by analyzing two extreme
cases: a system that invites all low-ranked customers, i.e., no admission control, N = oo,

and a system that always applies admission control, i.e., N = 1.

4.1 Without the Threshold Policy

4.1.1 System Without Admission Control

When the system never implements admission control (N = oo), its dynamics can be

simplified into

kZ(a'cl):{Al—ul(mlAm)—Ql(wl—m)+ . (4.3)

i A = piz (22 A (m = 1) ") = O (w2 — (m = 21)")

The dynamics (4.3) can have three possible forms in different regions of the state
space (see Figure 4.2):
Region A, Q4 = {(z1, 22) [z1 = m}

Ao — B9

Region B7 QB = {(1:17:E2) ‘I‘l <m<uz+ 1132}

A\ —
e 1~ p1%1 7 (4.5)
)\2—/.L2(m—331) —02(x1+;v2—m)

Region C, Q¢ = {(z1,22) |1 + 22 < m}

).(:{ A1 — 1z ’ (4.6)

A2 — 22

The equilibrium for each of the above three dynamics, denoted by X 4,Xp and X,
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Figure 4.2: Regions of system state

respectively, can be computed as

A1—pim A
= 4+m A1
- 9 - _
XA = ( ' 2\72 ) »XB = < /\2—(#2—92#) m—XA1/u1) ) y XC = < g ) . (47)
? H2

These equilibria may not be admisible if the equilibria are out of the defined region.

s
===

D
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We denoted by %" the equilibrium of system (4.3).

Theorem 4.1. The fluid (4.3) converges to the following globally asymptotically stable
equiltbrium:

X4, m<Ai/m

XB, A/p1+ Nofpa >m > A/ - (4.8)
o, m > Ai/p1+ Aa/pe

b
I

In the first condition, the system is loaded even with just class 1; under the second
condition, the system is underloaded if only high-ranked customers are ordered, but
overloaded in general; when the third condition applies the system is underloaded. The
most interesting case is the second one.

Before proving Theorem 4.1, we first want to qualitatively understand the flow in
the phase space, in particular on the borders between the different regions. Because
each of the dynamics (4.4, 4.5, 4.6) are linear and all their eigenvalues are negative,
according to Lyapunov’s stability theorem, the equilibria (4.7) are all asymptotically
stable for each of the dynamics (Khalil 1996). Note also that the equilibria (4.7) are all
asymptotically stable if there are no restrictions on the defined region, i.e., the dynamics
are valid in the full phase space. In other words, the trajectory starting inside each
region leaves that region after a finite time if the equilibrium doesn’t reside in that

region.
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Because 11 is independent of x5 and it is a linear equation, we have:

Lemma 4.1.1. In the system (4.3), x1(t) monotonically decreases (increases).

Therefore, in any situation, the flow of x can only cross the border between region A
and region B in one direction. However, z2(t) may not be monotonic. In Figure 4.3, we
simulate several trajectories of the system when A1 /p; + Ao/p2 > m > A\j/p; starting
with random initial points. We find that all trajectories converge to the equilibrium

“*? is of interest as it

(their intersection point). Note that the trajectory marked with
shows a case where x5 is non-monotonic. It first increases for a while and then decreases

to the equilibrium.

Figure 4.3: Trajectories of system without admission control
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Thus, we examine the behavior round the border z; 4+ x9 = m between Region B

and C.

Lemma 4.1.2. The trajectory x (t) can cross the border between region B and C' at

most twice.

Proof. On x1 + 292 = m, the vector field X degenerates into:

g={ M@ . (4.9)
A2 — p2 (m — 1)

Denote 6,, as the projection of vector field x on the gradient of x1 + xo = m. Then

on the boundary x; + x2 = m, one has

O =% ( ! > = (p2 — ) z1 + (M + A2 — pom) . (4.10)
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If 6, > 0, the flow crosses the border from region C to region B; and if §,, < 0, the
flow crosses the border from region B to region C. In other words, the trajectory of x(t)
crosses the borders multiple times if the sign of §,, changes. However, from equation
(4.10), &y, is a linear function of z1. According to Lemma 4.1.1, ¢, is also monotonic,
namely, the sign of d,, can change at most once. Hence, any trajectory of x(¢) can cross

between region B and C at most twice. O

Now we finally prove Theorem 4.1:

Proof. In the system with dynamics (4.3), from the above analysis, one knows that an
equilibrium exists in only one of the regions A, B or C, denoted here by S. For each
region that the equilibrium does not reside in, a trajectory starting in that region leaves
that region after finite time (however with a possibility of returning). The reason is that
the equilibria (4.7) are all asymptotically stable and do not lie in that region. It implies
that the trajectory crosses one of the two borders 1 = m or 1 + 9 = m in finite
time. From Lemmas 4.1.1 and 4.1.2, the number of crossings is limited. Thus, after
a sufficiently long time, the trajectory will reside in only one region and never leaves.
We claim that region must be S, otherwise there may be a contradiction regarding the
number of crossings.

