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Abstract

Proactive service systems permit a controllable arrival rate managed by the service

provider, which is di↵erent from classic service systems. Conceptually, some (or all) of the

customers are invited to the system, so as to allow for a better control over operational

indicators and profitability. Such a proactive service system is used, for example, to

model an online chat service system, or for planning preventive care strategies for health

care service providers.

Through an empirical study of a proactive chat service system, the validity of

customer ranking information is elaborated for optimizing invitation control. It is also

shown that service level measures can be formulated in terms of penalty for abandonment

and cost of waiting. Hence, an infinite-time-horizon multiclass multiserver queueing

system has been developed with impatient customers. We find an asymptotically

optimal policy using a fluid approximation, by solving a linear programming problem

that maximizes revenues. The asymptotic optimal invitation policy we developed

invites customers by their rµ ranking in decreasing order until there are no idle servers.

Then, an equivalent threshold policy is proposed that is easy to implement in practice.

Numerical simulations were performed to demonstrate the performance of the policy

and identify its limitations. We show that the fluid policy has a good performance but

is also crude.

In order to refine the fluid policy, we analyzed a fluid approximation of the system

under a more flexible threshold policy. The equilibrium is found to strongly depend on

system parameters. In particular, it depends on the threshold value. It is also shown that

the equilibrium is globally asymptotically stable via trajectory and Lyapunov analysis.

Furthermore, in order to propose an invitation policy for proactive service systems that

balances revenues and service level, the probability of implementing admission control

is approximated, and several approximations of performance metrics are calculated.

Simulations are performed to examine the performance of these approximations. All of

them perform well especially in large-size systems.
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Abbreviations and Notations

^ : Minimal Computation Signal

_ : Maximal Computation Signal

()+ : The Larger Value Between the Result Inside Brackets and Zero

MDP : Markov Decision Process

DCP : Di↵usion Control Problem

QED : Quality and E�ciency-Driven

ICT : Information Collection Time

LP : Linear Program

CSC : Customer Service Chat

IP : In-Process

ODE : Ordinary Di↵erential Equation

ROC : Receiver Operating Characteristic

NA : Non-Admissible
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Chapter 1

Introduction

Classic service models mostly consider cases in which the customers autonomously seek

service from companies. Thus, the arrival rate is highly variable and exogenous to the

system. Decision makers then make strategic decisions on how to cope with that stream

of arrivals, regard service level and decide whether to serve all customers and what

resource to assign. In contrast, new technology allows companies to control arrivals.

We refer to service systems that can do so as proactive service systems. The new

technology we refer to provides service system access to historical information regarding

potential customers prior to their arrival to the system, for example, through their surf

information on the internet. The companies use such information to classify potential

customers, assess their current value, and invite them to the system for personalized

assistance. In this type of system, the company has sound information indicating that

the invited customer is likely to require or benefit from service. The agents are able

to access the profile and data of the current customers they are serving, which helps

them provide a meaningful interaction with their customers, so as to both promote

the revenue and to improve the customer experiences. Proactive service systems are

becoming more and more common. We give three examples from internet–based contact

centers, law–enforcement systems, and healthcare systems.

Our first example is an internet–based proactive chat system. Many banks and

retail companies encourage the use of internet or mobile platforms for providing self

services. In addition, these companies usually provide other service channels by which a

customer can reach them — either by phone, chat or mail. Such channels are required

in order to solve problems or to complement the self service. Such a combination is

beneficial both to companies and customers, as self services have the benefit of flexible

timing, visualization and low cost, while a personal connection through other service

channels is sometimes needed to solve more complicated problems or to enhance customer

experience. The decision of how to combine correctly the platforms and when to move

from one to another is an important strategic decision. These days, many companies

adopt an online customer service chat (CSC) system as an attractive complement for

the online self services, for its economy and immediacy. The chat can be initiated by the
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customer, for example, by pressing a ‘contact us’ button or by the company that extends

an invitation for a chat on the customer’s screen. We concentrate on the latter. In

order to decide to which customers to o↵er service, the company collects the customers’

browsing behavior on their website and additional historical data. Then, the company

evaluates that consumer’s ‘service value’; for example, if the end-user seems to have

a problem we might infer that he can benefit from personal help greatly, while if he

is ‘doing fine’, no chat is needed. The high-value visitors may then be invited to the

chat based on the current service availability. From the customer’s perspective, once an

invitation was o↵ered, during browsing the website, they are free to accept the invitation

or alternatively decline it anytime before leaving the website. Note that after accepting

the invitation customers enter a queue. They may abandon that queue at any time. The

service itself is composed of interactions between the agent and customers. The number

of interactions vary. An interaction can include for example a customer question and

an agent answer. While the customer types the question, the agent is waiting. Hence

it is customary that each agent, in such contact centers, manages multiple customers

simultaneously. This might create a second in-service queue, in which customers wait for

answers and may abandon if it is too long. The dynamics of such a system is described

in Figure 1.1. The company needs to decide how many customers to invite. Too many

customers can lower the service level (waiting and abandonment) and increase the

sta�ng cost; on the other hand, low capacity is also unwelcome since the company

may miss valuable customers. Hence, when discussing the invitation strategies, decision

makers need to balance customer value, costs and service levels.

Figure 1.1: Proactive chat system description

Arrive

mInvited

Self service

Invited
Accept

Refuse Abandonment

Leave
Chat system

Self service

Finish chat

Abandonment

Agent writing
m agents, each serves 

up to n customers

Question
n

Chat
start

Customer writing

Our second example is from law-enforcement systems in Israel, specifically a tra�c

speed-control system. Many countries use a camera-based automated system to enforce

speed limit laws. In such countries, the authorities decide on the minimal speed they

want to enforce (which may be and usually is higher than the maximal speed allowed

by law). One of the considerations when deciding on enforcing a speed limit is the load

on the enforcing system, as some of the drivers who were caught passing the speeding

limit may want to go to court and not just pay a fine. Hence, the lower the enforcing
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limit, the higher the load on the court system. The speed limits can be considered as

a proactive control policy to regulate the system’s load. Each ticket is viewed as an

invitation to engage a trail. The customer may decide to decline the invitation by not

appealing for a trial and simply paying the fine ticket. Unlike the chat system, once

appealing, one cannot abandon the system until the trial is over.

Our last example is a proactive healthcare system in which patients are invited for a

periodic or a followup medical examination. Such preventive care policies aim to identify

health problems before they become severe. Screening all people is wasteful. Therefore,

the decision makers invite only an appropriate number of high–risk patients for the

preventive checkup. This will both reduce the cost of further treatment, and improve

health. However, even though the methodologies for evaluating which patient is more

likely to need such services are improving, operational and economical considerations

limit the implementation of such preventive care policies. One such limiting factor is

the number of physicians who can do that checkup. A certain capacity should be kept

available, at all times, for the regular patients who come with unexpected health issues.

The dynamics of such a system is described in Figure 1.2. The challenge is to balance

the two groups properly and plan the invited patients in a manner that will not overload

the system but will take into account their medical risk properly.

Figure 1.2: Proactive health care system description

Risk group 
Arrival mInvited

Accept

Reject

Leave

No show

Service
m serversExogenous 

Arrival

This research explores invitation policies for a proactive service system that balance

revenue and service levels.

1.1 Literature Review

1.1.1 Admission Control

An invitation problem can also be considered as an admission control problem, because

it can be interpreted as whether to accept or reject each potential arrival. There

are many purposes that discuss admission control problems; we focus on those that

consider also service levels (e.g. abandonment). Koole and Pot (2011), motivated by

an inbound call center, discussed the admission control problem to maximize profit of

an M/M/s/n+M queueing system by controlling its trunk and agent number. They
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assumed Poisson arrival and exponential servers. Later on, Ward and Kumar (2008)

extended it into the general distribution arrival and service rates case in a conventional

heavy-tra�c regime. Koçağa and Ward (2010) tried to minimize the infinite horizon

expected average cost associated with customer blocking, abandonments and server

idleness of the Elrang-A queueing system. They used the Markov decision process

(MDP) to show the optimal admission control policy in a threshold form. An e�cient

iterative algorithm was developed under certain constraints, which can guarantee the

optimal solution to minimize the infinite horizon expected average cost. Then, by

solving the di↵usion control problem (DCP) in a Quality and E�ciency-Driven (QED)

regime, an asymptotically optimal policy is obtained. Weerasinghe and Mandelbaum

(2008) considered the G/M/n/B + GI queueing system for the finite horizon cost

minimization under QED regime. They developed a static control policy, in the form

of a constraint on the system capacity. They showed by using DCP analysis that the

solution asymptotically minimizes the cost that trades o↵ blocking and abandonment

over a finite time horizon. All the above papers assume blocked customers to have the

same value while we assume otherwise.

There are several studies that discuss a control policy which not only controls

admission but also some other operational parameters. Such hybrid control mechanisms

(especially joint admission and service rate control) had been considered by Ata and

Shneorson (2006) (adjustable arrival and service rates for the M/M/1 system), Ghosh

and Weerasinghe (2007) (queue capacity and service rate control for the M/M/n

system), Ghosh and Weerasinghe (2010) (extend the system in Ghosh and Weerasinghe

(2007) with impatient customers) and Lee and Kulkarni (2014) (controllable arrival

and service rates for the M/M/n system). Chan and Yom-Tov (2015) studied the

admission control problem of a multi-server queueing system which allows speedup.

They used dynamic programming to prove that a threshold policy is optimal. They

first analyzed the system equilibrium under the fluid level and then used it to deduce

the parameters in order to approximate the system into an existing stochastic model.

Furthermore, a heuristic algorithm is explored to determine thresholds for admission

control and speedup. Especially, they assumed a concave cost function, which means

that each blocked customer may have a di↵erent value or impact. We will take a similar

approach in our analysis but would like to maximize revenue instead of minimize costs.

In addition,, they do not consider abandonment which is an important feature in our

model.

Early work on the admission control in a nonidentical customer system can be found

in Miller (1969), where an optimal threshold policy for a multi-server loss system was

explored. In such a system, new arrivals will balk without entering the system if there

are no free servers available. Hence, the system administrators would like to reject some

arrivals in order to keep some strategic idleness for the higher value customers, so as to

lift the total reward. Such a study develops by concerning di↵erent aspects of the system

characters. For instance, some references tried to extend it into the non-stationary case
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(Yoon and Lewis 2004), whereas some others mentioned the patience of each customer

(Zayas-Cabán and Lewis 2016). Nevertheless, Zayas-Cabán and Lewis (2016) discussed

the policy in a two-class loss system, in which abandonment happens both during

queueing and service instead of while in queueing. This may happen in a health care

system. Also, we are more interested in a service system with a queue, which has more

general applications.

1.1.2 A Multi-class Customer Queueing System

Customer ranking is usually a typical feature of the proactive service system, thus yielding

multi-class customer types. When we have the class information, it is meaningful to

choose an appropriate queueing policy according to di↵erent aim, such as the cost/reward

objective or service level requirement. The well-known cµ rule is a very important

priority policy for a multi-class queueing system, in order to minimize system cost. This

policy was proven optimal in both deterministic (Smith 1956) and stochastic (Pinedo

1983) environments to minimize linear cost criteria. Van Mieghem (1995) generalized

this rule by using heavy tra�c analysis to minimize more general nondecreasing convex

cost structures. He proved that this policy is asymptotically optimal for minimizing

cumulative delay cost.

Atar et al. (2004), Atar et al. (2010) and Atar et al. (2013) studied the multi-server

system with several classes of impatient customers. Atar et al. (2010) investigated

a linear program (LP) that leads to a lower bound on the long run average holding

cost. Then, it was shown that a routing policy, which is referred to as the cµ/✓ rule,

asymptotically attains the lower bound in both preemptive and non-preemptive cases.

Both rules are independent of the arrival rates of the customers.

De Véricourt and Zhou (2005) extended the cµ rule to a multi-server system with

return. Huang et al. (2015) studied this further in the context of emergency departments.

In their research, the patients can either exogenously arrive or are in-process (IP).

The performance measure, i.e., the cumulative costs, can be asymptotically minimized

prioritizing new patients according to their triage score and IP patients by their progress.

Perry and Whitt (2011) also considered two-class arrivals, but in an overloaded X

system, where each class of customers has its own queue and service pool, but service is

on a first-come, first-serve basis. The private severs are only activated to help another

class when an unexpected overload occurs. As a continuation of their work, Perry

and Whitt (2009) proposed a threshold for the weighted queue-ratio to trigger the

temporary routing for maintaining a certain queue ratio. One should notice that the

authors focused on the fluid approximation of the system and developed the ordinary

di↵erential equation (ODE) of the system dynamic. Then, based on the fluid analysis,

the steady-state queue lengths were approximated. Such a methodology is also used in

Chan et al. (2014) and Chan and Yom-Tov (2015). In all cases, this approximation was

proven e↵ective.
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In our research, we have to decide on the policy for invitation. We currently focus

on the static ranking information for both decisions, namely, the queueing policy will

follow the priority of the invitation policy. All the above papers discuss the routing

policy for a multi-class system, whereas we are exploring its invitation policy. In other

words, all customers within their service system are served through the cµ/✓-type policy.

We concentrate on the decision of who we want to let into our system. Therefore, our

study is more focused on maximizing the revenue of the system, which is a di↵erent

objective than the references discussed.

1.1.3 Contact center

Proactive systems, in many cases, incorporate endogenous arrivals into the system

so as to raise system e�ciency. For example, in the contact center, the organization

sometimes initiates service, termed ‘outbound’ calls. The balance between endogenous

and exogenous customers was investigated previously. In order to achieve server e�ciency,

namely, reducing idleness, decision makers prefer to initiate new calls by an automatic

dialer system even when all agents are occupied with other calls (Sarraf 1989). However,

the consequent abandonment is not welcomed either customers or decision makers.

Samuelson (1999) used queueing theory to maximize the number of dialing under an

abandonment proportion constraint. Pang and Perry (2014) presented a logarithmic safe

sta�ng policy for a large pool of agents who provide service to inbound and outbound

calls, namely, blending call service. However, this system gives priority to the inbound

calls; in addition, outbound calls are immediately lost if there is no agent available.