Then the trajectory converges to the equilibrium in S because it is asymptotically
stable. O

4.1.2 the System Always Applies Admission Control

When the admission control is always implemented (N = 0), system dynamics can be

simplified to the following continuous form:

%= T _ AL — 1 (1‘1 (t)/\m)—Gl(:zl (t)*m)Jr (4 11)
.@2 — U2 (.’L’Q (t) AN (m — T (t))+) — 92 (1’2 (t) - (m — X1 (t))+)+ ' ‘

Because of the abandonment, this system is always stable and converges to its
equilibrium, denoted as x = (247, z§). Note that since there is no admission for class
2 customers, ©2(t) < 0,Vt, and after some finite time e, x5 will become 0 and from
that time on, the system behaves like an Erlang-A queue for which the equilibrium is

(A — p1m) /01 + m if the system is overloaded and A;/p; if the system is underloaded.
Theorem 4.2. In system (4.11), the following equilibrium is globally asymptotically

stable, i.e. the system fluid converges to:

(4.12)

<H _ { (A — pam) /01 +m,0) m < A\1/m
(A1/p1,0) m> A/

Proof. % defined by (4.12) is the equilibrium of system (4.11) since its a solution to
%X = 0. In order to show its globally asymptotical stability, the following Lyapunov
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function candidate is used (Lyapunov 1992):

V(x) = |z — 2| + |22 — 2. (4.13)

We want to show that, Vx # %, V (x) < 0. The state space {z; > 0,29 > 0} can be

divided into two domains according to the value of m. In both cases:

Case A: m < A\;/p;. It has the following subcases:

1.

. xlzf{[,x2>i2

T L
V(X):a'sl—i—j;g:)\l—ulm—ﬁl(a:l—m)—egxg

<AL —puim—6; (i{{—m)—egig:()

H

V(x) =39 = —p2 ($2A(m*$1)+) 792(x27(mf:v1)+)+ <0

x| > .f{l,xg < .fg

V(X):x'l—sbg:Al—plm—gl(azl—m)qLHng
<)\1—u1m—01(§:{{—m)+02f5[:0

c a1 < T 39 > 2l

V(X) = —I1 + 9
==+ (331 VAN m)+91(x1 — m)+—,u2 (%2 VAN (m — 331)+) —(92(.T2 — (m — $1)+)+
<M+ (@ Am)+60i (2 —m)" =0

. X1 <f{I,ZE2 <f£{

V (X) = —il — .@2

= A +p1 (g Am)+0y (1 — m) T+ po (z2 A (m — x1)+) +0s(zg — (m — $1)+)+
< At (T Am)+01 (2 —m) po (B A (m— 20) )00 (ZF — (m—2)T) T
=0

Case B m > A\ /p;. It has the following subcases:

1.

Ty > a’c{l,xg > f?

V(x) =iy + 29

= A — 1 (x1 Am) —01(x1 — m)t — po (mg A (m — w1)+) — 92(302 —(m— m1)+)+
<A —p1(zr Am) —01(xy — m)Jr

<A1 — 1 (@{IAm) —91(:2’{{—771)+

=0

cxp =3 2y > 2l

V(x) =22 = —po (:1:2 A (m — x1)+) — 92(1’2 —(m— :):1)+)+ <0

T U R

V(x) =iy — a9

=\ — 1 (1 Am) — Oy (z1 —m)t + o (xz A (m—x1)+) +92(:E2 — (m—$1)+)
<AL — - B g (zgm (m—a‘c{{)+> +os(zf) =0

+
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4. 1 < :E{I,xg > 3‘351
V(x) = —d1 + @9
= -\ +p1 (x1 Am)+01(x — m)+—,u2 (:1:2 A (m — x1)+) —02(:1:2 —(m— x1)+)+
<M+ (@ Am) +6i (2 —m)" =0

5. 11 < E{{,xg < @51
V(X) = —iy — o
=AM +p (1 Am)+61(x1 — m)+—|—u2 (CL‘Q A (m — :1:1)+) +92(ac2 —(m— x1)+)+
<=M+ (@ Am) + 00 (2 —m) "+ po (2 A (m—m)T) +0,(25) " =0

Thus in all cases, Vx # X, V (x) < 0. Hence, the system is globally asymptotically
stable. O

4.2 Applying Threshold Policy

After plugging in the admission control, the system (4.2) becomes discontinuous on its
right-hand side. Therefore, we fit our model into Filippov’s framework (Filipov 1988)
for analysis.

The system state space, {Ri tx1 > 0,29 2> 0}, is divided by the switching boundary

s&{r:x1 +29 — N =0} (4.14)

A

into two regions: R* and RY, where R* £ {(x1,23)|r1 + 22 — N <0} and RY 2
{(z1,72) |z1 + 22 — N > 0}. We denote the fluid function in regions R* and R¥ by
fL(x) and £ (x), respectively. They are continuous and piecewise smooth ODE:

)+

)

fH(x):<)\1—M1(I1Am)—91($1—m )
—p2 (za A (m —21) ") — O (22 — (M — x1)+)+ 7
_ A1 — 1 (:cl/\m)—(91(x1—m)+7

(4.15)
ff(x) = + ) :
Ao — pio (xg A (m — ZL‘1)+) — 0y (JUQ —(m— $1)+)

By applying the Filippov theory, the dynamics on the switching boundary s can be

defined as a convex inclusion:

£ (x) x € R
x=1 offf(x)+(1-9)fr(x),0€0,1] xes (4.16)
£l (x) x € RE

which we write explicitly when x € s,

5(_{ A — 1 (z1 Am) — 0y (z1 —m)* L+ ,p€[0,1]. (4.17)

| =) A — g (wa A (m = 21)T) = Oa (22 — (m — 21)T)
By using % = (z}, 7%) and % = (2!, #l) that are defined in Theorem 4.2 and
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4.1, respectively, the equilibrium of system (4.16) can be stated as follows. Note that
i =0 and #¥ = 2. Thus, 2 + 24 <zt + 7L

Theorem 4.3. In system (4.16), the following equilibrium is globally asymptotically

stable, i.e. the system fluid converges to:

xl b+ <N
=< axfl + (1—-a)xl zl +2ll < N <zl +2L, (4.18)
zf s+ 2zl >N

where

A102+X26014+mb162— 02—N61 0
102+A201+mb102—my;1 62 127 mg)\l/ﬂl

A261
_ A po+Aopr+mpr O —mypy po—N i 62
o= )\Al/12+J)\r2/\#1+m/§\1[92*>\192*mlt1#2 ’ )\1/'“1 + Ao/ p2 > m > >\1/'u'1 ’
1H1 2+ A2p19— N po
Nasi1 ) m > A1/ p1 + A2/ 2

Because the dynamics (4.16) is discontinuous on border s, we use the following
variables to investigate the behavior of system flow around s. Denote §y (x) = %! Vs
as the projection of vector field x on the gradient of s. It is the angle between gradient
and system flow. The angle is less than 90 degrees if dx (x) > 0 and larger than 90
degrees if d (x) < 0. When this value equals 0, the system flow is perpendicular to
the gradient of s. Thus, dy (x) indicates whether the flow moves toward or away from
s when approached from R, s or RY. This measure is often referred to as the Lie
derivative of s along the field defined by (4.16). In order to evaluate oy (x) on s, we

denote the following two values:

9

M (z1) = Vs (21, N — 1)
6 (x) = VsTfL (21, N — 1)

and let §(x1,¢) be the convex combination of 7 (x1) and 6%(x)
d(x1,) = 6" (1) + (1 — ) 6% (1), € [0,1].

Note that §(x1,0) = ¥ (x1),6(x1,1) = 67 (21). We evaluate the value of 6(z1, ) at a

special point on s, namely, 1 = Z;.

3(z1,0) = M — 1 (T Am) =01 (21 —m) " + (1= ) Ao
—pz (N =2) T A(m—21)") = 6(N —21)" — (m—z1)")"
= (1 — QO) Ay — o ((N — i‘l)+ AN (m — f1)+) — 92((N — f1)+ — (m — i‘l)+)+
We analyze the value of §(Z1, ) in the following cases:

L.m< M/p, 1 =21 = (M —pam) /61 +m
5(Z1,0) = (1 — ) Ay — bo(N — 21) "

o N <17
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6(Z1,0) = (1 —¢) A2 = 0.

Note that the equality holds only when ¢ = 1.
e I <N<CE1+)\2/92

0<02(N—i’1)/)\2 < 1.

When ¢ =1 — 05 (N —Z1) /A2, 6(Z1,) =0 and ¢ € (0,1).
o N>71+ )\2/92

6(Z1,0) < (1= @) Ay — 02 (A2/02) = —pAa < 0.

Note that the equality holds only when ¢ = 0.

2. )\1//11—1-)\2//1,2 >m > )\1//1,1,.%‘1 =T :)\1/,u1

e N<x
0(71,0) = (1 —¢) A2 2 0.
Note that the equality holds only when ¢ = 1.
o 71 < N <m
0<M2(N—f1)/)\2<1.
When ¢ =1 — p2 (N — 1) /A2, 6(Z1,9) =0 and ¢ € (0,1).
e m< N <Z+ (/\2 — (,ug —92) (m— )\1//“))/92
0<(u2(m—=21)+602(N—m))/Aa2 < 1.
When ¢ =1 — (u2 (m — Z1) + 02 (N —m)) /A2, 6(Z1,) =0 and ¢ € (0,1).
o N2>I1+ (A — (p2 — b2) (m — Ai/p)) /02 > m

6(Z1,0) < (1 =) Adg — pz (m — 1) — 02 (A2 — pi2 (m — A1 /1)) /62) <0
Note that the equality holds only when ¢ = 0.