That setting is significantly di↵erent from ours. As in all the examples discussed in the

introduction there is no strict priority between in/out services. If the out-services are

more valuable, then we might prioritize them instead.

A di↵erent type of call blending is balancing cross-selling opportunities. By cross-

selling, we mean that during a customer initiated call, the agent proposes extra services

the customer did not ask for. Hence, they increase the call length, but also take

advantage of the customer’s availability. Conceptually, the tradeo↵s between whether

or not to o↵er cross-selling opportunities is similar to the ones we consider here. The

di↵erence is that in such a system customers do not need to wait in queue. Armony

and Gurvich (2010) found an asymptotically optimal threshold to balance the sta�ng

requirement and the cross-selling opportunities, so as to maximize the profit while

meeting a certain service level.

Even though proactive service systems can be applied in many service environments,

our main motivation and data comes from contact centers. The main applications

we address is the Customer Service Chat (CSC) system. The emerging CSC system

has some unique features, which were discussed in several papers. For example, chat

systems have a lower operational cost than telephone service support systems (Andrews

and Haworth 2002); they show better performance, including average speed to answer
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and user satisfaction, and allow for multitasking (namely one agent can serve multiple

customers) (Shae et al. 2007)

Tezcan and Zhang (2014) addressed the implication of simultaneous service which

results in service rates that depend on the number of customers each agent is serving.

The customers may be impatient when waiting for the service to begin or for each

answer while in service. In order to minimize the sta�ng level under a certain service

level goal, they used a routing problem LP to minimize the abandonment probability.

Then, a closely-related sta�ng LP was formulated, for which the corresponding number

of agents was proven asymptotically optimal. Note that the same structure is also

used when considering the sta�ng of an emergency department, where the service is

given in a discontinuous manner (Yom-Tov and Mandelbaum 2014, KC 2013). However,

in most literature, their systems have only exogenous customers and concentrate on

optimizing either sta�ng or routing. In the next chapter, we introduce a case study

of a CSC system, and show that an invitation policy is applicable and promotes the

system reward. This shows that optimizing an invitation policy is a promising direction

to study for CSC systems.

1.2 Research Objectives and Thesis Structure

We aim to find an inviting policy capable of optimizing certain performance measures.

Several questions are of interest: Which performance measures should be taken into

account when constructing the model? Which type of invitation policy should one use?

When should the system invite customers? What is the tradeo↵ between system reward

and service level?

Hence, the objective of this work is to develop an invitation policy for a multi-server

system with impatient non-identical customers, so as to maximize revenue, taking into

account customers’ value, service level and system e�ciency. By capturing the setting

of a chat service system, the service level could be expressed in term of penalty for

abandonment and cost of waiting. The system e�ciency could be expressed by the

operating cost of available agents in the system. We start with analyzing the fluid

approximation of such a system, whose optimal policy leads us to a threshold policy.

This policy is very simple, basically stating that customers should only be invited if an

available agent appears. This is not a very realistic policy since customers do not enter

the system immediately, and many customers reject invitations. Also, we show through

simulation that this policy is not optimal. Hence, we refine the fluid model to allow

for a larger variety of the thresholds to be considered. We continue by analyzing the

fluid model equilibrium and approximate performance measures of the system operating

with di↵erent thresholds. Under a certain service level requirement, the decision maker

can then evaluate the revenue of di↵erent invitation thresholds to propose a better one.

This study has the following contributions:

• We construct our model and revenue function based on an empirical study (Chapter
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2). By using real data, we elaborate the importance of classifying the customers according

to their values, the fact that indeed, providing service to the right customers enhance

revenue, and the impact of di↵erent metrics of service levels. In particular, the case study

provides justification for the use of small data information in optimizing operations.

Such small data are collected by automated systems on potential customers, which

sometimes is more e↵ective than the big data (Lam et al. 2017).

• By solving a linear programming problem of a fluid model for our multi-server

system with impatient non-identical arrivals, we determine an optimal invitation policy

that ranks customers by the product of revenues multiplied by the service rate. We

discuss its limitations in Chapter 3.

• Based on the fluid analysis, we propose a threshold policy for invitation control.

Under this control, we leverage the fluid equilibrium result and develop a stochastic

approximation of performance levels using the Filipov method (Filipov 1988). Such

an approximated result provides an evaluation of various threshold controls. Those

approximations are presented in Chapter 4.

• In Chapter 5, we develop more approximations based on the fluid equilibrium for

both revenue evaluation and service level indication. All the acquired approximations

perform well in the simulation.
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Chapter 2

An Empirical Study of a

Proactive Chat Service System

Before constructing the model for theoretic analysis, we first investigate an existing

proactive service system, in order to sketch the most important features of such systems.

To that end, we explore empirically the sensitivity of the revenue to some selected

operational parameters.

2.1 System Overview

The customer dataset comprises of more than a half million chats of an airline company

over one month. This company website provides both service and sales, through its

contact center. Anyone who is interested in the business can visit this website at anytime.

Customer flow in the system is described by Figure 2.1. The system traces all online

Figure 2.1: Customer perspective process description

Enter

Website

m
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Finish 
Chat

Agent 
answer

Customer
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Assign 
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Accept

Reject
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Abandon
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Queue
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customers and computes scores by an analysis of their browsing behavior and personal

information (browser, location, etc.). According to customer score and chat service

capacity, the system sends invitations to high-score customers. The invitations are sent

by either a button displayed on the webpage or as a pop-up window. The customers,

who receive the invitation, make a decision on whether to accept it. Once accepting
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the invitation, a customer starts to wait in the outer queue until the system detects an

available server and assigns this customer to that server. Note that every server can

manage up to 3 customers simultaneously; therefore, the number of “in service” chats

can be larger than the number of online servers. Customers have finite patience, hence,

they may abandon the outer queue before they are assigned to a server. We may not

know that a customer abandoned till the service began. Then, the chat service starts

in the form of an alternate server and customer line. Since agents manage multiple

customers simultaneously, customers may need to wait in the inner queue for the server

during their dialog. In Figure 2.2, an example is demonstrated on the perspective of

an agent who serves three customers simultaneously. Upon customer assignment, the

customer and server talk one after the other continuously. The agent may wait for the

customer entry (e.g. from 12:01 to 12:03, this server is idle). Because the maximal

multi-task level is 3, from 12:09, this agent cannot get any extra customer. A customer

may also wait for the busy server who is replying to some other parallel customer (e.g.

from 12:12 to 12:15, customer 1 is waiting in the inner queue, because the server is busy

serving customer 3).

Figure 2.2: Server perspective process description

11:58 12:01 12:03 12:07 12:12 12:17

C1 Assignment
to Agent

Customer 1 (C1)

12:00

Customer 2 (C2)
C2 Assignment

to Agent

12:05

Customer 3 (C3)
C3 Assignment

to Agent

12:09 12:10 12:15

All     are from customer 1. All are from customer 2. All  are from customer 3. All are from the same Employee.

After the service is finished, the system receives the information that the corre-

sponding service load is released and it starts to assign a new customer. After the

chat, the customer may stay or leave the website. Before leaving, some customers may

purchase commodities in this website, which we will refer to conversion in this context.

In this analysis, we consider the conversion rate, which is the proportion of customers

purchasing commodities, as the main output of the service. The aim is to investigate

how the customer properties as well as operational decisions can impact this rate.
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2.2 Data Description

The above chat system records information of each invited customer, The data include:

personal information (browser, location, etc.), score, time stamp of all important events

described in customer flow, conversion, and some other interested indicators. We

collected 520,727 chats that were served during January 2016 (Figure 2.3). Each of

them stands for an invited visit customer on this website. By screening the data, 154

error chats are excluded because of a technical failure.

Figure 2.3: Selection of chat sample

Total chat: 520,727

Valid chat: 520,573

Technical failure: 154

Accepted: 24,440

Invitation 
Rejected:

496,113 (95.3%)

Score>0 343,413

Score=0 177,160

Served: 20,202

Abandonment:
4,238 (17.3%)

Score>0 20,467

Score=0 3,973

Score>0 16,655

Score=0 3,547

It can be noticed that there are three crucial events in the process: sending the

invitation, accepting/rejecting the invitation and assigning a server. One can classify

all invited customers into more specified groups: the accept/reject customer and

the served/abandoned customers. Figure 2.3 shows that 95.3% customers ignore the

invitation. Out of those who accepted an invitation, 17.3% abandon the queue. Finally,

there are only 20,202 customers entering service, which is 3.88% out of all the invited

customers.

2.2.1 Descriptive Analysis of Customer Score

Customer score is the most unique characteristic of this system that maps all the

information on customer activity on the website into a single value. Before going deeper

into the service procedure, we want to initially verify the validity of the score as value

representative. In other words, does the high score result in a higher income? Meanwhile,

we also consider the following questions: How to characterize the score? How can we

use the score in the analysis? How does the score relate to other indicators/features of

the customer?
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Customers scores range from 0 to 0.6. By checking the distribution of all customer

scores (Figure 2.4a), one can notice that there is a large proportion (around 1/3) of

customers with a score equal TO 0. A Zero score might be due to low value or lack

of information. In order to identify if indeed the zero score customers are low value

customers, we examine the information collect time (ICT), defined as the time interval

between customer entering the website and receiving the invitation. The average ICT

of all customers is 197.8 seconds. However, among all zero score customers, the average

ICT is only 0.59 seconds, which is much lower than the average ICT among non-zero

score customers – 299.6 seconds. Furthermore, there are around 71.6% zero score

customers with 0 ICT, which means that they are invited on entering the website. This

can happen when the customer arrives at a non-peak hour. During ICT, the system is

collecting the customer information especially their online behavior. If the ICT is very

short, one has reason to believe that the zero score is such due to the lack of information

but not the lack of value. Therefore, we will consider the scored zero and non-zero score

customers, separately, in our analysis.

Figure 2.4: Customer score distribution
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(b) Non-zero score customer distribution
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After excluding the zero score customers, the score distribution is scaled (shown

in Figure 2.4b). It can be observed that scores are concentrated in four regions. By

following that observation, it is natural to divide customers into four groups based on
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their score distribution pattern. How to define such division is not clear. One way, is to

fit a mixture distribution for that distribution. Such a fitting is presented in Figure 2.5.

We observe that a good fit results from mixing 4 log normal distributions. The relative

proportion of each group is given by the weight 8.33%, 26.33%, 54.52% and 10.83%.

The problem with this approach is that it does not provide a clear classification for

specific customers, i.e., to which group that customer belongs. Hence, we take a simpler

approach in which we use the local minima of the score distribution to determine three

breakpoints (0.0082, 0.0208 and 0.082) that separate the non-zero scores into 4 groups

(see the first two columns of data in Table 2.1). As a robustness check we repeat all the

analysis by considering both score and group level.

Figure 2.5: Mixture distribution fitting of customer score
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Before tracking customers’ characteristics among the groups, we use the group

information to overview the relationship between score and system output, so as to take

the first step towards validating score as a representative value. The output information

we have is an indicator of the conversion behavior, namely, whether the customer spent

money or not during that visit to the website. Hence, we check the conversion rate, i.e.,

the proportion of the conversion customers out of the total group population, in each

group. The results are listed in Table 2.1.

Table 2.1: Conversion rates among groups

All Served Non-Served

Customer

Number

Percent of all

Population

Conversion

Number

Conversion

Rate

Served

Number

Conversion

Number

Conversion

Rate

Conversion

Number

Conversion

Rate

Score = 0 177160 34.03% 4557 2.57% 3547 260 7.33% 4297 2.48%

Score

>0

Group1 43955 8.44% 144 0.33% 3542 12 0.34% 132 0.33%

Group2 60792 11.68% 545 0.90% 4454 46 1.03% 499 0.89%

Group3 203243 39.04% 7526 3.70% 6688 535 8.00% 6991 3.56%

Group4 35423 6.80% 10662 30.10% 1971 611 31.00% 10051 30.05%

For all non-zero score customers, the conversion rate has consistent growth as shown

by their higher score. Especially in the highest-scored group, customers express 100
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times more willingness to consume on this website compared to the lowest-scored group.

Meanwhile, after considering the customers who get service and who do not get service

separately, the e↵ect of the service can also be identified. The conversion rate of the

customers who receive service is generally higher than those who do not. Notably, for

group 3 customers, which holds around 40% of the total population, their conversion

rate soars twice after service. To sum up, the initial analysis suggests that it is worthy

to provide proactive service to customers, in particular to high-scored customers.

Meanwhile, some operational parameters also show di↵erences among groups (Table

2.2). Generally speaking, as scores increase, customers are more likely to reject the invi-

tation, and their probability of abandonment decreases. The highest-scored customers

(around 7%) show opposite behavior, which is worthy for further study. The average

length of stay has some fluctuations (around 5%) among groups.

Table 2.2: Operational parameters among groups

Number
Accept

Number

Accept

Rate

Serve

Number

Abandon

Rate

Average

Abandon Time

Average

Length of Stay

Score = 0 177160 3973 2.24% 3547 10.72% 110.2 680.6

Score

>0

Group1 43955 4569 10.39% 3542 22.48% 195.5 747.3

Group2 60792 5801 9.54% 4454 23.22% 181.2 749

Group3 203243 7787 3.83% 6688 14.11% 150.9 726.2

Group4 35423 2310 6.52% 1971 14.68% 153.5 765.6

2.3 Three Level Logistic Regression Mode

In order to draw a conclusion on customer behavior, a more robust statistic analysis is

needed. We build a logistic model to explain how customer value and operational deci-

sions impact conversion. Since the output, conversion is a binary indicator representing

a purchasing / non-purchasing event, we use logistic regression for the analysis. Note

that the majority of customers ignore the invitation; hence, most of their information

do not exist. This also happens to the customers that abandon in the outer queue.

Therefore, we built models in three levels of analysis: (1) all invited customers, (2)

invitation accepted customers, and (3) served customers, separately.

2.3.1 Parameter and Data Selection

The predicted variable, as explained, is the conversion indicator. The explanatory

variables we choose are listed in Table 2.3.