3. m >N/ + Ae/pe, v =21 = A/

o N<a
3(Z1,0) = (1 — @) Ag > 0.
Note that the equality holds only when ¢ = 1.
e T1 < N < Ty + Ao/p2
0<pa(N—21) /A2 < 1.
When ¢ =1 — g (N — 1) /A2, 6(Z1,) =0 and ¢ € (0,1).
e T1+Nfpa < N<m
0<(u2(m—=21)+02(N—m))/ A2 < 1.
6(Z1,0) = (1= @) Adg — p2 (N = Z1) < (1 = ) A2 — pa (A2/p2) = —pA2 < 0.
Note that the equality holds only when ¢ = 0.
e N>m
6(Z1,0) = (L= @) Ag — pg (m — T1) — 02 (N —m) <0

Note that the equality holds only when ¢ = 0.

The above results depend on system parameters, which are summarized by the

following cases:
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1. m < )\1/#1

A2 A — (1 —61)m

= <N
@) 92Jr 01 -
A — —0 A A — —0
(b) (o —0)m _ Ao A= (m—0)m
01 02 01
(C) Al_(ﬂl_el)mzN
01
2. A/ 4 Ae/pe >m > A/
(a) )\Q_MQ(m_)\l/iul)_’_mSN
B2
A Ay — - A
(b) 2L <N <2 pa (m 1/“1)+m
111 02
(c) >N

3. m >N/ + Ao/ pe

A A
(@) 2L+ 2 <N
H1 o 2
A A A
b) L <cN< 2422
M1 H1 o M2
A1
() —=2N
1

It can be evaluated that:

In all Case (a), Vo € [0, 1], one has ¢ (71, ¢) < 0.

In all Case (b), dp € (0, 1), such that ¢ (z1,¢) = 0.

In all Case (c), Vo € [0, 1], one has 0 (Z1,¢) > 0.

Note that we consider the breakpoint into Case (a) or Case (c). Because on all
breakpoints, d (Z1,¢) = 0 only if ¢ = 0 or 1. In this case, system dynamics on the
border s has the same function as f#(x) or f¥(x). Also, s can be considered as it
belongs to RY or RY. Hence the flow in the breakpoint has the same properties as
either Case (a) or Case (c).

Case 2 is the most interesting case. We use the phase portrait (Figure 4.4) to sketch
the system flow. The boundary s is plotted by a red line. The equilibrium is marked by
a dot. The arrows represent the derivatives of the system states. In Figure 4.4a, the
equilibrium doesn’t lie on the switching line. The arrows appear to penetrate the switch
line. In Figure 4.4b, the equilibrium is on s and all the arrows in R” and R point to
s in a small region around s. Figure 4.4c is similar to Figure 4.4a, i.e., the direction of
arrows are similar to Case 2(a), penetrating the switch line, from the region without
equilibrium (R¥) to the region with equilibrium (RF).

Therefore, in order to prove the asymptotical stability, we are more interested in

the system dynamics in a vertical stripe around the equilibrium. Meanwhile, in all
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Figure 4.4: Phase portraits of Case 2
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the above cases, £1 shows monotonicity. Because &1 is always independent of x5 and
its dynamics are piecewise-linear in x1, similar to the analysis in the previous section,

limy_, 4o 21 () exists. In other words, we have the following:

Lemma 4.2.1. In the system defined by Equation (4.2), Ve > 0, 3T > 0, such that
x(t>T)eR:={(x1,22) |x1 € (Z1 —&,Z1 +€),e >0} .

As before, x1 has an equilibrium that depends on the level of load of class 1 customers

only.

Ty = { (Al—ulm)/Hl—i—m mg)\l/,ul (4.19)

A1/ m > A\ /p

Thus, it is enough to consider the states inside region R.. To that end, we first examine

the states close to the switching boundary s for Cases (a), (b), and (c).

Lemma 4.2.2. In system (4.2), if Vo € [0,1], 6 (Z1,¢) > 0 (or <0 ), then 3e > 0,
such that Vxy € (21 —e,Z1 +¢€), §(z1,0) >0 (or, §(z1,) <0 ) holds for Ve € [0,1].

Proof. We prove the case d(z1,) > 0. According to the definition, 6(z1,¢) =
@dH (1) 4+ (1 — @) 6%(z1). Since Yoy € [0,1]: & (Z1, ) > 0, 67 (1) > 0 and §(z1) > 0.
By continuity, there always exists ¢/ > 0 and ¢ > 0, such that §7(z1) > 0 for
Tl € (il — et 7 +5H), and 6% (x1) > 0 for x1 € (3?1 —el 3 +5L). Taking ¢ =
min(e”, e?), one has 64/ (x1) > 0 and 6% (x1) > 0 for 21 € (Z1 — €,71 + ¢). Furthermore,

the §(x1, ) > 0 since it is a convex combination of 67 (x1) and 6% (z1). O

Under the conclusion of Lemma 4.2.1, Lemma 4.2.2 implies that for all Cases (a)
and (c), there always exists a small neighborhood of (Z1, N — Z1)T, where the system
trajectory can only cross s in one determined direction. However, in Case (b), s becomes

uncrossable:

Lemma 4.2.3. In system (4.2), if 3po € (0,1) such that 6 (T1,p0) = 0, then Je > 0
such that for all 1 € (1 —e,71 +¢€), § (x1,9) = 0 has a solution with ¢ € (0,1).
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98 (z1,¢)
o

of ¢ as an explicit function of x; is guaranteed by the implicit function theorem