These variables are chosen from three categories: general control variables, customer

indicators and system operational indicators. The first group includes the hour of day

(HOUR) and day of week (DAY). The second group covers customer preference and

characteristics. This includes the parameters mentioned before (SCORE, GROUP), The

ACC RECO and SEV RECO are the indicators of invitation acceptance and receiving
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Table 2.3: List of parameters

Type Name Explanation Mean STD Levels

Predicted

variable
CONVER Conversion 1: 4913/No conversion 0: 139692 / All

GENERAL
HOUR Hour of day (3⇠17) / All

DAY Day of week (7 days) / All

Customer

indicators

SCORE Customer score 0.0125 0.0243 All

GROUP
Divided by score: GROUP1 (0,0.0082]: 43955 / GROUP2 (0.0082,0.0208]: 27357 /

GROUP3 (0.0208,0.082]: 67346 / GROUP4 (0.082, 0.6): 5947
/ All

ACC RECO Accept the invitation 1: 14141 / Reject 0: 307624 / All

SEV RECO Served 1: 11658 / Abandon 0: 2483 / All

SKILL Di↵erent service types: Service 1: 5139/ Sales 2: 6519 / Sev

AVG SENT Average sentiment score for all customer line 0.1104 0.3836 Sev

END SENT Average sentiment for the last 10% cutomer line 0.2307 0.7356 Sev

SENT TREND
Increase 1: 3413/Nonchange 0: 5492/Decrease -1: 2753

sentiment between the last/first 10% customer line
/ Sev

LOS Chat duration between exit queue and chat end in seconds 726.8876 558.8086 Sev

NO WORDS Number of words given by the agent during chat 162.7651 136.1779 Sev

System

operational

indicators

INV TYPE Button invite 1: 60626 or Window invite 2: 261139 / All

QUEUE SEC Waiting time for the outside queue 71.0063 163.5771 Acc

PROP INNERQ Waiting time for the inner queue / LOS 0.1870 0.2101 Sev

MULTI Average multi-task level 2.4258 0.5797 Sev

service, respectively. We define SKILL as the purpose of the visit (seeking service or

sales). The length of stay (LOS) is defined as the chat duration and NO WORDS

counts the number of words the agent wrote during one chat, which reflects the service

workload of that specific chat. Apart from the score, the system also traces customer

sentiment on sentence level while they are in service. Several emotion indicators were

included in the model. We sum up the sentiment score (range from -10 to 7) to the chat

level by average sentiment (AVG SENT), the sentiment at the end of the conversation

(END SENT), and the sentiment change during the whole chat (SENT TREND). In

the last group, some operational parameters are selected, including the invitation type

(INV TYPE) (button displayed on the webpage or a pop-up window), the queueing

time for outside (QUEUE SEC), the proportion of inner queueing time in the total

length of stay (PROP INNERQ) and the average multi-task level of the server during

that chat (MULTI). The last column in Table 2.3 describes to which level of analysis

this variable is relevant.

The current invitation policy prioritize customers according to their score; hence

the data is biased and includes a higher proportion of Group 3 and 4 than the general

population. Meanwhile, the system invites customers also according to the system load,

which is independent of the score distribution and, therefore, can be considered as a

nature experiment. In order to eliminate the data bias, we use an importance sampling

approach (Kroese and Rubinstein 2008) by which we sample our data according to the

score distribution of all customers on the website (including both invited and non-invited

customers, see Figure 2.6). From the distribution we can see that the customers still can

be divided into the same 4 groups according to their score. After importance sampling,

our sample includes 144605 chats.
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Figure 2.6: Customer score distribution of all customers on website
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2.3.2 Level 1: All Customers

In this level of analysis, we build the first model to check the validity of scoring, as

predicting conversion.

Logit (P (CONV ERi)) = �0 + �1 · SCOREi + "i. (2.1)

Model 2.1 predicts the probability of conversion using a logistic regression. The

results are shown in Table 2.4. In the logistic model, the e to the power of the coe�cient

is the amplifier of the odds ratio of this variable. Hence, the result shows that the

customer score has a significant positive e↵ect on conversion.

Table 2.4: All customers fit logit Model 2.1

Estimate Std. Error z value Pr(>|z|)

SCORE 28.2951 0.3015 93.83 <2e-16 ***

In Section 2.2.1, we classified the customers according to their score-group. Such

approach is the one we use in our theoretical study. Therefore, we repeat the analysis

with score-based class information to check its robustness:

Logit (P (CONV ERi)) = �0 + �1 ·GROUPi + "i. (2.2)

By fitting all customer data to Model 2.2, the result shows consistency with the

result of Model 2.1 (see Table 2.5).

Table 2.5: All customers fit logit Model 2.2

Estimate Std. Error z value Pr(>|z|)

GROUP2 0.91192 0.10728 8.501 <2e-16 ***

GROUP3 2.45334 0.08594 28.547 <2e-16 ***

GROUP4 5.08883 0.0878 57.961 <2e-16 ***
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Next, we want to add more control variables to improve the prediction and the

inter-operational decision impact on conversion. According to Table 2.3, only several

variables are available for all customers. Thus, the next model is built to confirm the

validity of scoring and the utility of service.

Logit (Pr (CONV ERi)) = �0 + �1 · SCOREi + �2 ·ACC RECOi

+�3 · SEV RECOi + �4 · INV TY PEi + �5 ·GENERALi + "i.

(2.3)

The result (see Table 2.6) shows that as before the customer score has a significant

positive e↵ect on conversion. More important is the fact that providing service also

has a positive e↵ect. However, the acceptance does not impact conversion in a positive

way, which means receiving an invitation is not enough to increase conversion, whereas

reaching service is crucial. From the fact that acceptance and service show opposite

e↵ects, we conclude that the abandonments have a negative influence on conversion.

Therefore, an abandonment penalty should be added when discussing the system revenue.

Such a penalty can be considered as opportunity-loss costs. In addition, conversion is

also significantly di↵erent between the two invitation types. Button invitation seems to

perform better — it could be because a pop-up window may interrupt browsing. This

phenomena is interesting and should be investigated in future research.

Table 2.6: All customers fit logit Model 2.3

Estimate Std. Error z value Pr(>|z|)

SCORE 24.8488 0.3115 79.772 <2e-16 ***

INV TYPE2 -2.11885 0.03697 -57.308 <2e-16 ***

ACC RECO1 -0.58604 0.16918 -3.464 0.000532 ***

SEV RECO1 0.44623 0.17991 2.48 0.013129 *

GENERAL included

Moreover, we plot the Receiver Operating Characteristic (ROC) curve for the

predictors of both Model 2.1 and 2.3 on conversion, in Figure 2.7. The value of the area

under the ROC curve is the statistical measure of how much better that model can

rank a randomly chosen positive instance higher than a randomly chosen negative one

(Fawcett 2006). The larger area under the curve shows that the model is more accurate.

The model with the operational variables predicts better, which means that pre-service

information, although very good, does not include all impacts on conversion. Indeed

having service is essential for explaining conversion accurately.

2.3.3 Level 2: Customers Who Accept the Invitation

After invitation acceptance, customers are waiting in the outer queue until they are

assigned to an available server. In this step, we investigate whether waiting in the outer
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Figure 2.7: ROC curve for predicting conversion
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(b) Predictor of Model 2.3
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queue a↵ects conversion rate. For that purpose we propose the following model:

Logit (P (CONV ERi)) = �0 + �1 · SCOREi + �2 ·QUEUE SECi

+�3 · SEV RECOi + �4 · INV TY PEi + �5 ·GENERALi + "i
. (2.4)

According to the statistical result (in Table 2.7), the longer a customer waits in

the outer queue, the less chance a purchase will be made during the visit. In numbers,

waiting 1 more minute (60 seconds) will decrease the odd ratio of the probability of

conversion by 9.15%. Hence, it is reasonable to include holding cost, when discussing

system optimization.

Table 2.7: Customers who accept the invitation fit logit Model 2.4

Estimate Std. Error z value Pr(>|z|)

SCORE 22.9123 1.0441 21.9450 <2e-16 ***

INV TYPE2 -1.7984 0.1585 -11.3440 <2e-16 ***

QUEUE SEC -0.0016 0.0006 -2.7260 0.006412 **

SEV RECO1 0.2903 0.1835 1.5820 0.1137

GENERAL included

2.3.4 Level 3: Served Customers

On the service level, both customer and server characteristics are examined. From the

point of view of the customer, we check: Is the inner queue waiting also negatively

correlated with conversion? What is the impact of service time and how is customer

sentiment during the chat associated with conversion rates? From the aspect of the

server, we check the impact of workload and multi-task level on conversion. We thus
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check the following model:

Logit (P (CONV ERi)) = �0 + �1 · SCOREi + �2 · INV TY PEi + �3 · SKILLi

+�4 ·GENERALi + �5 ·NO WORDS + �6 ·MULTIi

+�7 ·AV G SENTi + �7 · END SENTi + �9 · SENT TRENDi

+�10 · log (LOSi) + �11 · PROP INNERQi + "i

.

(2.5)

Table 2.8 presents the model results. It seems that the sentiment factors have no

significant e↵ect. A surprising e↵ect is observed in the inner waiting queue. While

waiting in the outer queue had a negative impact on conversion, waiting in the inner

queue is positively associated with conversion. This means that the customers with a

larger proportion of wait during their total length of stay, have a higher probability of

conversion. Note that waiting in an inner queue is practically waiting while being served,

and the customers are less aware of such waiting. Hence, it may be that such a wait

is reflected to customers as being served longer and not necessarily as waiting longer.

This finding fits similar observations made in restaurants (Tan and Netessine 2014). It

implies that the longer the perceived service, the higher probability of conversion. Last,

as expected, the sales skill is associated with higher conversion.

Table 2.8: Customers who get service fit logit Model 2.5

Estimate Std. Error z value Pr(>|z|)

SCORE 13.329468 1.203909 11.072 <2e-16 ***

INV TYPE -1.865105 0.169444 -11.007 <2e-16 ***

NO WORDS -1.69e-03 6.20e-04 -2.73 0.00634 **

MULTI -0.102772 0.123616 -0.831 0.40576

AVG SENT 0.278269 0.267378 1.041 0.298

END SENT 0.065398 0.176364 0.371 0.71078

SENT TREND20 0.110879 0.201034 0.552 0.58126

SENT TREND21 0.143322 0.288031 0.498 0.61877

LOS 0.187859 0.118506 1.585 0.11292

PROP INNERQ 0.956183 0.295775 3.233 0.00123 **

SKILL 3.740796 0.367691 10.174 <2e-16 ***

GENERAL included

To sum up, through the above empirical study:

• We show that the customer ranking information is acquirable and valid for

optimizing invitation policy. Not all customers should be invited. The distribution of

such information allows us to classify all customers into a limited number of groups

which may simplify the theoretical analysis in the following chapters.

• Operational factors such as load results in waiting and abandonment. Both factors

have negative correlation with conversion. Hence, the cost of waiting, as well as the

penalty of abandonment should be considered when maximizing revenue of the system.

Another option is to maximize revenue under some performance measure constraints
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that will limit the negative e↵ect of overload.

• The operation factors that are unique to the chats, i.e. parallel service and inner

wait, should not be consider as costs.
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Chapter 3

Model of a Proactive service

System

Following the idea of classification, we group customers with similar characteristics

together and start the analysis by finding the optimal invitation policy at the group

level. Since all group information is available to the system, it is natural for the system

to use customer value in the routing policy. Hence, from now on, we discuss a multi-

server, multi-class queueing service system (Figure 3.1) that operates over a infinite-time

horizon.

Figure 3.1: Equivalent system description

Potential arrival
rate Λ1

Z1
θ1

Invitation
rate λ1

μ1

Z2
θ2

Leave
Invitation

rate λ2

μ2

Zk
θk

Invitation
rate λk

μk

…
m Servers

in total

Potential arrival
rate Λ2

Potential arrival
rate Λk

The system has several customer classes that di↵er in their customers’ value. All

potential class i customers arrive to the system according to a Poison process with rate

⇤i, where i 2 K = {1, ..., k}. Following a predetermined invitation policy, system invites

class i customers according to a Poison process with rate �i  ⇤i. Customers wait in a

class-dedicated queue with infinite capacity until they are assigned to a server. During

waiting, customers may abandon the queue due to their exhausted patience. Class i
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customer patience is exponentially distributed with rate ✓i. Each arriving customer

requires a random amount of service. The customers’ service times are exponentially

distributed with mean 1/µi, for customer class i. Every service provided to class i

customers brings a reward with a value of ri. However, waiting time and abandonment

execute a penalty with positive cost chi per unit of waiting time and cabi per renege

customer, respectively. Aiming to maximize revenue—the di↵erence between system

reward and cost—a dynamic control policy was developed, to determine the e↵ective

invitation rates.

The above stochastic model can be described as a continuous time Markov process

denoted by {X (t) ,Q (t) ,Z (t)} = ({Xi (t) , Qi (t) , Zi (t)} , t � 0): Xi (t) and Qi (t) are

the total headcount of class i customers in the system and in the queue at time t,

respectively, and Zi (t) is the number of servers that serve class i customers at time

t. All servers share a server pool with a total of m statistically identical servers who

cater to all types of customers. Apparently, all stochastic variables are defined on the

non-negative quadrant and for all i 2 K satisfy

Xi (t) = Qi (t) + Zi (t) ;P
i2K

Zi (t)  m. (3.1)

Denote Ai as the arrival Poisson process with rate �i, andDi and Ri, as the departure

processes from service and abandonment, respectively. We denote the initial condition of

the system by Xi (0). The dynamics of the process of the number of each class customer

can be characterized by Equation (3.2). Any proposed invitation policy has to satisfy

the dynamics provided by Equations (3.1) and (3.2). Note that the system does not

permit work conservation.

Xi (t) = Xi (0) +Ai (t)�Di (t)�Ri (t) , i 2 K. (3.2)

By using the system state variables, the instantaneous cost of class i customers at

time t can be computed by

Ci (t) dt = chi ·Qi (t) dt+ cabi · dRi (t) . (3.3)

Because the patience of any class of customer is exponentially distributed with rate ✓i,

at time t, the expected abandonment rate of the class i customer can be written as

✓i ·Qi (t) (Atar et al. 2010). Hence, the above cost function can be modified to Equation

(3.4). For computational simplicity, ci = chi + ✓i · cabi is used as a unified cost parameter

of class i from now on. According to the definition of cost parameters, it is clear that ci

is positive.