Proof. From system dynamics (4.2), one has = —X2 # 0. Then the existence

(Munkres 1997), i.e., there exist € > 0 for z1 € (Z1 — &, %1 + €) such that ¢ (z1) satisfies
0 (z,p(x1)) = 0. Note also that ¢ (Z1) = ¢ and ¢ (z) is continuous at z;; thus
¢ (x1) € (0,1) for all z; in a sufficiently small neighborhood of z. O

Reference Bernardo et al. (2008) defines such a region on s where § (z1,¢) =0, €
(0,1), as a sliding region. Therefore, Lemma 4.2.3 shows that in Case (b), 3¢ > 0, for
which x1 € (Z1 —&,%1 + ¢€) is a sliding region. If the system has a sliding region around

Z1, the system flow converges to this region in finite time.

Lemma 4.2.4. In system (4.2), if a sliding region exists, then Je > 0, such that
Vx € BH (see Figure 4.5), dn(x) < 0 where

BT ={(z1,25) |r1 € (11 — &, 81 + )} NRY,
and ¥x € B, §y(x) > 0, where

B ={(a1,22) |21 € (T1 — &,21 + )} NRE

Figure 4.5: Regions of system state when sliding region exists
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Proof. According to Lemma 4.2.3, a sliding region exists in Case (b). One can easily
evaluate that

5H(f1,N - fl) = ’7H <0

5L(.f1,N — i’l) = ’}/L >0 '

49



Here vH and +% are functions of parameters, where

—0y (N — Z1) m < A1/

vH = —p2((N Am) —961)+ —HQ(N—m)Jr A/ 4+ Ao /e >m >N/,
—pa (N — 1) m > A1/ p1 4 Ao/ pe
A2 — 0y (N — 1) m < A/

=1 ) — p2((N Am) —a‘cl)+ —«92(N—m)Jr Ar/pr + A2 /e >m > A/ -
A2 — po (N — 1) m > Ai/p1 + Ao/ pe

Hence, any x € BH can be written as:

.fl—l-Ax{I
Tr = s
N — 7 + Azl

and ‘Am{]’ < e and Azl > — Azl Similarly, Vz € BY can be written as

T + Al’{’
xr = ,
N — 71 + Azl
where ‘Aazﬂ < e and Azk < —Ax¥. Note also that dx(x) is a linear function of 21 and

9 of the form

() alloy + b xy + 1 £ 58 (x),2 € BE
X) = ,
N alzy + blay + b £ 6k (x),r € BE

where af?, o, b bL ¢H | and ¢’ represent constants and b, b% < 0. Thus, Vx € BY,

S(x) = allay + b xy + T = a Axll + DT AZE 4 AH

< (la®] +[pH]) e+~ ’

and Yz € B,

6% (x) = alay +blay + ¢ = al Axl + bL Azl + 4
> = ([a® + [b5]) e +* '

Thus, one can choose

_,YH ,YL
=T (2<\aﬂr + o))" 2 (jal | + |bL|>> !

such that -
dn(x) = 65 (x) < 77 <0,x B

L
Sn(x) = 6% (x) > ”7 > 0,x € B
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Lemma 4.2.4 shows that, in all Case (b), there exists an ¢ > 0, such that Vx €
{(z1,22) |71 € (1 —&,T1 + €)}, the system state converges to s in finite time.

Now we move to prove Theorem 4.3:

Proof. The system can be categorized into two types: there exists /does not exist a
sliding region on s which contains (Z1, N — 7).
A. The sliding region does not exist

From Lemma 4.2.2, we know that there exists enygr > 0; all the trajectories inside
the region Bysrp = {(x1,x2) |21 € (1 — ensr,T1 + nsr)}, can only pass through s
in one direction. According to Lemma 4.2.1, any trajectory arrives to Bygpr in finite
time. Similarly to the proof of Theorems 4.2 and 4.1, all the trajectories inside Bygsgr

H ig a globally asymptotically stable

converge to X1 (x). Therefore, in all Case (a), X
equilibrium, and in all Case (c), Xz, is a globally asymptotically stable equilibrium.
B. The sliding region exists

From Lemma 4.2.3, we know that there exists egg > 0, such that Bgr NS is a sliding
region, where Bsr = {(z1,z2) |71 € (Z1 — €sRr1, T1 + €sr1) }- Meanwhile, from Lemma
4.2.1, we know that all the trajectories reach Bgg in finite time. Lemma 4.2.4 maintains
that all the trajectories inside Bgpr reach s in finite time. In addition, on the sliding
region, the evolution of system state is always along s, namely, 1 + zo = N always
holds. Since x; converges to Z1, all the trajectories will converge to (Z1, N — Z1). The
value of o can be evaluated to satisfy ax™ 4 (1 — a) X* = (1, N — #1)”. Therefore, in

all Case (b), ax!! 4 (1 — a) %" is the globally asymptotically stable equilibrium. O

To sum up, the equilibria defined by Theorem 4.3 depends on all system parameters.
They can be illustrated in the space of the threshold N and capacity m, shown in
Figure 4.6. There are in total three striped horizon regions separated by solid lines,
which are referred to as upper zone (Case (a)), middle zone (Case (b)) and lower zone
(Case (c)). Inside the middle region, there exists a sliding region and the equilibrium
is ax” 4+ (1 — o) %". In the upper region, the trajectory of the system state can only

L

move towards RY when its x; is close to Z1, and converges to the equilibrium, X”. In

the lower region, the state trajectory has to pass from s to R, after a finite time, and
converge to the equilibrium x.
Furthermore, by using Theorem 4.3 and the results of Bernardo et al. (2008), on the

fluid level, we can obtain:

Corollary 4.4. The proportion of time using admission control in the system defined

by equations 4.16, is given by:

LT 0 zt+zl <N
7“15\20 T/O I{(ml(t)+zg(t))<N}dt = « f{{ + fg <N < "Z‘% + f% . (4.20)
1zl +zll >N

This proportion can help us approximate the probability of implementing admission
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Figure 4.6: Equilibrium of various threshold values and server numbers
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control for the original stochastic model (4.1), as:
1 T
P (Admission) =P (:L'l + 129 > N) ~ TIE};O T/O I{(zl(t)+w2(t))<N}dt' (4.21)

To sum up, through the system dynamics analysis:

e We propose a threshold policy that works only on the partially invited customer
class according to a fluid policy, so as to try to find a refinement of a fluid policy. We
simplify the original multi-class system into a two-class system with threshold policy
that controls the admission of lower-ranking customers.

e We use the definition to find and prove the fluid globally stable equilibria of the
number of customers (both classes) in the system, for the simplified two-class system.
The globally stable equilibria highly depends on system parameters and the threshold;
especially, in some cases, where the equilibria are found on sliding regions.

e Using the equilibria of customer numbers, we approximate the probability of

implementing admission control by the stochastic two-class system.
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Chapter 5

Discussion

5.1 Fluid Equilibrium

In this section, we aim to understand how the value of equilibrium is affected by system
parameters. The equilibrium defined by Theorem 4.3 can be depicted using a bifurcation
diagram (Figure 5.1). In our system, the values of Z" and Z! determine two breakpoints
on N that separate the equilibrium into three cases — (a), (b) and (c). Both #! and
zH depend only on system parameters as defined by Theorems 4.1 and 4.2. In Cases
(a) and (c), the equilibrium is obtained as if the system that always uses / never uses
admission control, respectively. In Case (b), the equilibrium depends on the value of

the threshold, N, which is linearly increasing in N from z'7 to z*.

Figure 5.1: Bifurcation diagram of Cases 1, 2 and 3 as a function of N

X1, %Xy
Case (a) Case (b) Case (¢)
Global equilibrium Glol;{al equilibrium . Global equilibrium
x (%1 axy + (1 — a)x5) xt
x5 -
2
xi=x]
X1
=0 >
_ = =L
X1 X+ X, N

Figure 4.6 showed the distribution of equilibrium for different combinations of N
and m; that diagram is actually for the cases of 1 > p; and 0y < po. Figure 5.2 (each
color represents the same case as defined in Figure 4.6) presents the same analysis for
other combinations. There are three other possibilities for relationships between 61, uq
and 02, uo. We find in different combinations, the monotonicity of the upper and lower
bounds of Case(b) (the yellow region) changes as we increase the capacity m. In Case

1 (m < A1/p1), both bounds decrease when pq > 61 and increase when py < ;. In

53



Case 2 (A1/p1 < m < Ai/p1 + Ao/p2), the upper bound decreases when ps > 6 and
increases when s < 6o; the lower bound does not change and always equals A1 /p1.
In Case 3, the upper and lower bounds are constants. The system equilibrium is in
Case(b) when \1/pu1 < N < A\i/p1 + A2/ p2, which is insensitive to m. Meanwhile, for
all N < A1/(p1V 61), the system is always in Case(c) (the green region), whereas for all
N > A\i/(p1 A 61)/+Xa/ e, the system is always in Case(a) (the red region). Therefore,
when the threshold N is relatively large/small, it stops affecting the equilibrium.

Figure 5.2: The dependence of equilibrium distribution on different parameters
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5.2 Fluid-Based Performance Measures

We use simulation of the original two-class stochastic system to examine the accuracy
of the fluid approximation. Concentrating on Case 2, in which class 1 customers are
underloaded and in general the system is overloaded, we check the long-term behavior
of both medium (m = 40, A; = 30 and Ay = 20) and large (N = 200, \; = 150 and
A2 = 100) systems. For both systems, p; = 1, uo = 0.8,6; = 0.5 and 6 = 0.4. Figure
5.3 presents the comparison of simulation and approximation of the expected number of

people in the system for classes—FE(z1) and E(z2).