Ci (t) = chi ·Qi (t) + cabi · (✓i ·Qi (t))

= (chi + ✓i · cabi ) ·Qi (t)

= ci ·Qi (t)

. (3.4)
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Meanwhile, the system is rewarded by each customer who finishes service. As the

service process is exponentially distributed with rate µi, respectively among classes, the

customer service completion rate is

dDi (t) = µi · Zi (t) . (3.5)

Thus, the total instantaneous system revenue is the summation of the revenue of all

classes, that can be expressed by

Rtotal (t) =
P
i2K

(ru · µi · Zi (t)� ci ·Qi (t)). (3.6)

Furthermore, by considering the problem over an infinite time horizon, our objective

is to find an invitation policy satisfying system constraints (defined by Equation (3.1)

and (3.2)) that achieves the maximum average revenue defined by Equation (3.7). The

second equation is a result of the independence between customer class and time.

R̄total = lim
T!1

1
T

R T
0

✓P
i2K

(ri · µi · Zi (t)� ci ·Qi (t))

◆
dt

=
P
i2K

lim
T!1

1
T

R T
0 (ri · µi · Zi (t)� ci ·Qi (t)) dt.

(3.7)

Next, we optimize the fluid scale of this stochastic model to acquire some under-

standing of the invitation policy.

3.1 The Optimal Fluid Policy

Denote xi, qi and zi as the long run fluid averages of the process Xi (t), Qi (t) and Zi (t)

for class i customers, i 2 K. These fluid functions satisfy, in steady state, the following

set of equations

8
>>>>>>><

>>>>>>>:

xi = qi + zi;

�i = µizi + ✓iqi;

�i  ⇤i;P
i2K

zi  m;

xi, zi, qi � 0.

(3.8)

Under the above constraints, our objective is to maximize the total revenue over all sets

(�i, xi, qi, zi). After simplification, the corresponding linear program (LP) is

max
8zi,qi

P
i2K

(riµizi � ciqi)

s.t.
P
i2K

zi  m

µizi + ✓iqi  ⇤i, 8i 2 K
zi, qi � 0, 8i 2 K.

(3.9)
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Since the above LP includes several inequality constraints, we use Karush–Kuhn–Tucker

(KKT) conditions (Karush 1939) to determine the necessary optimality conditions of

this convex problem. The Lagrangian is

L (zi, qi,↵,�i, �i,�i) = �
P
i2K

(riµizi � ciqi) + ↵

✓P
i2K

zi �m

◆

+
P
i2K

�i (µizi + ✓iqi � ⇤i)�
P
i2K

�izi �
P
i2K

�iqi.
(3.10)

The KKT conditions are

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

�riµi + ↵+ �iµi � �i = 0

ci + �i✓i � �i = 0

↵

✓P
i2K

zi �m

◆
= 0

�i (µizi + ✓iqi � ⇤i) = 0

�izi = 0

�iqi = 0

↵,�i, �i,�i  0

, 8i 2 K. (3.11)

Because ci is positive, and �i, ✓i are non-negative, all �i must be positive to keep

the second condition of Equations (3.11) holding. Therefore, according to the sixth

condition, any qi must equal 0. Because the KKT conditions are necessary conditions,

the above result means that the optimal fluid invitation policy does not permit a queue

for any class of customers.

Let qi = 0, then the original LP Equations (3.9) becomes

max
8zi

P
i2K

(ri · µi) · zi

s.t.
P
i2K

zi  m

zi  ⇤i/µi, 8i 2 K
zi � 0, 8i 2 K.

(3.12)

Let’s relabel the classes according to a decreasing order of their rank, defined by the

product riµi, i.e.:

r1 · µ1 � r2 · µ2 � . . . � rk · µk. (3.13)

Obviously, the optimal solution is to assign all the available servers, of which the number

equals ⇤i/µi, to serve class i customers in decreasing order until all servers are occupied.

Assuming k0 is the last class that invite all customers and * denotes the optimal result

of LP (3.9): 8
><

>:
z⇤ =

✓
⇤1
µ1
, ⇤2
µ2
, . . . ,

⇤k0
µk0

,m�
k0�1P
i=1

⇤i
µi
, 0, . . . , 0

◆

q⇤ = (0, 0, . . . , 0)

. (3.14)

In other words, in the fluid scale, the optimal invitation policy is: rank customer by riµi,
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then use all system service capacity to invite customers with as high ranking customers

as possible, so that the system runs in the critical load regime. We call this policy rµ.

3.2 E↵ectiveness of the Fluid Policy

Next, we examine the obtained fluid policy via simulation. Note that the optimal

invitation policy (3.14) categorizes the customer into three types: all invited, partially

invited and non-invited. We are not interested in the third type. Therefore, in the

following experiments, we simplify our model into a two-class system in which the higher-

ranked class customers are all invited and the lower-ranked customers are partially

invited.

We simulate both a large system with 200 servers (m = 200) and a medium size

system with 40 servers (m = 40), with non-preemptive prioritize queues. We assume that

for both class customers, the average patience is longer than the average service time.

The high-ranked customers have µ1 = 1 and ✓1 = 0.5. For the low-ranked customers we

simulate two conditions that vary in their relative demand: a) µ22 = 0.8, ✓22 = 0.4 – in

this case, the service demand of class 2 customers is lower and their patience is shorter.

b) µ21 = 1.25, ✓21 = 0.625, in which class 2’s service demand is higher and they are more

patient. For the large system, the potential arrival rate for high/low value customers

is 150 and 100, respectively. In the smaller system, the rate is 30 and 20, respectively.

Meanwhile, in order to capture the pattern of optimal policy, we test several sets of

reward/cost parameters. All simulated parameter sets are listed in Table 3.1. Generally

speaking, we use in total 6 types of reward/cost parameter sets. The pair of reward

parameters has 3 combinations: both high, class 1 high and class 2 low, and both low.

In each pair of reward parameters we test both high class 2 cost and low class 2 cost.

Table 3.1: Parameter sets for simulations of fluid policy

Set
Number

Number
of

servers
m

High-value customer Low-value customer Fluid
Expected
Reward
Total

⇤1 µ1
O↵ered
load1

✓1 r1 ch1 cab1

Fluid
Expected
Reward1

⇤2 µ2
O↵ered
Load2

✓2 r2 ch2 cab2

Fluid
Expected
Reward2

1

40 30

1

30

0.5

8

0.5 1.2

120000

20

0.8 16 0.4

6
0.6 1.5

24000 144000
2 0.2 1
3

2

0.6 1.5

8000
128000

4 0.2 1
5

3 45000
0.6 1.5

53000
6 0.2 1
7

8 120000 1.25 25 0.65
6

0.6 1.5
37500 157500

8 0.2 1
9

2
0.6 1.5

12500 132500
10 0.2 1
11

200 150 150
8 240000

100 0.8 80 0.4

6
0.6 1.5

48000 288000
12 0.2 1
13

2

0.6 1.5

16000
256000

14 0.2 1
15

3 90000
0.6 1.5

106000
16 0.2 1
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3.2.1 The Original Fluid Policy

According to the first six parameter sets in Table 3.1, the fluid policy can be interpreted

as: inviting high-ranked customers by rate 30 and inviting low-value customers by rate

�2 = 8 (this is the result of equation: 40� ⇤1/µ1 = �2/µ2). We also check the revenue

of the system for a range of �2 values around 8 – between 4.5 and 11.5, so as to examine

the policy performance. The system revenue for di↵erent sets of cost parameters are

illustrated in Figure 3.2. For each set of parameters, the optimal arrival rate (under

this policy) is marked by *.

Figure 3.2: System revenue with arrival rate control (m = 40, µ2 = 0.8)

(a) Parameter sets Case 1 – 4
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(b) Parameter sets Case 5 – 6
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We can observe that for all cases, the fluid policy is not optimal. In particular, for

cases 3 and 4, the fluid policy deviates from optimality. Obviously, such inaccuracy of the

fluid policy is caused by the stochasticity of the system. On the fluid level, the system
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is always supposed to be critically loaded. However, in reality, all customers arrive

stochastically. Thus, the queues for both class customers are accumulated occasionally,

whereas the servers are sometimes idle as well.

Meanwhile, due to di↵erent parameter combinations, the optimal invitation policy

can be overestimated or underestimated. By comparing cases 3 and 4 (Figure 3.2a) to

cases 5 and 6 (Figure 3.2b), we observe that when decreasing the reward of high-ranked

customers, it is more beneficial to invite a higher rate of the low-value customers,

because the relative value of low-ranked customers. However, all optimal rates are

lower than the fluid optimal solution. It means that a queue is not welcome for those

cases. By comparing cases 5 and 6 to cases 1 and 2 in Figure 3.2a, in which all optimal

invitation rates shift higher, we learn that when the di↵erence between cost and reward

of both classes is getting larger, inviting more customers to the system becomes more

and more profitable. Sometimes, we would rather keep an overloaded system to reduce

the probability that the server is idle. In addition, we find that case 6 has more welcome

low-ranked customers than case 5, which indicates that the invitation rate for low-value

customers negatively depends on its waiting penalty. This is because when the invitation

rate is getting higher, the expected queue length is also increasing.

Figure 3.3 demonstrates cases 7–10, where low-ranked customers have higher service

and impatience rates than the high-ranked customers. According to previous analysis,

customers are evaluated by rµ. Therefore, an increase of µ2 can be considered as the

increasing of the reward rate per server for low-value customers. Hence, the increase in

optimal invitation rates is not surprising.
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Figure 3.3: System revenue with arrival rate control (m = 40, µ2 = 1.25)

In addition, we check the same parameter sets as in Figure 3.2 for a large size

system with m = 200. From the result shown in Figure 3.4, we find that the fluid

policy becomes better for all cases, but is still not optimal. Apparently, in large systems
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the fluid approximation is better. In large systems, when the reward/cost parameters

change, the optimal invitation rate changes in the same way as in the medium size

systems. However, we can find that for the same set of reward/cost parameters, the

optimal rate moves close to the fluid policy invitation rate. Because in large systems,

the risks of both queue accumulation and server idleness are lower than the risks in

small systems.

Figure 3.4: System revenue with arrival rate control (m = 200, µ2 = 0.8)

(a) Parameter sets Case 11 – 14
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(b) Parameter sets Case 15 – 16
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3.2.2 The Applicable Threshold Policy

In reality, the potential customers arrive to the system stochastically. Therefore, we need

to find realistic ways to implement this policy. The analysis suggests that a threshold
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policy is approximately optimal. In this case, the fluid policy can be interpreted as:

invite all potential high-ranked customers and stop inviting the low-ranked customers

when all agents are busy, namely, the admission thresholds for high-ranked customers is

infinity and x1 + x2 � m for the low-ranked customer. As in the last subsection, we

compare revenue under the fluid threshold to other policies with the same threshold

structure but in which the value of that threshold varies below/above the theoretical

one. By simulating both small and large systems with the same parameter sets listed in

Table 3.1, the revenue of a threshold policy with di↵erent values are obtained and an

optimal threshold is found. By comparing the revenue between di↵erent policies (see

Table 3.2), we can find that in general, the threshold policy (columns 6–9) performs

better than the original arrival rate control policy (columns 2–5). Moreover, for all

parameter sets, the revenue under the fluid policy’s equivalent threshold (column 6 and

7), though is not an optimal threshold (columns 8 and 9), is higher than the revenue

under the optimal arrival rate control policy (columns 4 and 5). This good performance

of the threshold policy is because the threshold control is a dynamic control. The

admission of low-value customers is adjusted by system state, and is able to achieve a

lower variance around the targeted load value, as we shall see in Section 4.

Table 3.2: Comparison of the revenue between arrival rate and threshold control policy

Set
Number

Arrival Control
Fluid Policy

Arrival Control
Optimal

Threshold Control
Fluid Policy

Threshold Control
Optimal

Rate Revenue Rate Revenue Threshold Revenue Threshold Revenue
1 8 135116.011 9.7 136107.7 40 138839.7 42 139214.5
2 8 135937.43 9.7 137494.4 40 138939.5 43 139490.8
3 8 121186.945 4.9 122488.9 40 123378.5 36 124180.3
4 8 122008.363 4.9 122762.4 40 123478.4 36 124280.1
5 8 48191.4448 7.1 48548.75 40 50404.75 40 50404.75
6 8 49012.8635 7.75 49145.54 40 50504.6 40 50504.6
7 12.5 146362.181 15.7 148387 40 149179 47 151554.2
8 12.5 147437.965 15.7 150417.5 40 149279 47 152503.9
9 12.5 125042.314 11.05 125566.4 40 127902.9 41 127916.8
10 12.5 126118.098 11.05 126372 40 128002.9 42 128052.2
11 40 280721.641 46 281454.5 200 285117.8 203 285699.9
12 40 281605.898 47 281605.9 200 285157.7 205 285935.4
13 40 251022.974 36.5 251834.6 200 253633.2 197 254176.7
14 40 251907.232 36.5 252372.4 200 253673.2 197 254216.7
15 40 102024.807 36.5 102261.2 200 104618.4 199 104742.5
16 40 102909.065 39.5 103035.7 200 104658.4 199 104782.4

Figure 3.5 presents the revenue when applying a threshold policy with identical

parameter sets as in Figure 3.2. The optimal thresholds are much closer to the corre-

sponding fluid one, while the changing pattern is still similar. Such accuracy of the

fluid policy is more obvious in large size systems (see the last six rows in Table 3.2).

However, though its accuracy improved greatly, unfortunately, in all parameter sets we

tested, none of the fluid policy is optimal.