Figure 5.3: Simulation vs. fluid: E(z1) and E(z2) as a function of N
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By comparing the simulation result, we can see that in both size systems, the
approximation of the equilibrium of x; (z; = 30,150 in the medium and large size
system, respectively) is very accurate. This is due to the fact that class 1 is underloaded
at all times. Such accuracy is insensitive to the value of threshold N, which is evident
for the independency of the equilibrium of x; in N. Thus, from now on, we focus on
the performance metrics of class 2 customers. The approximated equilibrium of s
becomes more accurate as the system size increases. When N is close to z; + & (2}
= 0) and 71 + 2 (78 = 40 and 200, respectively), the accuracy of approximation
decreases. This is because the dynamics of the fluid approximation is nonsmooth when
N =z, + 28 7 + L.

By substituting the equilibrium of z; and xo into the original system dynamics
(4.1), we can determine the equilibria of the number of customer ¢ in service (z;) and
in queue (g). In Case 2, z; = Z1,q1 = 0, which are constants. According to the
simulation of the above two systems, the average queue length of class 1 customers
is very close to 0 (E(q1) = 0.5674 and 0.3460 in medium and large size systems,
respectively) and the average number of servers who serve class 1 customers is very
close to z; (E(z1) = 29.8538,z; = 30 and F(z;) = 149.9278, z; = 150 in medium and
large size systems, respectively). Similar to Z1, the fluid approximation of z; and ¢
also perform very accurately. Figure 5.4 shows the comparison of simulation (solid line)

and approximation (dotted line) of zy and g2 for medium and large size systems.

Figure 5.4: Simulation vs. fluid: E(z2) and E(q2) as a function of N
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Similarly, the accuracies of zZ2 and g2 both improve when the system size increases.
From Figure 5.4a and 5.4c, we observe that zo loses more accuracy when N is close
to z1. More precisely, when NN is around Zj, Zo is underestimated. This is typical of
fluid approximations, when N is lower than z; (which equals Z;); the system does not
give any service load to class 2 customers. However, because class 1 customers arrive
and get service stochastically, the number of class 1 customers in the system sometimes
is less than Z;. As N increases, it is more and more likely that the admission control
constraint is not satisfied during the arrival of class 2 customers. Thus, on the stochastic
level, there are more class 2 customers admitted into the system and get served than
we approximate on a fluid level, when N is around Z;. In Figure 5.4b and 5.4d, there
is more inaccuracy observed when N = 1 + Z4. This is caused by a nonsmooth fluid
approximation, just like its influence on the accuracy of Zs in the same area.

Note that the goal of this thesis is to determine an invitation policy for a proactive
service system that balances revenue and service level. From the perspective of revenue,
we notice that the revenue highly depends on the rate of arrival customers. In our
two-class model, the revenue of class 1 customers is constant for each set of determined
system parameters. The reason is that we neither control the arrival of class 1 customers,
nor do we depend depends on class 2 customers. Therefore, we can only focus on how
the revenue of class 2 customers is changed by different thresholds. According to the
model, only certain class 2 customers are admitted to the system. In order to find
the effective arrival rate of class 2 customers, we need the probability of the usage of
admission control. In the end of Chapter 4, we approximate the probability that the
admission of class 2 customers will be denied—P(Admission). Figure 5.4 shows the
performance (solid line) of this approximation for both system sizes. Similar to the
phenomena of Zo, larger system approximations perform better, and inaccuracy happens
when the value of N is round z; + a‘c% or 1 + i’f . These can be explained by similar

arguments as before.

Figure 5.5: Simulation vs. fluid: P(Admission) function of N
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In addition, based on the result of the fluid equilibrium, we can calculate approx-




imations of serval service level indicators, then use them for policy balancing. The
most common metrics are the expected waiting time, F(W3), and the probability of
abandonment, P(Aby). Because in Case 2, the fluid approximating queue length for
class 1 customers is 0, we ignore class 1. In our model dynamics, those performance

measures are approximated by

EWs) = @2/ (A2(1 = a));
P(Abg) = 92@2/()\2(1 — Oé))

We simulate medium and large systems with the same parameters as before to examine

(5.1)

the performance of these approximations. Results are shown in Figure 5.6.

Figure 5.6: Simulation vs. fluid: E(W5) and P(Aby) function of N
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Note that the fluid approximation (dotted line) of E(W53) is in fact P(Abs) scaled
with a constant value 6. The simulation results, i.e., the comparison of the curve
between FE(Ws3) and P(Aby) with the same m (between Figure 5.6a and 5.6b, and
between Figure 5.6¢ and 5.6b), also support such an observation. Thus, it is sufficient
to discuss E(W3). From the approximation (5.1), we find that, g2 and « depend on N
on the right-hand side of E(W3). Meanwhile, « is a denominator. According to the
simulation results we acquired before, when N is near #; + z4!, g, is underestimated
whereas « is overestimated. Therefore, we expect an underestimation to occur here.

The simulation results shown in Figure 5.6a and 5.6¢ verify, that regardless of system
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size, the inaccuracy of E(W3) is more obvious when N is close to Z1 + /. Moreover,
these service level approximations are getting better with the system size.

We examine all the performances of the approximation obtained in Chapter 4, and
deduced for the equilibrium. In general, all of them perform well, especially in large-size
systems. Meanwhile, we have observed some interesting phenomena of the performance
as N is varying. For instance, the inaccuracy level of the approximation is not symmetric.