In addition, in all cases, the di↵erence between the simulation revenue of fluid arrival

rate or threshold control policy (columns 3 and 7 in Table 3.2 ) and fluid expected total
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Figure 3.5: System revenue with threshold control (m = 40, µ2 = 0.8)

32 34 36 38 40 42 44 46 48 50
N

1.15

1.2

1.25

1.3

1.35

1.4
R
ev
en
ue

#105

Case1
Case2
Case3
Case4

(a) Parameter sets Case 1 – 4
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(b) Parameter sets Case 5 – 6

reward (last column in Table 3.1) is no more than 10% and 5%, respectively. This means

that though the fluid policy is not optimal, it performs well. However, in a practical

sense, 10% is usually a considerable loss, which promotes us to seek refinement.

To sum up, through the fluid level analysis:

• We determine an asymptotic optimal invitation policy: inviting customers by their

rµ ranking in decreasing order until there is no idle server. Notice that the abandonment

rate does not seem to be a factor in the fluid optimal policy.

• We proposed an equivalent threshold policy, namely, setting a threshold for only

one partially invited customer class. Such a policy is not only easy to implement in

practice but also performs better than the original fluid arrival rate control policy.

• Using simulation, we show that the fluid optimal policy by the controlling threshold

34



performs well also for stochastic environments. However, it is not optimal in such

situations. Especially for small size systems, it usually has some loss. Therefore, we

propose and analyze, in the next section, a refinement to the fluid policy.
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Chapter 4

Analysis of System Dynamics

Referring to the fluid result, the threshold policy can be considered as a promising type

of policy for invitations. Such a policy is easy to implement by setting a threshold to

some of the customer classes. We consider a possible refinement of the fluid policy in

which we optimize the threshold value. The fluid suggested that the threshold shall

only a↵ect the partially-invited customer class. All customers of higher-ranked classes

should be invited and can be merged into one type. Hence, we need two classes: class 1

of high-ranking customers which we always invite and class 2 of low-ranking customers

which we partially invite. We classify all candidate customers based on the rµ policy that

we proposed in Chapter 3. We consider all the fully-invited customer classes together as

high-ranking customers, denoted as Class 1, and the partially-invited customer class as

low-ranking customers, denoted as Class 2. Thus we can reduce the multi-class model

into the following two-class system (Figure 4.1):

m

Class 1 
rate λ1

Abandon
rate θ1

m Servers 
Allow preemption
Service rate  μ1 / 2

Class 2 
rate λ2

N

Not invited

Invited

Abandon
rate θ2

Figure 4.1: The simplified 2 class model of threshold policy

Two classes of customers arrive according to 2 independent Poisson processes at

rates �1 and �2. Class i (i = 1, 2) customers are served with rates µi and lose waiting

patience with rate ✓i. There are m identical servers in the system that serve both

classes. Class 1 customers have a higher ranking, i.e., r1µ1 is greater than r2µ2. A

predetermined threshold N controls the admission of Class 2 customers. Namely, the
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system admits lower ranking customers only if the total number of customers in the

system is lower than the threshold. Note that the original fluid policy optimization

suggested that N = m (no queues). After entering the system, if all servers are busy, the

customers wait in a priority queue in accordance with their ranking. We assume that

preemption is permitted, which means that the higher-ranked customer can interrupt a

lower-ranked customer in service and get service first when the system is overloaded,

and the interrupted service of the lower-ranked customer resumes at a later time when

the service load is released. A Class i (i = 1, 2) customer’s service completion brings

rewards ri to the system. The penalty on waiting time is ci per unit of time waiting of

customer of type i. We assume all the reward/cost parameters are positive.

Let xi (t), zi (t) and qi (t) denote the fluid contents of customer i in the system,

service, and queue at time t, respectively. We aim to determine the optimal admission

threshold, N , to maximize system revenue over an infinite horizon. Such revenue is

influenced both by reward and penalty. Hence, we need to examine the e↵ect of the

threshold on di↵erent performance metrics such as the expected number of customers of

class i in the system, E (xi), and the proportion of uninvited customers, P (x1 + x2 � N).

The dynamics of this model is captured by the following di↵erential equations:

8
>>>>>>>>><

>>>>>>>>>:

ẋ1 (t) = �1 � µ1z1 (t)� ✓1q1 (t)

ẋ2 (t) = I{(x1(t)+x2(t))<N}�2 � µ2z2 (t)� ✓2q2 (t)

q1 (t) = x1 (t)� z1 (t)

q2 (t) = x2 (t)� z2 (t)

z1 (t) = x1 (t) ^m

z2 (t) = x2 (t) ^ (m� x1 (t))
+

, (4.1)

where I
x

is a 0-1 indicator that represents whether condition x is true or false, the

symbol ^ is the minimal operator and ()+ means the larger value between the result

inside brackets and zero. Those equations can be simplified into:

8
><

>:

ẋ1 (t) = �1 � µ1 (x1 (t) ^m)� ✓1(x1 (t)�m)+

ẋ2 (t) = I{(x1(t)+x2(t))<N}�2 � µ2
�
x2 (t) ^ (m� x1 (t))

+�

�✓2
�
x2 (t)� (m� x1 (t))

+�+
. (4.2)

The above dynamics (4.2) is discontinuous on the right-hand side of ẋ2 when x1+x2 = N .

We want to examine the long-term behavior of the system in the fluid level and determine

the steady state of x(t) , [x1(t), x2(t)]
T , denoted as x̄ = limt!1 x(t) = (x̄1, x̄2).

In order to analyze this long-term behavior, several definitions are needed. Consider

a dynamic system that is represented by ẋ = f(x). Denote x(t) as the flow at time t.

Slotine and Li (1991) defined equilibrium state (or point), stability (and instability),

asymptotically stable and globally asymptotically stable in Definition 3.2 - 4, 6, as:

Definition 4.0.1. A state x⇤ is an equilibrium state (or equilibrium point) of the system

if f(x⇤) = 0.
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Denote in state-space ball BR = {x|kxk < R}, and sphere SR = {x|kxk = R}.

Definition 4.0.2. The equilibrium state is said to be stable if for any R > 0, there

exists r > 0, such that if kx(0)k < r, then kx(t)k < R for all t � 0. Otherwise, the

equilibrium point is unstable.

Definition 4.0.3. The equilibrium point x̄ is asymptotically stable if it is stable, and

if in addition there exists r > 0, such that kxk < r implies that x(t) ! x̄ as t ! 1.

Definition 4.0.4. If asymptotic stability holds for any initial states, the equilibrium

point is said to be globally asymptotically stable.

Before focusing on this discontinuous system, we start by analyzing two extreme

cases: a system that invites all low-ranked customers, i.e., no admission control, N = 1,

and a system that always applies admission control, i.e., N = 1.

4.1 Without the Threshold Policy

4.1.1 System Without Admission Control

When the system never implements admission control (N = 1), its dynamics can be

simplified into

ẋ =

 
ẋ1

ẋ2

!
=

(
�1 � µ1 (x1 ^m)� ✓1(x1 �m)+

�2 � µ2
�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+ . (4.3)

The dynamics (4.3) can have three possible forms in di↵erent regions of the state

space (see Figure 4.2):

Region A, ⌦A = {(x1, x2) |x1 � m}

ẋ =

(
�1 � µ1m� ✓1 (x1 �m)

�2 � ✓2x2
, (4.4)

Region B, ⌦B = {(x1, x2) |x1 < m  x1 + x2}

ẋ=

(
�1 � µ1x1

�2 � µ2 (m� x1)� ✓2 (x1 + x2 �m)
, (4.5)

Region C, ⌦C = {(x1, x2) |x1 + x2 < m}

ẋ =

(
�1 � µ1x1

�2 � µ2x2
, (4.6)

The equilibrium for each of the above three dynamics, denoted by x̄A, x̄B and x̄C ,

39



Figure 4.2: Regions of system state
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respectively, can be computed as

x̄A =

 
�1�µ1m

✓1
+m

�2
✓2

!
, x̄B =

 
�1
µ1

�2�(µ2�✓2)(m��1/µ1)
✓2

!
, x̄C =

 
�1
µ1
�2
µ2

!
. (4.7)

These equilibria may not be admisible if the equilibria are out of the defined region.

We denoted by x̄L the equilibrium of system (4.3).

Theorem 4.1. The fluid (4.3) converges to the following globally asymptotically stable

equilibrium:

x̄L =

8
><

>:

x̄A, m  �1/µ1

x̄B, �1/µ1 + �2/µ2 > m > �1/µ1

x̄C , m � �1/µ1 + �2/µ2

. (4.8)

In the first condition, the system is loaded even with just class 1; under the second

condition, the system is underloaded if only high-ranked customers are ordered, but

overloaded in general; when the third condition applies the system is underloaded. The

most interesting case is the second one.

Before proving Theorem 4.1, we first want to qualitatively understand the flow in

the phase space, in particular on the borders between the di↵erent regions. Because

each of the dynamics (4.4, 4.5, 4.6) are linear and all their eigenvalues are negative,

according to Lyapunov’s stability theorem, the equilibria (4.7) are all asymptotically

stable for each of the dynamics (Khalil 1996). Note also that the equilibria (4.7) are all

asymptotically stable if there are no restrictions on the defined region, i.e., the dynamics

are valid in the full phase space. In other words, the trajectory starting inside each

region leaves that region after a finite time if the equilibrium doesn’t reside in that

region.
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Because ẋ1 is independent of x2 and it is a linear equation, we have:

Lemma 4.1.1. In the system (4.3), x1(t) monotonically decreases (increases).

Therefore, in any situation, the flow of x can only cross the border between region A

and region B in one direction. However, x2(t) may not be monotonic. In Figure 4.3, we

simulate several trajectories of the system when �1/µ1 + �2/µ2 > m > �1/µ1 starting

with random initial points. We find that all trajectories converge to the equilibrium

(their intersection point). Note that the trajectory marked with ‘*’ is of interest as it

shows a case where x2 is non-monotonic. It first increases for a while and then decreases

to the equilibrium.

Figure 4.3: Trajectories of system without admission control
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Thus, we examine the behavior round the border x1 + x2 = m between Region B

and C.

Lemma 4.1.2. The trajectory x (t) can cross the border between region B and C at

most twice.

Proof. On x1 + x2 = m, the vector field ẋ degenerates into:

ẋ =

(
�1 � µ1x1

�2 � µ2 (m� x1)
. (4.9)

Denote �m as the projection of vector field ẋ on the gradient of x1 + x2 = m. Then

on the boundary x1 + x2 = m, one has

�m = ẋT

 
1

1

!
= (µ2 � µ1)x1 + (�1 + �2 � µ2m) . (4.10)
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If �m > 0, the flow crosses the border from region C to region B; and if �m < 0, the

flow crosses the border from region B to region C. In other words, the trajectory of x(t)

crosses the borders multiple times if the sign of �m changes. However, from equation

(4.10), �m is a linear function of x1. According to Lemma 4.1.1, �m is also monotonic,

namely, the sign of �m can change at most once. Hence, any trajectory of x(t) can cross

between region B and C at most twice.

Now we finally prove Theorem 4.1:

Proof. In the system with dynamics (4.3), from the above analysis, one knows that an

equilibrium exists in only one of the regions A, B or C, denoted here by S. For each

region that the equilibrium does not reside in, a trajectory starting in that region leaves

that region after finite time (however with a possibility of returning). The reason is that

the equilibria (4.7) are all asymptotically stable and do not lie in that region. It implies

that the trajectory crosses one of the two borders x1 = m or x1 + x2 = m in finite

time. From Lemmas 4.1.1 and 4.1.2, the number of crossings is limited. Thus, after

a su�ciently long time, the trajectory will reside in only one region and never leaves.

We claim that region must be S, otherwise there may be a contradiction regarding the

number of crossings.

Then the trajectory converges to the equilibrium in S because it is asymptotically

stable.

4.1.2 the System Always Applies Admission Control

When the admission control is always implemented (N = 0), system dynamics can be

simplified to the following continuous form:

ẋ =

 
ẋ1

ẋ2

!
=

(
�1 � µ1 (x1 (t) ^m)� ✓1(x1 (t)�m)+

�µ2
�
x2 (t) ^ (m� x1 (t))

+�� ✓2
�
x2 (t)� (m� x1 (t))

+�+ . (4.11)

Because of the abandonment, this system is always stable and converges to its

equilibrium, denoted as x̄H =
�
x̄H1 , x̄H2

�
. Note that since there is no admission for class

2 customers, ẋ2(t) < 0, 8t, and after some finite time ", x2 will become 0 and from

that time on, the system behaves like an Erlang-A queue for which the equilibrium is

(�1 � µ1m) /✓1+m if the system is overloaded and �1/µ1 if the system is underloaded.

Theorem 4.2. In system (4.11), the following equilibrium is globally asymptotically

stable, i.e. the system fluid converges to:

x̄H =

(
((�1 � µ1m) /✓1 +m, 0) m < �1/µ1

(�1/µ1, 0) m � �1/µ1
. (4.12)

Proof. x̄H defined by (4.12) is the equilibrium of system (4.11) since its a solution to

ẋ = 0. In order to show its globally asymptotical stability, the following Lyapunov
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function candidate is used (Lyapunov 1992):

V (x) =
��x1 � x̄H1

��+
��x2 � x̄H2

�� . (4.13)

We want to show that, 8x 6= x̄H , V̇ (x) < 0. The state space {x1 > 0, x2 > 0} can be

divided into two domains according to the value of m. In both cases:

Case A: m < �1/µ1. It has the following subcases:

1. x1 > x̄H1 , x2 � x̄H2
V̇ (x) = ẋ1 + ẋ2 = �1 � µ1m� ✓1 (x1 �m)� ✓2x2

< �1 � µ1m� ✓1
�
x̄H1 �m

�
� ✓2x̄

H
2 = 0

2. x1 = x̄H1 , x2 > x̄H2
V̇ (x) = ẋ2 = �µ2

�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+ < 0

3. x1 � x̄H1 , x2 < x̄H2
V̇ (x) = ẋ1 � ẋ2 = �1 � µ1m� ✓1 (x1 �m) + ✓2x2

< �1 � µ1m� ✓1
�
x̄H1 �m

�
+ ✓2x̄

H
2 = 0

4. x1 < x̄H1 , x2 � x̄H2
V̇ (x) = �ẋ1 + ẋ2

= ��1+µ1 (x1 ^m)+✓1(x1 �m)+�µ2
�
x2 ^ (m� x1)

+��✓2
�
x2 � (m� x1)

+�+

< ��1 + µ1
�
x̄H1 ^m

�
+ ✓1

�
x̄H1 �m

�+
= 0

5. x1 < x̄H1 , x2 < x̄H2
V̇ (x) = �ẋ1 � ẋ2

= ��1+µ1 (x1 ^m)+✓1(x1 �m)++µ2
�
x2 ^ (m� x1)

+�+✓2
�
x2 � (m� x1)

+�+

< ��1+µ1
�
x̄H1 ^m

�
+✓1

�
x̄H1 �m

�+
+µ2

�
x̄H2 ^ (m� x1)

+�+✓2
�
x̄H2 � (m� x1)

+�+

= 0

Case B m � �1/µ1. It has the following subcases:

1. x1 > x̄H1 , x2 � x̄H2
V̇ (x) = ẋ1 + ẋ2

= �1 � µ1 (x1 ^m)� ✓1(x1 �m)+ � µ2
�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+

 �1 � µ1 (x1 ^m)� ✓1(x1 �m)+

< �1 � µ1
�
x̄H1 ^m

�
� ✓1

�
x̄H1 �m

�+
= 0

2. x1 = x̄H1 , x2 > x̄H2
V̇ (x) = ẋ2 = �µ2

�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+ < 0

3. x1 � x̄H1 , x2 < x̄H2
V̇ (x) = ẋ1 � ẋ2

= �1 � µ1 (x1 ^m)� ✓1(x1 �m)+ + µ2
�
x2 ^ (m� x1)

+�+ ✓2
�
x2 � (m� x1)

+�+

< �1 � µ1 · x̄H1 + µ2

⇣
x̄H2 ^

�
m� x̄H1

�+⌘
+ ✓2

�
x̄H2

�+
= 0
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4. x1 < x̄H1 , x2 � x̄H2
V̇ (x) = �ẋ1 + ẋ2

= ��1+µ1 (x1 ^m)+✓1(x1 �m)+�µ2
�
x2 ^ (m� x1)

+��✓2
�
x2 � (m� x1)

+�+

< ��1 + µ1
�
x̄H1 ^m

�
+ ✓1

�
x̄H1 �m

�+
= 0

5. x1 < x̄H1 , x2 < x̄H2
V̇ (x) = �ẋ1 � ẋ2

= ��1+µ1 (x1 ^m)+✓1(x1 �m)++µ2
�
x2 ^ (m� x1)

+�+✓2
�
x2 � (m� x1)

+�+

< ��1 + µ1
�
x̄H1 ^m

�
+ ✓1

�
x̄H1 �m

�+
+ µ2

�
x̄H2 ^ (m�m)+

�
+ ✓2

�
x̄H2

�+
= 0

Thus in all cases, 8x 6= x̄H , V̇ (x) < 0. Hence, the system is globally asymptotically

stable.

4.2 Applying Threshold Policy

After plugging in the admission control, the system (4.2) becomes discontinuous on its

right-hand side. Therefore, we fit our model into Filippov’s framework (Filipov 1988)

for analysis.

The system state space,
�
R2
+ : x1 � 0, x2 � 0

 
, is divided by the switching boundary

s:

s , {x : x1 + x2 �N = 0} (4.14)

into two regions: RL and RH , where RL , {(x1, x2) |x1 + x2 �N < 0} and RH ,
{(x1, x2) |x1 + x2 �N > 0}. We denote the fluid function in regions RL and RH by

fL(x) and fH(x), respectively. They are continuous and piecewise smooth ODE:

fH(x) =

 
�1 � µ1 (x1 ^m)� ✓1(x1 �m)+,

�µ2
�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+

!
;

fL(x) =

 
�1 � µ1 (x1 ^m)� ✓1(x1 �m)+,

�2 � µ2
�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+

!
.

(4.15)

By applying the Filippov theory, the dynamics on the switching boundary s can be

defined as a convex inclusion:

ẋ =

8
><

>:

fH(x) x 2 RH

'fH(x) + (1� ') fL(x),' 2 [0, 1] x 2 s

fL(x) x 2 RL

, (4.16)

which we write explicitly when x 2 s,

ẋ =

(
�1 � µ1 (x1 ^m)� ✓1(x1 �m)+

(1� ')�2 � µ2
�
x2 ^ (m� x1)

+�� ✓2
�
x2 � (m� x1)

+�+ ,' 2 [0, 1] . (4.17)

By using x̄L = (x̄L1 , x̄
L
2 ) and x̄H = (x̄H1 , x̄H2 ) that are defined in Theorem 4.2 and
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4.1, respectively, the equilibrium of system (4.16) can be stated as follows. Note that

x̄H2 = 0 and x̄L1 = x̄H1 . Thus, x̄H1 + x̄H2  x̄L1 + x̄L2 .

Theorem 4.3. In system (4.16), the following equilibrium is globally asymptotically

stable, i.e. the system fluid converges to:

x̄ =

8
><

>:

x̄L x̄L1 + x̄L2  N

↵x̄H + (1� ↵) x̄L x̄H1 + x̄H2 < N < x̄L1 + x̄L2
x̄H x̄H1 + x̄H2 � N

, (4.18)

where

↵ =

8
><

>:

�1✓2+�2✓1+m✓1✓2�mµ1✓2�N✓1✓2
�2✓1

, m  �1/µ1
�1µ2+�2µ1+mµ1✓2�mµ1µ2�Nµ1✓2
�1µ2+�2µ1+mµ1✓2��1✓2�mµ1µ2

, �1/µ1 + �2/µ2 > m > �1/µ1
�1µ1µ2+�2µ12�Nµ1µ2

�2µ1
, m � �1/µ1 + �2/µ2

.

Because the dynamics (4.16) is discontinuous on border s, we use the following

variables to investigate the behavior of system flow around s. Denote �N (x) ⌘ ẋTrs

as the projection of vector field ẋ on the gradient of s. It is the angle between gradient

and system flow. The angle is less than 90 degrees if �N (x) > 0 and larger than 90

degrees if �N (x) < 0. When this value equals 0, the system flow is perpendicular to

the gradient of s. Thus, �N (x) indicates whether the flow moves toward or away from

s when approached from RH , s or RL. This measure is often referred to as the Lie

derivative of s along the field defined by (4.16). In order to evaluate �N (x) on s, we

denote the following two values:

(
�H(x1) ⌘ rsT fH (x1, N � x1)

�L(x1) ⌘ rsT fL (x1, N � x1)
,

and let �(x1,') be the convex combination of �H(x1) and �L(x1)

�(x1,') ⌘ '�H(x1) + (1� ') �L(x1),' 2 [0, 1] .

Note that �(x1, 0) = �L(x1), �(x1, 1) = �H(x1). We evaluate the value of �(x1,') at a

special point on s, namely, x1 = x̄1.

�(x̄1,') = �1 � µ1 (x̄1 ^m)� ✓1(x̄1 �m)+ + (1� ')�2

�µ2
�
(N � x̄1)

+ ^ (m� x̄1)
+�� ✓2

�
(N � x̄1)

+ � (m� x̄1)
+�+

= (1� ')�2 � µ2
�
(N � x̄1)

+ ^ (m� x̄1)
+�� ✓2

�
(N � x̄1)

+ � (m� x̄1)
+�+

.

We analyze the value of �(x̄1,') in the following cases:

1. m  �1/µ1, x1 = x̄1 = (�1 � µ1m) /✓1 +m

�(x̄1,') = (1� ')�2 � ✓2(N � x̄1)
+

N  x̄1
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�(x̄1,') = (1� ')�2 � 0.

Note that the equality holds only when ' = 1.

x̄1 < N < x̄1 + �2/✓2

0 < ✓2 (N � x̄1) /�2 < 1.

When ' = 1� ✓2 (N � x̄1) /�2, �(x̄1,') = 0 and ' 2 (0, 1).

N � x̄1 + �2/✓2

�(x̄1,')  (1� ')�2 � ✓2 (�2/✓2) = �'�2  0.

Note that the equality holds only when ' = 0.

2. �1/µ1 + �2/µ2 > m > �1/µ1, x1 = x̄1 = �1/µ1

N  x̄1

�(x̄1,') = (1� ')�2 � 0.

Note that the equality holds only when ' = 1.

x̄1 < N  m

0 < µ2 (N � x̄1) /�2 < 1.

When ' = 1� µ2 (N � x̄1) /�2, �(x̄1,') = 0 and ' 2 (0, 1).

m < N < x̄1 + (�2 � (µ2 � ✓2) (m� �1/µ1)) /✓2

0 < (µ2 (m� x̄1) + ✓2 (N �m))/�2 < 1.

When ' = 1� (µ2 (m� x̄1) + ✓2 (N �m)) /�2, �(x̄1,') = 0 and ' 2 (0, 1).

N � x̄1 + (�2 � (µ2 � ✓2) (m� �1/µ1)) /✓2 > m

�(x̄1,')  (1� ')�2 � µ2 (m� x̄1)� ✓2 ((�2 � µ2 (m� �1/µ1)) /✓2)  0 .

Note that the equality holds only when ' = 0.

3. m � �1/µ1 + �2/µ2, x1 = x̄1 = �1/µ1

N  x̄1

�(x̄1,') = (1� ')�2 � 0.

Note that the equality holds only when ' = 1.

x̄1 < N < x̄1 + �2/µ2

0 < µ2 (N � x̄1) /�2 < 1.

When ' = 1� µ2 (N � x̄1) /�2, �(x̄1,') = 0 and ' 2 (0, 1).

x̄1 + �2/µ2  N  m

0 < (µ2 (m� x̄1) + ✓2 (N �m))/�2 < 1.

�(x̄1,') = (1� ')�2 � µ2 (N � x̄1)  (1� ')�2 � µ2 (�2/µ2) = �'�2  0.

Note that the equality holds only when ' = 0.

N > m

�(x̄1,') = (1� ')�2 � µ2 (m� x̄1)� ✓2 (N �m)  0.

Note that the equality holds only when ' = 0.

The above results depend on system parameters, which are summarized by the

following cases:
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1. m  �1/µ1

(a)
�2

✓2
+

�1 � (µ1 � ✓1)m

✓1
 N

(b)
�1 � (µ1 � ✓1)m

✓1
< N <

�2

✓2
+

�1 � (µ1 � ✓1)m

✓1

(c)
�1 � (µ1 � ✓1)m

✓1
� N

2. �1/µ1 + �2/µ2 > m > �1/µ1

(a)
�2 � µ2 (m� �1/µ1)

✓2
+m  N

(b)
�1

µ1
< N <

�2 � µ2 (m� �1/µ1)

✓2
+m

(c) �1
µ1

� N

3. m � �1/µ1 + �2/µ2

(a)
�1

µ1
+

�2

µ2
 N

(b)
�1

µ1
< N <

�1

µ1
+

�2

µ2

(c)
�1

µ1
� N

It can be evaluated that:

In all Case (a), 8' 2 [0, 1], one has � (x̄1,') < 0.

In all Case (b), 9' 2 (0, 1), such that � (x̄1,') = 0.

In all Case (c), 8' 2 [0, 1], one has � (x̄1,') > 0.

Note that we consider the breakpoint into Case (a) or Case (c). Because on all

breakpoints, � (x̄1,') = 0 only if ' = 0 or 1. In this case, system dynamics on the

border s has the same function as fH(x) or fL(x). Also, s can be considered as it

belongs to RH or RL. Hence the flow in the breakpoint has the same properties as

either Case (a) or Case (c).

Case 2 is the most interesting case. We use the phase portrait (Figure 4.4) to sketch

the system flow. The boundary s is plotted by a red line. The equilibrium is marked by

a dot. The arrows represent the derivatives of the system states. In Figure 4.4a, the

equilibrium doesn’t lie on the switching line. The arrows appear to penetrate the switch

line. In Figure 4.4b, the equilibrium is on s and all the arrows in RL and RH point to

s in a small region around s. Figure 4.4c is similar to Figure 4.4a, i.e., the direction of

arrows are similar to Case 2(a), penetrating the switch line, from the region without

equilibrium (RH) to the region with equilibrium (RL).

Therefore, in order to prove the asymptotical stability, we are more interested in

the system dynamics in a vertical stripe around the equilibrium. Meanwhile, in all
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Figure 4.4: Phase portraits of Case 2
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the above cases, x1 shows monotonicity. Because ẋ1 is always independent of x2 and

its dynamics are piecewise-linear in x1, similar to the analysis in the previous section,

limt!+1 x1 (t) exists. In other words, we have the following:

Lemma 4.2.1. In the system defined by Equation (4.2), 8" > 0, 9T > 0, such that

x (t > T ) 2 R" = {(x1, x2) |x1 2 (x̄1 � ", x̄1 + ") , " > 0} .

As before, x1 has an equilibrium that depends on the level of load of class 1 customers

only.

x̄1 =

(
(�1 � µ1m) /✓1 +m m  �1/µ1

�1/µ1 m > �1/µ1
. (4.19)

Thus, it is enough to consider the states inside region R". To that end, we first examine

the states close to the switching boundary s for Cases (a), (b), and (c).

Lemma 4.2.2. In system (4.2), if 8' 2 [0, 1], � (x̄1,') > 0 ( or < 0 ), then 9" > 0,

such that 8x1 2 (x̄1 � ", x̄1 + "), �(x1,') > 0 ( or, �(x1,') < 0 ) holds for 8' 2 [0, 1].

Proof. We prove the case �(x1,') > 0. According to the definition, �(x1,') =

'�H(x1) + (1� ') �L(x1). Since 8' 2 [0, 1]: � (x̄1,') > 0, �H(x̄1) > 0 and �L(x̄1) > 0.

By continuity, there always exists "H > 0 and "L > 0, such that �H(x1) > 0 for

x1 2
�
x̄1 � "H , x̄1 + "H

�
, and �L2 (x1) > 0 for x1 2

�
x̄1 � "L, x̄1 + "L

�
. Taking " =

min("L, "H), one has �H2 (x1) > 0 and �L(x1) > 0 for x1 2 (x̄1 � ", x̄1 + "). Furthermore,

the �(x1,') > 0 since it is a convex combination of �H(x1) and �L(x1).