We discuss this next.

5.3 Further Discussion of the Performance

Still in Case 2, in Figure 5.3, we have observed an asymmetric mismatch around z% and
:Egl for both medium and large size systems. Let’s assume that the number of class 1
customers in the system constantly equals Z;. All of them are in service. The remaining
servers, m — I in total, serve class 2 customers. Thus, the system dynamics (4.2) can

be simplified into a single-variable ODE
9 = IfgyeN—gp A2 — B2 (2 A (m = Z1)) — 222 — (m — Z1)) ™. (5.2)

If the threshold, N, satisfies Case 2(b), its dynamics can be captured by Figure 5.7.

Figure 5.7: The dynamics analysis of xo with a given Z; in case 2(b)

(a) p2 > 02 (b) p2 < 62

A XM
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In the case that the admission control (according to the threshold N — Z;) is
applied (the lower lines in both diagrams), its equilibrium is not feasible. We can

still obtain its value, denoted as a non-admissible (NA) equilibrium. We have z0Y4 =

(02 — p2) (m — Z1) /2. By comparing with z& = 0, Z)’4 can either be less or greater

than a’?é{ . However, according to the original system constraints, when applying admission

control, case 2(b) disappears and the system converges to 4/ = 0. Thus, when z5 A is

positive, namely uo < 65, one admission control is applied and the system converges to

z)4 faster than it converges to . In the case of negative 4, it converges slower
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than it converges to z4.

In Figure 5.3, 1o > 05. Thus, the simulation result of F(z2) is only slightly more than
the fluid result when N is close to its lower bound of case 2(b), whereas the inaccuracy
of P(Admission) is large. When 65 increases, the cross point of the simulation curve
and fluid approximation is increasing in E(x3) but is decreasing in P(Admission) (see
Figure 5.8). Moreover, we have observed that in the simulation of P(Admission), the
slope of the trace has a small but significant change, as seen in Figure 5.5. This change
disappears when :Eév A overlaps i'g and emerges again when pg < 2 (see Figure 5.8b and
5.8d). Though this change does not adversely affect the accuracy of fluid approximation

significantly, the reason of this phenomenon is also worthy of future study.

Figure 5.8: Simulation and fluid of case 2 with different pairs of us and 6
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Chapter 6

Conclusion

Motivated by various applications in chat services, law-enforcement and healthcare
systems, we developed an invitation policy in the form of a threshold for a proactive
service system to promote system revenues while considering the service level provided
to customers.

Based on the analysis of a realistic proactive chat service system, we constructed a
multiclass multiserver model with impatient customers and built an objective revenue
function. According to the model, we first found an optimal fluid policy—ru rule—by
solving a linear programming problem of the fluid model. Through simulation of the
fluid policy, we proposed an easily applicable threshold policy that applies to only one
class of customers to control their admission. It is found that the system equilibrium
under such a policy is globally asymptotically stable. This result is obtained in Theorem
4.3. Such an equilibrium helps us approximate the probability of the implementation of
admission control with different thresholds. Furthermore, we discussed the performance
of these approximations and deduced approximations for service level metrics as well.
All approximations perform well, especially in large systems. Therefore, one can use
such approximations to determine an invitation policy that maximizes revenue while
the system service level satisfies specified constraints.

The above conclusion is obtained by analyzing a simplified version of the original
system. The system we studied empirically, is more complex and allows, for example,
the agents to serve multiple customers in parallel. When we built the model, we did
not take that feature into account. Nevertheless, it is very common in a chat service
system, which we suggest to be added in future research. In addition, in chat systems,
customers need a random time to make their decision after they receive an invitation.
We neglected such decision time. Therefore, further analysis is needed to understand
the impact of this decision time delay.

Note that we discussed the equilibrium under a preemptive assumption. In most
cases, the preemptive and non-preemptive cases converge to the same equilibrium when
size goes to infinity. However, the difference appears when the load of the higher-ranked

customers is very close to be critically loaded. If the system has many classes, such
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exceptional cases can happen. Thus, the non-preemptive case is also worth exploration
in the future.

So far, we verified validity of the approximation we obtained using simulation. In
the next step, we suggest to use our case study to check the effectiveness of our results
for the determination of threshold in practice. One can also investigate some other
approaches that are based on the equilibrium result, to analyze our model stochastically
and improve the approximation (see Chan and Yom-Tov (2015)).

The implementation of our policy in practice is not straightforward as our classes so
far were only based on scores; classes by the model should be set by differences in p as
well. Also, the number of classes in practice is not well defined; we suggested to rely on
the empirical observation that the score seems to be a mixture of several distributions,
but other approaches might be considered too. For example, if one can forecast not
only score but also service time for each individual, maybe revenues can be enhanced
even further.

The application to a healthcare environment suggests several further extensions. In
the healthcare system, the invitation policy needs to take into account also exogenous
unplanned arrivals. Therefore, the service level for both invited and unexpected patients
needs to be considered. A first solution for such environments could be to consider

those types of customers as having the highest priority regardless of their ru value.
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