Under the conclusion of Lemma 4.2.1, Lemma 4.2.2 implies that for all Cases (a)

and (c), there always exists a small neighborhood of (x̄1, N � x̄1)T , where the system

trajectory can only cross s in one determined direction. However, in Case (b), s becomes

uncrossable:

Lemma 4.2.3. In system (4.2), if 9'0 2 (0, 1) such that � (x̄1,'0) = 0, then 9" > 0

such that for all x1 2 (x̄1 � ", x̄1 + "), � (x1,') = 0 has a solution with ' 2 (0, 1).
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Proof. From system dynamics (4.2), one has
@� (x1,')

@'
= ��2 6= 0. Then the existence

of ' as an explicit function of x1 is guaranteed by the implicit function theorem

(Munkres 1997), i.e., there exist " > 0 for x1 2 (x̄1 � ", x̄1 + ") such that ' (x1) satisfies

� (x,' (x1)) = 0. Note also that ' (x̄1) = '0 and ' (x) is continuous at x̄1; thus

' (x1) 2 (0, 1) for all x1 in a su�ciently small neighborhood of x̄1.

Reference Bernardo et al. (2008) defines such a region on s where � (x1,') = 0,' 2
(0, 1), as a sliding region. Therefore, Lemma 4.2.3 shows that in Case (b), 9" > 0, for

which x1 2 (x̄1 � ", x̄1 + ") is a sliding region. If the system has a sliding region around

x̄1, the system flow converges to this region in finite time.

Lemma 4.2.4. In system (4.2), if a sliding region exists, then 9" > 0, such that

8x 2 BH (see Figure 4.5), �N (x) < 0 where

BH = {(x1, x2) |x1 2 (x̄1 � ", x̄1 + ")} \RH ,

and 8x 2 BL, �N (x) > 0, where

BL = {(x1, x2) |x1 2 (x̄1 � ", x̄1 + ")} \RL.

Figure 4.5: Regions of system state when sliding region exists

x2

x1

H

L

Proof. According to Lemma 4.2.3, a sliding region exists in Case (b). One can easily

evaluate that (
�H(x̄1, N � x̄1) = �H < 0

�L(x̄1, N � x̄1) = �L > 0
.
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Here �H and �L are functions of parameters, where

�H =

8
><

>:

�✓2 (N � x̄1) m  �1/µ1

�µ2((N ^m)� x̄1)
+ � ✓2(N �m)+ �1/µ1 + �2/µ2 > m > �1/µ1

�µ2 (N � x̄1) m � �1/µ1 + �2/µ2

,

�L =

8
><

>:

�2 � ✓2 (N � x̄1) m  �1/µ1

�2 � µ2((N ^m)� x̄1)
+ � ✓2(N �m)+ �1/µ1 + �2/µ2 > m > �1/µ1

�2 � µ2 (N � x̄1) m � �1/µ1 + �2/µ2

.

Hence, any x 2 BH can be written as:

x =

 
x̄1 +�xH1
N � x̄1 +�xH2

!
,

and
���xH1

�� < " and �xH2 > ��xH1 . Similarly, 8x 2 BL can be written as

x =

 
x̄1 +�xL1
N � x̄1 +�xL2

!
,

where
���xL1

�� < " and �xL2 < ��xL1 . Note also that �N (x) is a linear function of x1 and

x2 of the form

�N (x) =

(
aHx1 + bHx2 + cH , �HN (x), x 2 BH

aLx1 + bLx2 + cL , �LN (x), x 2 BL
,

where aH , aL, bH , bL, cH , and cL represent constants and bH , bL < 0. Thus, 8x 2 BH ,

�HN (x) = aHx1 + bHx2 + cH = aH�xH1 + bH�xH2 + �H

<
���aH

��+
��bH

��� "+ �H
,

and 8x 2 BL,

�LN (x) = aLx1 + bLx2 + c = aL�xL1 + bL�xL2 + �L

> �
���aL

��+
��bL

��� "+ �L
.

Thus, one can choose

" = min

✓
��H

2 (|aH |+ |bH |) ,
�L

2 (|aL|+ |bL|)

◆
,

such that 8
><

>:

�N (x) = �HN (x) <
�H

2
< 0,x 2 BH

�N (x) = �LN (x) >
�L

2
> 0,x 2 BL

.

.
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Lemma 4.2.4 shows that, in all Case (b), there exists an " > 0, such that 8x 2
{(x1, x2) |x1 2 (x̄1 � ", x̄1 + ")}, the system state converges to s in finite time.

Now we move to prove Theorem 4.3:

Proof. The system can be categorized into two types: there exists /does not exist a

sliding region on s which contains (x̄1, N � x̄1).

A. The sliding region does not exist

From Lemma 4.2.2, we know that there exists "NSR > 0; all the trajectories inside

the region BNSR = {(x1, x2) |x1 2 (x̄1 � "NSR, x̄1 + "NSR)}, can only pass through s

in one direction. According to Lemma 4.2.1, any trajectory arrives to BNSR in finite

time. Similarly to the proof of Theorems 4.2 and 4.1, all the trajectories inside BNSR

converge to x̄H (x̄L). Therefore, in all Case (a), x̄H is a globally asymptotically stable

equilibrium, and in all Case (c), x̄L is a globally asymptotically stable equilibrium.

B. The sliding region exists

From Lemma 4.2.3, we know that there exists "SR > 0, such that BSR\S is a sliding

region, where BSR = {(x1, x2) |x1 2 (x̄1 � "SR1, x̄1 + "SR1)}. Meanwhile, from Lemma

4.2.1, we know that all the trajectories reach BSR in finite time. Lemma 4.2.4 maintains

that all the trajectories inside BSR reach s in finite time. In addition, on the sliding

region, the evolution of system state is always along s, namely, x1 + x2 = N always

holds. Since x1 converges to x̄1, all the trajectories will converge to (x̄1, N � x̄1). The

value of ↵ can be evaluated to satisfy ↵x̄H + (1� ↵) x̄L = (x̄1, N � x̄1)T . Therefore, in

all Case (b), ↵x̄H + (1� ↵) x̄L is the globally asymptotically stable equilibrium.

To sum up, the equilibria defined by Theorem 4.3 depends on all system parameters.

They can be illustrated in the space of the threshold N and capacity m, shown in

Figure 4.6. There are in total three striped horizon regions separated by solid lines,

which are referred to as upper zone (Case (a)), middle zone (Case (b)) and lower zone

(Case (c)). Inside the middle region, there exists a sliding region and the equilibrium

is ↵x̄H + (1� ↵) x̄L. In the upper region, the trajectory of the system state can only

move towards RL when its x1 is close to x̄1, and converges to the equilibrium, x̄L. In

the lower region, the state trajectory has to pass from s to RH , after a finite time, and

converge to the equilibrium x̄H .

Furthermore, by using Theorem 4.3 and the results of Bernardo et al. (2008), on the

fluid level, we can obtain:

Corollary 4.4. The proportion of time using admission control in the system defined

by equations 4.16, is given by:

lim
T!1

1

T

Z T

0
I{(x1(t)+x2(t))<N}dt =

8
><

>:

0 x̄L1 + x̄L2  N

↵ x̄H1 + x̄H2 < N < x̄L1 + x̄L2
1 x̄H1 + x̄H2 � N

. (4.20)

This proportion can help us approximate the probability of implementing admission
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Figure 4.6: Equilibrium of various threshold values and server numbers

λ1/ μ1 λ1/ μ1+ λ2/ μ2 m

N

λ1/ μ1+ λ 2/ θ2

λ1/ θ1

λ1/ θ1+ λ 2/ θ2

Case 1 Case 2 Case 3

Case (a)
Case (b)
Case (c)

control for the original stochastic model (4.1), as:

P (Admission) = P (x1 + x2 � N) ⇡ lim
T!1

1

T

Z T

0
I{(x1(t)+x2(t))<N}dt. (4.21)

To sum up, through the system dynamics analysis:

• We propose a threshold policy that works only on the partially invited customer

class according to a fluid policy, so as to try to find a refinement of a fluid policy. We

simplify the original multi-class system into a two-class system with threshold policy

that controls the admission of lower-ranking customers.

• We use the definition to find and prove the fluid globally stable equilibria of the

number of customers (both classes) in the system, for the simplified two-class system.

The globally stable equilibria highly depends on system parameters and the threshold;

especially, in some cases, where the equilibria are found on sliding regions.

• Using the equilibria of customer numbers, we approximate the probability of

implementing admission control by the stochastic two-class system.
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Chapter 5

Discussion

5.1 Fluid Equilibrium

In this section, we aim to understand how the value of equilibrium is a↵ected by system

parameters. The equilibrium defined by Theorem 4.3 can be depicted using a bifurcation

diagram (Figure 5.1). In our system, the values of x̄L and x̄H determine two breakpoints

on N that separate the equilibrium into three cases – (a), (b) and (c). Both x̄L and

x̄H depend only on system parameters as defined by Theorems 4.1 and 4.2. In Cases

(a) and (c), the equilibrium is obtained as if the system that always uses / never uses

admission control, respectively. In Case (b), the equilibrium depends on the value of

the threshold, N , which is linearly increasing in N from x̄H to x̄L.

Figure 5.1: Bifurcation diagram of Cases 1, 2 and 3 as a function of N

N
=0

Case (b)
Global equilibrium

=

Case (a)
Global equilibrium

Case (c)
Global equilibrium

Figure 4.6 showed the distribution of equilibrium for di↵erent combinations of N

and m; that diagram is actually for the cases of ✓1 > µ1 and ✓2 < µ2. Figure 5.2 (each

color represents the same case as defined in Figure 4.6) presents the same analysis for

other combinations. There are three other possibilities for relationships between ✓1, µ1

and ✓2, µ2. We find in di↵erent combinations, the monotonicity of the upper and lower

bounds of Case(b) (the yellow region) changes as we increase the capacity m. In Case

1 (m  �1/µ1), both bounds decrease when µ1 > ✓1 and increase when µ1 < ✓1. In
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Case 2 (�1/µ1 < m < �1/µ1 + �2/µ2), the upper bound decreases when µ2 > ✓2 and

increases when µ2 < ✓2; the lower bound does not change and always equals �1/µ1.

In Case 3, the upper and lower bounds are constants. The system equilibrium is in

Case(b) when �1/µ1 < N < �1/µ1 + �2/µ2, which is insensitive to m. Meanwhile, for

all N < �1/(µ1 _ ✓1), the system is always in Case(c) (the green region), whereas for all

N > �1/(µ1 ^ ✓1)/+�2/µ2, the system is always in Case(a) (the red region). Therefore,

when the threshold N is relatively large/small, it stops a↵ecting the equilibrium.

Figure 5.2: The dependence of equilibrium distribution on di↵erent parameters
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(b) ✓1 < µ1, ✓2 > µ2
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N
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(c) ✓1 > µ1, ✓2 > µ2

5.2 Fluid-Based Performance Measures

We use simulation of the original two-class stochastic system to examine the accuracy

of the fluid approximation. Concentrating on Case 2, in which class 1 customers are

underloaded and in general the system is overloaded, we check the long-term behavior

of both medium (m = 40,�1 = 30 and �2 = 20) and large (N = 200,�1 = 150 and

�2 = 100) systems. For both systems, µ1 = 1, µ2 = 0.8, ✓1 = 0.5 and ✓2 = 0.4. Figure

5.3 presents the comparison of simulation and approximation of the expected number of

people in the system for classes—E(x1) and E(x2).

Figure 5.3: Simulation vs. fluid: E(x1) and E(x2) as a function of N
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By comparing the simulation result, we can see that in both size systems, the

approximation of the equilibrium of x1 (x̄1 = 30, 150 in the medium and large size

system, respectively) is very accurate. This is due to the fact that class 1 is underloaded

at all times. Such accuracy is insensitive to the value of threshold N , which is evident

for the independency of the equilibrium of x1 in N . Thus, from now on, we focus on

the performance metrics of class 2 customers. The approximated equilibrium of x2

becomes more accurate as the system size increases. When N is close to x̄1 + x̄L2 (x̄L2
= 0) and x̄1 + x̄H2 (x̄H2 = 40 and 200, respectively), the accuracy of approximation

decreases. This is because the dynamics of the fluid approximation is nonsmooth when

N = x̄1 + x̄H2 , x̄1 + x̄L2 .

By substituting the equilibrium of x1 and x2 into the original system dynamics

(4.1), we can determine the equilibria of the number of customer i in service (z̄i) and

in queue (q̄i). In Case 2, z̄1 = x̄1, q̄1 = 0, which are constants. According to the

simulation of the above two systems, the average queue length of class 1 customers

is very close to 0 (E(q1) = 0.5674 and 0.3460 in medium and large size systems,

respectively) and the average number of servers who serve class 1 customers is very

close to z̄1 (E(z1) = 29.8538, z̄1 = 30 and E(z1) = 149.9278, z̄1 = 150 in medium and

large size systems, respectively). Similar to x̄1, the fluid approximation of z̄1 and q̄1

also perform very accurately. Figure 5.4 shows the comparison of simulation (solid line)

and approximation (dotted line) of z̄2 and q̄2 for medium and large size systems.

Figure 5.4: Simulation vs. fluid: E(z2) and E(q2) as a function of N
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Similarly, the accuracies of z̄2 and q̄2 both improve when the system size increases.

From Figure 5.4a and 5.4c, we observe that z̄2 loses more accuracy when N is close

to z̄1. More precisely, when N is around z̄1, z̄2 is underestimated. This is typical of

fluid approximations, when N is lower than z̄1 (which equals x̄1); the system does not

give any service load to class 2 customers. However, because class 1 customers arrive

and get service stochastically, the number of class 1 customers in the system sometimes

is less than x̄1. As N increases, it is more and more likely that the admission control

constraint is not satisfied during the arrival of class 2 customers. Thus, on the stochastic

level, there are more class 2 customers admitted into the system and get served than

we approximate on a fluid level, when N is around z̄1. In Figure 5.4b and 5.4d, there

is more inaccuracy observed when N = x̄1 + x̄H2 . This is caused by a nonsmooth fluid

approximation, just like its influence on the accuracy of x̄2 in the same area.

Note that the goal of this thesis is to determine an invitation policy for a proactive

service system that balances revenue and service level. From the perspective of revenue,

we notice that the revenue highly depends on the rate of arrival customers. In our

two-class model, the revenue of class 1 customers is constant for each set of determined

system parameters. The reason is that we neither control the arrival of class 1 customers,

nor do we depend depends on class 2 customers. Therefore, we can only focus on how

the revenue of class 2 customers is changed by di↵erent thresholds. According to the

model, only certain class 2 customers are admitted to the system. In order to find

the e↵ective arrival rate of class 2 customers, we need the probability of the usage of

admission control. In the end of Chapter 4, we approximate the probability that the

admission of class 2 customers will be denied—P(Admission). Figure 5.4 shows the

performance (solid line) of this approximation for both system sizes. Similar to the

phenomena of x̄2, larger system approximations perform better, and inaccuracy happens

when the value of N is round x̄1 + x̄L2 or x̄1 + x̄H2 . These can be explained by similar

arguments as before.

Figure 5.5: Simulation vs. fluid: P(Admission) function of N
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(b) m = 200
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In addition, based on the result of the fluid equilibrium, we can calculate approx-
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imations of serval service level indicators, then use them for policy balancing. The

most common metrics are the expected waiting time, E(W2), and the probability of

abandonment, P (Ab2). Because in Case 2, the fluid approximating queue length for

class 1 customers is 0, we ignore class 1. In our model dynamics, those performance

measures are approximated by

E(W2) = q̄2/(�2(1� ↵));

P (Ab2) = ✓2q̄2/(�2(1� ↵)).
(5.1)

We simulate medium and large systems with the same parameters as before to examine

the performance of these approximations. Results are shown in Figure 5.6.

Figure 5.6: Simulation vs. fluid: E(W2) and P (Ab2) function of N
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(c) m = 200: E(W2)
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Note that the fluid approximation (dotted line) of E(W2) is in fact P (Ab2) scaled

with a constant value ✓2. The simulation results, i.e., the comparison of the curve

between E(W2) and P (Ab2) with the same m (between Figure 5.6a and 5.6b, and

between Figure 5.6c and 5.6b), also support such an observation. Thus, it is su�cient

to discuss E(W2). From the approximation (5.1), we find that, q̄2 and ↵ depend on N

on the right-hand side of E(W2). Meanwhile, ↵ is a denominator. According to the

simulation results we acquired before, when N is near x̄1 + x̄H2 , q̄2 is underestimated

whereas ↵ is overestimated. Therefore, we expect an underestimation to occur here.

The simulation results shown in Figure 5.6a and 5.6c verify, that regardless of system
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size, the inaccuracy of E(W2) is more obvious when N is close to x̄1 + x̄H2 . Moreover,

these service level approximations are getting better with the system size.

We examine all the performances of the approximation obtained in Chapter 4, and

deduced for the equilibrium. In general, all of them perform well, especially in large-size

systems. Meanwhile, we have observed some interesting phenomena of the performance

as N is varying. For instance, the inaccuracy level of the approximation is not symmetric.

We discuss this next.

5.3 Further Discussion of the Performance

Still in Case 2, in Figure 5.3, we have observed an asymmetric mismatch around x̄L2 and

x̄H2 for both medium and large size systems. Let’s assume that the number of class 1

customers in the system constantly equals x̄1. All of them are in service. The remaining

servers, m� x̄1 in total, serve class 2 customers. Thus, the system dynamics (4.2) can

be simplified into a single-variable ODE

ẋ2 = I{x2<N�x̄1}�2 � µ2 (x2 ^ (m� x̄1))� ✓2(x2 � (m� x̄1))
+. (5.2)

If the threshold, N , satisfies Case 2(b), its dynamics can be captured by Figure 5.7.

Figure 5.7: The dynamics analysis of x2 with a given x̄1 in case 2(b)

(a) µ2 > ✓2 (b) µ2 < ✓2

In the case that the admission control (according to the threshold N � x̄1) is

applied (the lower lines in both diagrams), its equilibrium is not feasible. We can

still obtain its value, denoted as a non-admissible (NA) equilibrium. We have x̄NA
2 =

(✓2 � µ2) (m� x̄1) /✓2. By comparing with x̄H2 = 0, x̄NA
2 can either be less or greater

than x̄H2 . However, according to the original system constraints, when applying admission

control, case 2(b) disappears and the system converges to x̄H2 = 0. Thus, when x̄NA
2 is

positive, namely µ2 < ✓2, one admission control is applied and the system converges to

x̄NA
2 faster than it converges to x̄H2 . In the case of negative x̄NA

2 , it converges slower
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than it converges to x̄H2 .

In Figure 5.3, µ2 > ✓2. Thus, the simulation result of E(x2) is only slightly more than

the fluid result when N is close to its lower bound of case 2(b), whereas the inaccuracy

of P (Admission) is large. When ✓2 increases, the cross point of the simulation curve

and fluid approximation is increasing in E(x2) but is decreasing in P (Admission) (see

Figure 5.8). Moreover, we have observed that in the simulation of P (Admission), the

slope of the trace has a small but significant change, as seen in Figure 5.5. This change

disappears when x̄NA
2 overlaps x̄H2 and emerges again when µ2 < ✓2 (see Figure 5.8b and

5.8d). Though this change does not adversely a↵ect the accuracy of fluid approximation

significantly, the reason of this phenomenon is also worthy of future study.

Figure 5.8: Simulation and fluid of case 2 with di↵erent pairs of µ2 and ✓2
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(b) µ2 = ✓2: P (Admission)
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(c) µ2 < ✓2: E(x2)
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(d) µ2 < ✓2: P (Admission)
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Chapter 6

Conclusion

Motivated by various applications in chat services, law-enforcement and healthcare

systems, we developed an invitation policy in the form of a threshold for a proactive

service system to promote system revenues while considering the service level provided

to customers.

Based on the analysis of a realistic proactive chat service system, we constructed a

multiclass multiserver model with impatient customers and built an objective revenue

function. According to the model, we first found an optimal fluid policy—rµ rule—by

solving a linear programming problem of the fluid model. Through simulation of the

fluid policy, we proposed an easily applicable threshold policy that applies to only one

class of customers to control their admission. It is found that the system equilibrium

under such a policy is globally asymptotically stable. This result is obtained in Theorem

4.3. Such an equilibrium helps us approximate the probability of the implementation of

admission control with di↵erent thresholds. Furthermore, we discussed the performance

of these approximations and deduced approximations for service level metrics as well.

All approximations perform well, especially in large systems. Therefore, one can use

such approximations to determine an invitation policy that maximizes revenue while

the system service level satisfies specified constraints.

The above conclusion is obtained by analyzing a simplified version of the original

system. The system we studied empirically, is more complex and allows, for example,

the agents to serve multiple customers in parallel. When we built the model, we did

not take that feature into account. Nevertheless, it is very common in a chat service

system, which we suggest to be added in future research. In addition, in chat systems,

customers need a random time to make their decision after they receive an invitation.

We neglected such decision time. Therefore, further analysis is needed to understand

the impact of this decision time delay.

Note that we discussed the equilibrium under a preemptive assumption. In most

cases, the preemptive and non-preemptive cases converge to the same equilibrium when

size goes to infinity. However, the di↵erence appears when the load of the higher-ranked

customers is very close to be critically loaded. If the system has many classes, such
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exceptional cases can happen. Thus, the non-preemptive case is also worth exploration

in the future.

So far, we verified validity of the approximation we obtained using simulation. In

the next step, we suggest to use our case study to check the e↵ectiveness of our results

for the determination of threshold in practice. One can also investigate some other

approaches that are based on the equilibrium result, to analyze our model stochastically

and improve the approximation (see Chan and Yom-Tov (2015)).

The implementation of our policy in practice is not straightforward as our classes so

far were only based on scores; classes by the model should be set by di↵erences in µ as

well. Also, the number of classes in practice is not well defined; we suggested to rely on

the empirical observation that the score seems to be a mixture of several distributions,

but other approaches might be considered too. For example, if one can forecast not

only score but also service time for each individual, maybe revenues can be enhanced

even further.

The application to a healthcare environment suggests several further extensions. In

the healthcare system, the invitation policy needs to take into account also exogenous

unplanned arrivals. Therefore, the service level for both invited and unexpected patients

needs to be considered. A first solution for such environments could be to consider

those types of customers as having the highest priority regardless of their rµ value.
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  תקציר
אקטיביות, בשונה ממערכות שירות קלאסיות, מאפשרות שליטה ובקרה על קצב ההגעה - פרומערכות שירות 

של לקוחות למערכת. במערכות אלו, חלק מהלקוחות (ולעיתים כולם)  מגיעים עקב הזמנות יזומות שמפעילה 
המערכת, הזמנות בהן המערכת מציעה ללקוחות לצרוך את שירותיה, באופן שיביא לשליטה טובה יותר 
במדדים תפעוליים שונים וברווחיות. מערכות שירות מסוג זה משמשות, לדוגמה, למידול שירותי צ'אט 

  באינטרנט, או לתכנון אסטרטגיות טיפול מונע במערכות בריאות.  

אנו מתקפים את החשיבות של סיווג הלקוחות   אקטיבית- אמפירי של מערכת צ'אט פרובמסגרת מחקר 
משתמשים בסיווג זה לצורך אופטימזציה על מדיניות הזמנת הלקוחות למערכת. למחלקות עדיפות שונות, ו

הראינו כי ניתן להגדיר מדדי שירות שונים באמצעות עלויות נטישה והמתנה, ולבצע אופטמיזציה על הרווח 
המקסימלי תחת אילוצים על מדדי השירות הללו, באופן שיגביל את ההשפעה השלילית של עומס יתר 

דדים תפעוליים אחרים, כולל מדדים ייחודיים לשירותי צ'אט כגון, כמות השירות המקבילי במערכת. מ
(שירות שבו נציג אחד משרת מספר לקוחות במקביל) והמתנות פנימיות (המתנות לאחר קבלת השירות 

  הראשוני, בין שירות אחד למשנהו), לא נחשבו כעלויות במודל שלנו . 

'אט כתור מרובה שרתים, עם לקוחות ממחלקות עדיפות שונות וסבלנות במחקרנו, מידלנו את מערכת הצ
סופית. הנחנו כי סבלנות הלקוחות מתפלגת מעריכית וכי הפרמטר (קצב) של התפלגות זו תלוי במחלקת 

המודל הנחנו כי עלויות ההמתנה והנטישה זהות עבור כלל  לצורך הפשטתליה שייך הלקוח. העדיפות א
מודל נוזלים ופתרנו בעיית תכנות לינארי למקסום הרווח (ההפרש בין הכנסות המערכת השתמשנו ב הלקוחות.

והעלויות), שהובילה למציאת המדיניות האופטימלית הגבולית. לפי מדיניות זו, יש להזמין לקוחות למערכת 
הינו קצב השירות של  P - הינו הרווח משירות הלקוח ו  r(כאשר שלהם  rP - לפי סדר יורד של ערכי ה 

  ". rP), לפיכך נקראת מדיניות זו "מדיניות הלקוח

בנוסף, אנו מציעים לשלב מדיניות זו עם מדיניות סף, הקובעת שיש לעצור את הזמנת הלקוחות כאשר כל 
השרתים עסוקים. הראינו כי מדיניות סף זו הינה פשוטה ליישום וכן מביאה לביצועים טובים יותר מאשר 

קצב ההגעה. באמצעות סימולציה אנו מראים את המשולבת עם סוגים אחרים של בקרה על  rP - מדיניות ה 

האופטימלית, שנגזרה מקירוב הנוזלים  rP - היתרונות והמגבלות של מדיניות זו וכן מראים כי מדיניות ה 

ואינה כוללת מדיניות סף, מביאה אמנם לביצועים טובים אך אינה עדינה מספיק ברמה הסטוכסטית. בכדי 
ניתחנו את מודל הנוזלים של המערכת בשילוב עם מדיניות סף, תחת ערכי סף שונים. איחדנו את לעדנה 

מחלקות העדיפות המקוריות לשתי מחלקות בלבד, כאשר מדיניות הסף מגבילה את קצב ההגעה של הלקוחות 
כולל הפרעה בעלי העדיפות הנמוכה בלבד. לקוחות אשר נכנסו למערכת  מקבלים שירות לפי העדיפות שלהם (

  לשירות של לקוח אחר ממדיניות נמוכה יותר). 

הדינמיקה של מודל הנוזלים הינה אי רציפה מימין. מרחב המצב של המערכת מחולק על ידי הגבול לשני 
תחומים עם משוואות דיפרנציאליות רגילות רציפות וחלקות למקוטעין. מצאנו כי שיווי המשקל בין שני 

טרים של המערכת (קצבי ההגעה, קצבי השירות ועוד) ובעיקר בערך הסף. בנוסף התחומים תלוי מאוד בפרמ
מצאנו כי נקודת שיווי המשקל הינה יציבה אסימפטוטית, באופן גלובאלי, עם מסלולים יציבים במובן 
ליאפונוב. הראינו זאת על ידי התמקדות בדנימיקה של המערכת בפס אנכי מסביב לשיווי המשקל. תוצאה זו 

 . בפרט, במקרים מסויימים, שיווי המשקל נמצא באזורי הזזה.4.3במשפט  מוצגת

להציע מדינית הזמנה למערכות שירות פרואקטיביות אשר מאזנת בין רווחיות ורמת שירות חישבנו על מנת 
בקירוב את ההסתברות להפעלת בקרה על קצב ההגעה (כלומר, ההסתברות שיהיה צורך לעצור את ההזמנות 

ן מצאנו קירובים למספר מדדים המצביעים על רמת השירות, כגון זמן ההמתנה וההסתברות למערכת) וכ
לנטישה. קירובים אלו נבחנו באמצעות סימולציה ונמצאו טובים, במיוחד עבור מערכות גדולות. בנוסף, אנו 

 דנים בעבודתנו בהשפעה של פרמטרי המערכת על הדיוק של קירוב הנוזלים.
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